Academic literature on the topic 'RNA 3' Polyadenylation Signals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'RNA 3' Polyadenylation Signals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "RNA 3' Polyadenylation Signals"
Denome, R. M., and C. N. Cole. "Patterns of polyadenylation site selection in gene constructs containing multiple polyadenylation signals." Molecular and Cellular Biology 8, no. 11 (November 1988): 4829–39. http://dx.doi.org/10.1128/mcb.8.11.4829.
Full textDenome, R. M., and C. N. Cole. "Patterns of polyadenylation site selection in gene constructs containing multiple polyadenylation signals." Molecular and Cellular Biology 8, no. 11 (November 1988): 4829–39. http://dx.doi.org/10.1128/mcb.8.11.4829-4839.1988.
Full textStolow, D. T., and S. M. Berget. "UV cross-linking of polypeptides associated with 3'-terminal exons." Molecular and Cellular Biology 10, no. 11 (November 1990): 5937–44. http://dx.doi.org/10.1128/mcb.10.11.5937.
Full textStolow, D. T., and S. M. Berget. "UV cross-linking of polypeptides associated with 3'-terminal exons." Molecular and Cellular Biology 10, no. 11 (November 1990): 5937–44. http://dx.doi.org/10.1128/mcb.10.11.5937-5944.1990.
Full textSanfaçon, Hélène. "Regulation of mRNA formation in plants: lessons from the cauliflower mosaic virus transcription signals." Canadian Journal of Botany 70, no. 5 (May 1, 1992): 885–99. http://dx.doi.org/10.1139/b92-113.
Full textDas, Atze T., Bep Klaver, and Ben Berkhout. "A Hairpin Structure in the R Region of the Human Immunodeficiency Virus Type 1 RNA Genome Is Instrumental in Polyadenylation Site Selection." Journal of Virology 73, no. 1 (January 1, 1999): 81–91. http://dx.doi.org/10.1128/jvi.73.1.81-91.1999.
Full textRothnie, Helen M., Gang Chen, Johannes Fütterer, and Thomas Hohn. "Polyadenylation in Rice Tungro Bacilliform Virus:cis-Acting Signals and Regulation." Journal of Virology 75, no. 9 (May 1, 2001): 4184–94. http://dx.doi.org/10.1128/jvi.75.9.4184-4194.2001.
Full textButler, J. S., P. P. Sadhale, and T. Platt. "RNA processing in vitro produces mature 3' ends of a variety of Saccharomyces cerevisiae mRNAs." Molecular and Cellular Biology 10, no. 6 (June 1990): 2599–605. http://dx.doi.org/10.1128/mcb.10.6.2599.
Full textButler, J. S., P. P. Sadhale, and T. Platt. "RNA processing in vitro produces mature 3' ends of a variety of Saccharomyces cerevisiae mRNAs." Molecular and Cellular Biology 10, no. 6 (June 1990): 2599–605. http://dx.doi.org/10.1128/mcb.10.6.2599-2605.1990.
Full textCastelo-Branco, Pedro, Andre Furger, Matthew Wollerton, Christopher Smith, Alexandra Moreira, and Nick Proudfoot. "Polypyrimidine Tract Binding Protein Modulates Efficiency of Polyadenylation." Molecular and Cellular Biology 24, no. 10 (May 15, 2004): 4174–83. http://dx.doi.org/10.1128/mcb.24.10.4174-4183.2004.
Full textDissertations / Theses on the topic "RNA 3' Polyadenylation Signals"
Holec, Sarah Gagliardi Dominique. "Polyadenylation and RNA degradation." Strasbourg : Université Louis Pasteur, 2008. http://eprints-scd-ulp.u-strasbg.fr:8080/987/01/HOLEC_Sarah_2008.pdf.
Full textSheppard, Sarah E. "Application of a Naïve Bayes Classifier to Assign Polyadenylation Sites from 3' End Deep Sequencing Data: A Dissertation." eScholarship@UMMS, 2013. http://escholarship.umassmed.edu/gsbs_diss/653.
Full textChambers, A. "RNA 3' cleavage and polyadenylation in oocytes, eggs and embryos of Xenopus laevis." Thesis, University of Warwick, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380275.
Full textShen, Yingjia. "Genome wide studies of mRNA 3'-end processing signals and alternative polyadenylation in plants." Miami University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=miami1260664627.
Full textForbes, Kevin Patrick. "Characterization of plant polyadenylation transacting factors--factors that modify poly(A)polymerse activity." Lexington, Ky. : [University of Kentucky Libraries], 2005. http://lib.uky.edu/ETD/ukyplph2005d00278/etd.pdf.
Full textTitle from document title page (viewed on November 7, 2005). Document formatted into pages; contains vi, 135 p. : ill. Includes abstract and vita. Includes bibliographical references (p. 113-133).
Loke, Johnny Chee Heng. "COMPILATION OF mRNA POLYADENYLATION SIGNALS IN ARABIDOPSIS THALIANA REVEALED NEW SIGNAL ELEMENTS AND POTENTIAL SECONDARY STRUCTURES." Miami University / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=miami1103223217.
Full textNadimpalli, Hima Priyanka 1988. "Insights into cytoplasmatic polyadenylation mediated by Drosophila Dicer-2." Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/664810.
Full textLa poliadenilación citoplasmática es un mecanismo de control de la traducción extendido a lo largo de la escala animal. En vertebrados, este mecanismo requiere dos secuencias en el extremo 3’ no traducido (UTR) del mRNA, el elemento de poliadenilación citoplasmática rico en uridinas (CPE) y el hexanucleótido de poliadenilación AAUAAA (HN). En embriones tempranos de Drosophila, la poliadenilación de Toll, sin embargo, ocurre independientemente de estas secuencias, y requiere al menos dos factores: Dicer-2, una proteína previamente implicada en interferencia de RNA (RNAi), y la poly(A) polimerasa Wispy. Para entender esta nueva función de Dicer-2 en poliadenilación citoplasmática y traducción, nos propusimos diseccionar los elementos en el extremo 3’ UTR de Toll relevantes para este mecanismo de poliadenilación no canónica, así como identificar proteínas y mRNAs que interaccionan con Dicer-2 a gran escala. Nuestros resultados indican que el extremo 3’ UTR de Toll contiene varias secuencias implicadas en poliadenilación, y que el mecanismo no canónico es dominante en embriones tempranos, probablemente porque los elementos canónicos (CPE y HN) se encuentran activamente reprimidos. El estudio del interactoma de Dicer-2, realizado por purificación por afinidad e identificación por espectrometría de masas, reveló numerosas proteínas que no están implicadas en RNAi. Entre ellas, encontramos factores previamente relacionados con control de la longitud del poly(A) o con interacción con PABP y traducción, sugiriendo que estos factores podrían actuar x como co-factores de Dicer-2 en poliadenilación citoplasmática. Análisis de mRNA targets mediante RIP-Seq reveló multiples tránscritos que previamente fueron identificados como targets de Wispy. Estos resultados sugieren una función extendida de Dicer-2 en poliadenilación citoplasmática, y establecen una base sólida para investigaciones futuras.
Braz, Sandra Catarina Oliveira. "Alternative polyadenylation of Rho GTPases : a gene/cell specific process." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/14865.
Full textAlternative polyadenylation (APA) is an important mechanism of gene regulation that occurs in 70% of eukaryotic organisms. This process comprises the formation of alternative 3’ ends of an mRNA by cleavage of the pre-mRNA and polyadenylation at different sites according to the polyadenylation signals (pAs). The choice of pAs in APA is a co-transcriptional mechanism that depends on auxiliary cis- and trans-acting factors. The usage of the proximal or the distal pAs has been related to global physiologic events. It is consensually assumed that in proliferative conditions there is preferential usage of proximal pAs, while during development and in differentiated cellular states occurs lengthening of the 3’UTRs by selection of the distal pAs. This pattern is also confirmed in brain tissues, where most of the cells are differentiated, and where it was observed a lengthening of the 3’ UTRs. However, there is not a complete switch for the distal pA, since the shortest mRNA is still expressed. Rho GTPases are key molecular switchers essential for several cellular processes, including differentiation, however nothing is known about transcriptional regulation in these genes. Therefore, we started to explore if Rho GTPases genes undergo APA. We found by 3’RACE analyses, that classical Rho GTPAses express two alternative mRNA isoforms. However during oligodendrocytes differentiation, they preferentially express the shortest mRNA isoform, and we did not observe a switch towards the distal pA usage, in contrast with the published genome-wide data obtained from brain tissues. Since Rho GTPases are tightly regulated at the protein level by GEFs and GAPs, they may not require this mode of co-transcriptional regulation. The atypical RhoBTB2, which is constitutively active, present a global induction of distal pA sites, distinct from the classical Rho GTPases. Interestingly, this pattern suggests that APA is a gene specific mechanism. As longer 3'UTRs contain more binding sites for miRNAs and RNA binding proteins (RBPs) this suggests that atypical Rho GTPases require a fine-tune regulation at the co-transcriptional level, by APA. Additionally, we showed that APA is also cell-specific, by analyzing the expression of the different mRNA isoforms of Rho GTPases in other glial cells (microglia, astrocytes) and different types of neurons (cortical, striatal and hippocampal). We observed the same APA profile for the selected Rho GTPases in all glial cells types. However, in cortical and striatal neurons we observed a lengthening in the 3’UTR Rac1 mRNA during axonal growth, which results in the increase of the total protein levels. Taken together, our results indicate for the first time that APA is a gene- and cell- specific mechanism. In addition, we have found a differential expression of both Cdc42 isoforms during OL and sciatic nerve differentiation. During in vitro OL and in vivo sciatic nerve differentiation we observed an increase in the expression ratio between Cdc42 Iso1/Cdc42 Iso2. Further, constitutive expression of Cdc42 Iso2 in OLs induces a delay in differentiation, whereas constitutive expression of Cdc42 Iso1 induces an increase in OL branching, suggesting an exacerbation of the differentiated phenotype. Thus, these observations suggest a distinct role for the different Cdc42 isoforms during OL differentiation. Overall, this thesis opens new avenues to explore in the future that can impact our understanding on the regulation of the myelination/remyelination processes.
A poliadenilação alternativa (APA) é um mecanismo importante de regulação genética que ocorre em 70% dos organismos eucariotas. Este mecanismo compreende a formação de extremidades 3’ alternativas por poliadenilação em diferentes locais do mRNA, de acordo com os sinais de poliadenilação (pAs). Na APA, a escolha dos pAs é um mecanismo co-transcripcional que depende de factores auxiliares cis e trans necessários para os processos de clivagem e poliadenilação de todos os pré-mRNAs. Além disso, o uso dos pAs proximais ou distais está relacionado com eventos fisiológicos gerais. Consensualmente assume-se que em estados de proliferação ocorre o encurtamento, enquanto em estados de desenvolvimento e diferenciação ocorre o alongamento das extremidades 3’ não traduzidas (3’UTRs). Este padrão de APA é confirmado em tecidos cerebrais, onde a maior parte das células são diferenciadas, no entanto não existe uma alteração completa para a isoforma de mRNA longa uma vez que a isoforma curta continua a ser expressa. As Rho GTPases são ‘interruptores’ moleculares essenciais a vários processos celulares, incluindo a diferenciação, no entanto nada é conhecido sobre a sua regulação transcripcional. Assim, começamos a explorar se estes genes são regulados por APA. Descobrimos por análise de 3´RACE que, as Rho GTPases clássicas, expressam duas formas alternativas de mRNA. Contudo durante a diferenciação dos oligodendrócitos (OLs), eles expressam preferencialmente a isoforma mRNA mais curta, e não se observou uma alteração para a escolha da isoforma mais longa, em contraste com os dados de estudos globais do genoma em tecido cerebral. Uma vez que estas proteínas são altamente reguladas por GEFs e por GAPs, provavelmente não necessitam de regulação a nível transcripcional. As Rho GTPases atípicas, que estão constitutivamente activas, apresentam um indução global dos pAs distais, distintas das Rho GTPases clássicas. Curiosamente, este padrão sugere que APA é um mecanismo específico do gene. Como 3’UTRs mais longas providenciam mais locais de ligação para microRNA ou proteínas de ligação ao RNA (RBPs), isto sugere que as Rho GTPases atípicas requerem uma regulação mais fina ao nível co-transcriptional, por APA. Adicionalmente, mostramos que a APA é também específica de cada tipo celular, pela análise da expressão do mRNA em outras células da glia (microglia, astrócitos), e em diferentes tipos de neurónios (corticais, estriatais e hipocampais). Nós observamos o mesmo padrão de APA para as Rho GTPases selecionadas em todas as células da glia. No entanto, em neurónios corticais e do estriado, observámos a existência do alongamento do 3’UTR no mRNA da Rac1 durante o crescimento axonal, o que resulta num aumento da quantidade total de proteína. Em resumo, estes resultados indicam, pela primeira vez, que a APA é um mecanismo específico de cada gene e de cada tipo celular. Para além disso, descobrimos uma expressão diferencial de ambas as isoformas da Cdc42 durante a diferenciação dos OLs e do nervo ciático. Durante a diferenciação in vitro de OLs e in vivo do nervo ciático, observámos um aumento do rácio da expressão entre Cdc42 Iso1/Cdc42 Iso2. Mais ainda, a expressão constitutiva de Cdc42 Iso2 em OLs induz um atraso na diferenciação, enquanto a expressão constitutiva da Cdc42 Iso1 induz um aumento das ramificações, sugerindo uma exacerbação do fenótipo de diferenciação. Assim, estas observações sugerem um papel distinto para as diferentes isoformas de Cdc42 durante a diferenciação de OLs. Globalmente, esta tese abre novos caminhos para explorar no futuro, que podem ter um impacto no nosso conhecimento, na regulação do processo de mielinização/remielinização.
Dalgleish, Gillian Denise. "Localisation signals within the c-myc and c-fos 3'untranslated regions." Thesis, University of Aberdeen, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.481826.
Full textDa, Rocha Oliveira Nunes Nuno Miguel. "Analysis of human non-canonical 3’end formation signals." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:f77c04f1-7530-442d-8654-81ccb6d0e362.
Full textBooks on the topic "RNA 3' Polyadenylation Signals"
Chambers, Alistair. RNA 3' cleavage and polyadenylation in oocytes, eggs and embryos of "Xenopus laevis". [s.l.]: typescript, 1986.
Find full textBook chapters on the topic "RNA 3' Polyadenylation Signals"
Osborne, H. B., and J. D. Richter. "Translational Control by Polyadenylation During Early Development." In Cytoplasmic fate of messenger RNA, 173–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60471-3_8.
Full textLange, Heike, and Dominique Gagliardi. "Polyadenylation in RNA Degradation Processes in Plants." In Non Coding RNAs in Plants, 209–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19454-2_13.
Full textSchöning, Uwe, Thomas Schnattinger, Hans A. Kestler, Britta Stoll, and Anita Marchfelder. "RNA Structures as Processing Signals." In Information- and Communication Theory in Molecular Biology, 367–74. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54729-9_17.
Full textKeller, Walter. "3′-End Cleavage and polyadenylation of nuclear Messenger RNA Precursors." In Pre-mRNA Processing, 113–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-22325-3_7.
Full textJi, Guoli, Xiaohui Wu, Qingshun Quinn Li, and Jianti Zheng. "Messenger RNA Polyadenylation Site Recognition in Green Alga Chlamydomonas Reinhardtii." In Advances in Neural Networks - ISNN 2010, 17–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13278-0_3.
Full textSanfaçon, Hélène, Peter Brodman, and Thomas Hohn. "Polyadenylation of Cauliflower Mosaic Virus RNA is Controlled by Promoter Proximity." In Post-Transcriptional Control of Gene Expression, 359–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75139-4_33.
Full textTimmons, Lisa. "Systemic RNAi in C. elegans from the Viewpoint of RNA as Extracellular Signals." In Nucleic Acids and Molecular Biology, 69–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12617-8_6.
Full textBujarski, Jozef J., and Paul Kaesberg. "Insertion of Signals for Autolytic Cleavage in Viral cDNAs Provides Nearly Correct 3’ Ends of Viral RNA Transcripts." In Plant Molecular Biology, 632. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-7598-6_67.
Full textLamas-Maceiras, Monica, Silvia Seoane, and Maria A. "Alternative Polyadenylation in Yeast: 3 ́-UTR Elements and Processing Factors Acting at a Distance." In RNA Processing. InTech, 2011. http://dx.doi.org/10.5772/21151.
Full textOgorodnikov, Anton, and Sven Danckwardt. "TRENDseq—A highly multiplexed high throughput RNA 3′ end sequencing for mapping alternative polyadenylation." In Methods in Enzymology, 37–72. Elsevier, 2021. http://dx.doi.org/10.1016/bs.mie.2021.03.022.
Full textConference papers on the topic "RNA 3' Polyadenylation Signals"
Fu, Hongjuan, Yibo Zhuang, Xiaohui Wu, and Guoli Ji. "A Pipeline to Identify Novel 3’ UTRs and Widespread Intergenic Transcription by Combination of Polyadenylation Sites and RNA-seq Data." In ICBBS '20: 2020 9th International Conference on Bioinformatics and Biomedical Science. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3431943.3432289.
Full text