Contents
Academic literature on the topic 'Rissüberbrückung'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rissüberbrückung.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Rissüberbrückung"
Bayer, Daniela, and Mike Richter. "Zur Anwendung bruchmechanischer Konzepte für die Modellierung der rissüberbrückenden Wirkung von Rovings." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1244047456442-11748.
Full textBeyer, Frank R., and Bernd W. Zastrau. "Aspekte der Modellierung des Tragverhaltens von Textilbeton unter biaxialer Beanspruchung." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-77875.
Full textFor design and simulation of plane textile reinforced concrete structures mechanical models representing the material behaviour under biaxial loading are necessary. For one-dimensional structures several models were presented in the past. For their further development an extension for biaxial material behaviour is usually proposed. In this paper the required extensions are discussed and their feasibility for modelling is assessed
Barhum, Rabea. "Mechanisms of the interaction between continuous and short fibres in textile-reinforced concrete (TRC)." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-143501.
Full textIn der vorliegenden Arbeit wird über Untersuchungen zu den Mechanismen der Wechselwirkungen zwischen Kurz- und Endlosfasern in zement-basierenten Hochleistungskompositen berichtet. Hierzu wurden experimentelle Untersuchungen auf verschiedenen Betrachtungsebenen (Makro-, Meso- und Mikroebene) durchgeführt mit dem Ziel, detaillierte Erkenntnisse zu den Auswirkungen der Zugabe von verschiedenen Arten von Kurzfasern (disperse und integrale AR-Glasfasern, Kohlenstofffasern) hinsichtlich des Festigkeits-, Verformungs- und Bruchverhaltens von Textilbeton (engl.: textile-reinforced concrete = TRC) unter Zugbeanspruchung zu gewinnen. Die Bruchflächen sowie die Gestalt der Interphase zwischen der Bewehrung aus Textilien oder Kurzfasern und der umhüllenden zemengebundenen Matrix wurden mit optischen und elektronenmikroskopischen Verfahren hinsichtlich der Wechselwirkungsphänomene ausgewertet. Die Ergebnisse der experimentellen Arbeiten bildeten den Ausgangspunkt für die mathematischen Beschreibungen für TRC mit Kurzfasern unter verformungsgesteuerter Zugbelastung. Die Formulierungen erfolgten auf Grundlage multiskalarer rheologisch-statistischer Modellansätze. In einer Literatursichtung wurde zunächst der Kenntnisstand zu den Materialien und zum Verhalten von TRC und Faserbeton unter Zugbeanspruchung dargestellt und diskutiert. Die noch zu erforschenden Fragen wurden präzisiert und die Grundlagen für deren Untersuchung geschaffen. Bei den Experimenten auf der Makroebene wurden drei Bewehrungsvarianten betrachtet: a) textile Bewehrung, b) Kurzfaserbewehrung, und c) hybride Bewehrung (Textil und Kurzfasern). An Dehnkörpern wurde die Spannungs-Dehnungsbeziehung unter einachsiger Zugbelastung studiert und dabei das Rissbild und die Phänomene des Faserversagens detailliert beobachtet. Anhand der Spannungs-Dehnungsbeziehungen konnte gezeigt werden, dass die Zugabe von Kurzfasern bei allen untersuchten Kurzfaserarten zu einer erheblichen Verbesserung der Leistungsfähigkeit von Textilbeton führt. Dies zeigte sich unter anderem in einer ausgeprägten Anhebung der Erstrissspannung sowie der Entwicklung von zahlreicheren und damit feineren Rissen, die zu einer Verbesserung der Duktilität führten. Ebenso wurden Steigerungen der Zugfestigkeit und der Energiedissipation festgestellt. In welchem Maß diese Änderungen stattfinden, hängt von der Art der Kurzfasern ab. Die Experimente auf der Mikro- und Mesoebene wurden so konzipiert, dass sie die Erkundung der Mechanismen, die den auf der Makroebene beobachteten Phänomenen zugrunde liegen, unterstützten. Auf der Mesoebene wurden Mulitifilamentgarnauszugversuche (mit und ohne Kurzfasern in der Matrix) und auf der Mikroebene Einzelfaserauszugsversuche für alle betrachteten Kurzfasertypen durchgeführt. Es wurde festgestellt, dass die Kurzfasern den Verbund zwischen Matrix und Multifilamentgarn verbessern. Kurzfasern können bei zufälliger Positionierung an der Garnoberfläche zusätzliche Haftbrücken bzw. Verbindungsstellen zu umgebender Matrix bilden. Für die Verbundqualität zwischen Faser und Matrix ist der Wasser-Bindemittel-Wert (W/B-Wert) von entscheidender Bedeutung. Bei einer Matrix mit niedrigem W/B-Wert führt die gute Qualität des Verbunds der eingebetteten Fasern zu einer Erhöhung der Steifigkeit sowie der Festigkeit des Komposites. Bei hohem W/B-Wert haben die Fasern einen schlechten Verbund zur Matrix und müssen überwiegend als Fehl- bzw. Schwachstellen betrachtet werden. Festigkeit und Steifigkeit des Komposits nehmen daher ab. Die Ableitung mathematischer Beziehungen für Textilbeton mit Zugabe von Kurzfasern unter verformungsgesteuerter Zugbelastung erfolgte aufbauend auf den Ergebnissen der experimentellen Untersuchungen auf der Mikroebene. Die Einzelfaserauszugsversuche wurden mit Hilfe eines physikalisch basierten Modelles nachgebildet, das aus einfachen rheologischen Elementen besteht. Phänomene wie die graduelle Ablösung der Faser, Faserbruch und Faserauszug wurden durch eine entsprechende Kombination und Parametrierung der rheologischen Elemente abgebildet. Im Ergebnis wurden zutreffende Kraft-Rissöffnungsbeziehungen modelliert. Auf der Mesoebene wurde ein einzelner Riss modelliert, der sowohl durch Multifilamentgarne als auch Kurzfasern überbrückt werden kann. Der rissüberbrückenden Wirkung der zahlreichen Kurzfasern wurde mit Hilfe statistischer Methoden rechnung getragen, die unterschiedliche Faser-Risswinkel und Einbindelängen berücksichtigen. Die resultierende Spannungs-Rissöffnungskurve umfasst die rissüberbrückende Wirkung von Multifilamentgarnen und Kurzfasern. Auf der Makroebene kann die charakteristische Spannungs-Dehnungsbeziehung von TRC unter Zugbelastung in 3 Bereiche (Zustände I, IIa, IIb) unterteilt werden. Die Kurvenverläufe im Zustand I (ungerissenen) sowie Zustand IIb (abgeschlossenes Rissbild) wurden als linear betrachtet und basierend auf den entsprechenden charakteristischen Werten des jeweiligen Zustands beschrieben. Das Verhalten im Zustand IIa (multiple Rissbildung) wurde durch die Reihenschaltung einer zunehmenden Anzahl von Rissen sowie den Beitrags der ungerissenen Matrix zwischen den Rissen modelliert
Chudoba, Rostislav, Martin Konrad, Markus Schleser, Konstantin Meskouris, and Uwe Reisgen. "Parametric study of tensile response of TRC specimens reinforced with epoxy-penetrated multi-filament yarns." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1244043793029-57511.
Full textBarhum, Rabea. "Mechanisms of the interaction between continuous and short fibres in textile-reinforced concrete (TRC)." Doctoral thesis, 2013. https://tud.qucosa.de/id/qucosa%3A28068.
Full textIn der vorliegenden Arbeit wird über Untersuchungen zu den Mechanismen der Wechselwirkungen zwischen Kurz- und Endlosfasern in zement-basierenten Hochleistungskompositen berichtet. Hierzu wurden experimentelle Untersuchungen auf verschiedenen Betrachtungsebenen (Makro-, Meso- und Mikroebene) durchgeführt mit dem Ziel, detaillierte Erkenntnisse zu den Auswirkungen der Zugabe von verschiedenen Arten von Kurzfasern (disperse und integrale AR-Glasfasern, Kohlenstofffasern) hinsichtlich des Festigkeits-, Verformungs- und Bruchverhaltens von Textilbeton (engl.: textile-reinforced concrete = TRC) unter Zugbeanspruchung zu gewinnen. Die Bruchflächen sowie die Gestalt der Interphase zwischen der Bewehrung aus Textilien oder Kurzfasern und der umhüllenden zemengebundenen Matrix wurden mit optischen und elektronenmikroskopischen Verfahren hinsichtlich der Wechselwirkungsphänomene ausgewertet. Die Ergebnisse der experimentellen Arbeiten bildeten den Ausgangspunkt für die mathematischen Beschreibungen für TRC mit Kurzfasern unter verformungsgesteuerter Zugbelastung. Die Formulierungen erfolgten auf Grundlage multiskalarer rheologisch-statistischer Modellansätze. In einer Literatursichtung wurde zunächst der Kenntnisstand zu den Materialien und zum Verhalten von TRC und Faserbeton unter Zugbeanspruchung dargestellt und diskutiert. Die noch zu erforschenden Fragen wurden präzisiert und die Grundlagen für deren Untersuchung geschaffen. Bei den Experimenten auf der Makroebene wurden drei Bewehrungsvarianten betrachtet: a) textile Bewehrung, b) Kurzfaserbewehrung, und c) hybride Bewehrung (Textil und Kurzfasern). An Dehnkörpern wurde die Spannungs-Dehnungsbeziehung unter einachsiger Zugbelastung studiert und dabei das Rissbild und die Phänomene des Faserversagens detailliert beobachtet. Anhand der Spannungs-Dehnungsbeziehungen konnte gezeigt werden, dass die Zugabe von Kurzfasern bei allen untersuchten Kurzfaserarten zu einer erheblichen Verbesserung der Leistungsfähigkeit von Textilbeton führt. Dies zeigte sich unter anderem in einer ausgeprägten Anhebung der Erstrissspannung sowie der Entwicklung von zahlreicheren und damit feineren Rissen, die zu einer Verbesserung der Duktilität führten. Ebenso wurden Steigerungen der Zugfestigkeit und der Energiedissipation festgestellt. In welchem Maß diese Änderungen stattfinden, hängt von der Art der Kurzfasern ab. Die Experimente auf der Mikro- und Mesoebene wurden so konzipiert, dass sie die Erkundung der Mechanismen, die den auf der Makroebene beobachteten Phänomenen zugrunde liegen, unterstützten. Auf der Mesoebene wurden Mulitifilamentgarnauszugversuche (mit und ohne Kurzfasern in der Matrix) und auf der Mikroebene Einzelfaserauszugsversuche für alle betrachteten Kurzfasertypen durchgeführt. Es wurde festgestellt, dass die Kurzfasern den Verbund zwischen Matrix und Multifilamentgarn verbessern. Kurzfasern können bei zufälliger Positionierung an der Garnoberfläche zusätzliche Haftbrücken bzw. Verbindungsstellen zu umgebender Matrix bilden. Für die Verbundqualität zwischen Faser und Matrix ist der Wasser-Bindemittel-Wert (W/B-Wert) von entscheidender Bedeutung. Bei einer Matrix mit niedrigem W/B-Wert führt die gute Qualität des Verbunds der eingebetteten Fasern zu einer Erhöhung der Steifigkeit sowie der Festigkeit des Komposites. Bei hohem W/B-Wert haben die Fasern einen schlechten Verbund zur Matrix und müssen überwiegend als Fehl- bzw. Schwachstellen betrachtet werden. Festigkeit und Steifigkeit des Komposits nehmen daher ab. Die Ableitung mathematischer Beziehungen für Textilbeton mit Zugabe von Kurzfasern unter verformungsgesteuerter Zugbelastung erfolgte aufbauend auf den Ergebnissen der experimentellen Untersuchungen auf der Mikroebene. Die Einzelfaserauszugsversuche wurden mit Hilfe eines physikalisch basierten Modelles nachgebildet, das aus einfachen rheologischen Elementen besteht. Phänomene wie die graduelle Ablösung der Faser, Faserbruch und Faserauszug wurden durch eine entsprechende Kombination und Parametrierung der rheologischen Elemente abgebildet. Im Ergebnis wurden zutreffende Kraft-Rissöffnungsbeziehungen modelliert. Auf der Mesoebene wurde ein einzelner Riss modelliert, der sowohl durch Multifilamentgarne als auch Kurzfasern überbrückt werden kann. Der rissüberbrückenden Wirkung der zahlreichen Kurzfasern wurde mit Hilfe statistischer Methoden rechnung getragen, die unterschiedliche Faser-Risswinkel und Einbindelängen berücksichtigen. Die resultierende Spannungs-Rissöffnungskurve umfasst die rissüberbrückende Wirkung von Multifilamentgarnen und Kurzfasern. Auf der Makroebene kann die charakteristische Spannungs-Dehnungsbeziehung von TRC unter Zugbelastung in 3 Bereiche (Zustände I, IIa, IIb) unterteilt werden. Die Kurvenverläufe im Zustand I (ungerissenen) sowie Zustand IIb (abgeschlossenes Rissbild) wurden als linear betrachtet und basierend auf den entsprechenden charakteristischen Werten des jeweiligen Zustands beschrieben. Das Verhalten im Zustand IIa (multiple Rissbildung) wurde durch die Reihenschaltung einer zunehmenden Anzahl von Rissen sowie den Beitrags der ungerissenen Matrix zwischen den Rissen modelliert.