To see the other types of publications on this topic, follow the link: RNA bioinformatics.

Journal articles on the topic 'RNA bioinformatics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'RNA bioinformatics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Backofen, Rolf, Fabian Amman, Fabrizio Costa, Sven Findeiß, Andreas S. Richter, and Peter F. Stadler. "Bioinformatics of prokaryotic RNAs." RNA Biology 11, no. 5 (2014): 470–83. http://dx.doi.org/10.4161/rna.28647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ji, Fei, and Ruslan I. Sadreyev. "RNA-seq: Basic Bioinformatics Analysis." Current Protocols in Molecular Biology 124, no. 1 (2018): e68. http://dx.doi.org/10.1002/cpmb.68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Marz, Manja, Niko Beerenwinkel, Christian Drosten, et al. "Challenges in RNA virus bioinformatics." Bioinformatics 30, no. 13 (2014): 1793–99. http://dx.doi.org/10.1093/bioinformatics/btu105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zok, Tomasz. "BioCommons: a robust java library for RNA structural bioinformatics." Bioinformatics 37, no. 17 (2021): 2766–67. http://dx.doi.org/10.1093/bioinformatics/btab069.

Full text
Abstract:
Abstract Motivation Biomolecular structures come in multiple representations and diverse data formats. Their incompatibility with the requirements of data analysis programs significantly hinders the analytics and the creation of new structure-oriented bioinformatic tools. Therefore, the need for robust libraries of data processing functions is still growing. Results BioCommons is an open-source, Java library for structural bioinformatics. It contains many functions working with the 2D and 3D structures of biomolecules, with a particular emphasis on RNA. Availability and implementation The library is available in Maven Central Repository and its source code is hosted on GitHub: https://github.com/tzok/BioCommons Supplementary information Supplementary data are available at Bioinformatics online.
APA, Harvard, Vancouver, ISO, and other styles
5

Muckstein, U., H. Tafer, J. Hackermuller, S. H. Bernhart, P. F. Stadler, and I. L. Hofacker. "Thermodynamics of RNA-RNA binding." Bioinformatics 22, no. 10 (2006): 1177–82. http://dx.doi.org/10.1093/bioinformatics/btl024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Menzel, Peter, Stefan E. Seemann, and Jan Gorodkin. "RILogo: visualizing RNA–RNA interactions." Bioinformatics 28, no. 19 (2012): 2523–26. http://dx.doi.org/10.1093/bioinformatics/bts461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Huntley, Rachael P., Barbara Kramarz, Tony Sawford, et al. "Expanding the horizons of microRNA bioinformatics." RNA 24, no. 8 (2018): 1005–17. http://dx.doi.org/10.1261/rna.065565.118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gawronski, Alexander R., Michael Uhl, Yajia Zhang, et al. "MechRNA: prediction of lncRNA mechanisms from RNA–RNA and RNA–protein interactions." Bioinformatics 34, no. 18 (2018): 3101–10. http://dx.doi.org/10.1093/bioinformatics/bty208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Evers, D., and R. Giegerich. "RNA movies: visualizing RNA secondary structure spaces." Bioinformatics 15, no. 1 (1999): 32–37. http://dx.doi.org/10.1093/bioinformatics/15.1.32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sühnel, Jürgen. "Bioinformatik. Methoden zur Vorhersage von RNA- und Proteinstrukturen (Bioinformatics. Methods for RNA and protein structure prediction)." Bioelectrochemistry 61, no. 1-2 (2003): 110–11. http://dx.doi.org/10.1016/j.bioelechem.2003.09.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Tafer, Hakim, Fabian Amman, Florian Eggenhofer, Peter F. Stadler, and Ivo L. Hofacker. "Fast accessibility-based prediction of RNA–RNA interactions." Bioinformatics 27, no. 14 (2011): 1934–40. http://dx.doi.org/10.1093/bioinformatics/btr281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Maragkakis, Manolis, Panagiotis Alexiou, Tadashi Nakaya, and Zissimos Mourelatos. "CLIPSeqTools—a novel bioinformatics CLIP-seq analysis suite." RNA 22, no. 1 (2015): 1–9. http://dx.doi.org/10.1261/rna.052167.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Busch, A., and R. Backofen. "INFO-RNA--a fast approach to inverse RNA folding." Bioinformatics 22, no. 15 (2006): 1823–31. http://dx.doi.org/10.1093/bioinformatics/btl194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Tafer, Hakim, and Ivo L. Hofacker. "RNAplex: a fast tool for RNA–RNA interaction search." Bioinformatics 24, no. 22 (2008): 2657–63. http://dx.doi.org/10.1093/bioinformatics/btn193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Li, Andrew X., Manja Marz, Jing Qin, and Christian M. Reidys. "RNA–RNA interaction prediction based on multiple sequence alignments." Bioinformatics 27, no. 4 (2010): 456–63. http://dx.doi.org/10.1093/bioinformatics/btq659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Cordero, Pablo, Julius B. Lucks, and Rhiju Das. "An RNA Mapping DataBase for curating RNA structure mapping experiments." Bioinformatics 28, no. 22 (2012): 3006–8. http://dx.doi.org/10.1093/bioinformatics/bts554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Forster, Samuel C., Alexander M. Finkel, Jodee A. Gould, and Paul J. Hertzog. "RNA-eXpress annotates novel transcript features in RNA-seq data." Bioinformatics 29, no. 6 (2013): 810–12. http://dx.doi.org/10.1093/bioinformatics/btt034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Reeder, Jens, Matthias Höchsmann, Marc Rehmsmeier, Björn Voss, and Robert Giegerich. "Beyond Mfold: Recent advances in RNA bioinformatics." Journal of Biotechnology 124, no. 1 (2006): 41–55. http://dx.doi.org/10.1016/j.jbiotec.2006.01.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Holmqvist, Isak, Alan Bäckerholm, Yarong Tian, Guojiang Xie, Kaisa Thorell, and Ka-Wei Tang. "FLAME: long-read bioinformatics tool for comprehensive spliceome characterization." RNA 27, no. 10 (2021): 1127–39. http://dx.doi.org/10.1261/rna.078800.121.

Full text
Abstract:
Comprehensive characterization of differentially spliced RNA transcripts with nanopore sequencing is limited by bioinformatics tools that are reliant on existing annotations. We have developed FLAME, a bioinformatics pipeline for alternative splicing analysis of gene-specific or transcriptome-wide long-read sequencing data. FLAME is a Python-based tool aimed at providing comprehensible quantification of full-length splice variants, reliable de novo recognition of splice sites and exons, and representation of consecutive exon connectivity in the form of a weighted adjacency matrix. Notably, this workflow circumvents issues related to inadequate reference annotations and allows for incorporation of short-read sequencing data to improve the confidence of nanopore sequencing reads. In this study, the Epstein-Barr virus long noncoding RNA RPMS1 was used to demonstrate the utility of the pipeline. RPMS1 is ubiquitously expressed in Epstein-Barr virus associated cancer and known to undergo ample differential splicing. To fully resolve the RPMS1 spliceome, we combined gene-specific nanopore sequencing reads from a primary gastric adenocarcinoma and a nasopharyngeal carcinoma cell line with matched publicly available short-read sequencing data sets. All previously reported splice variants, including putative ORFs, were detected using FLAME. In addition, 32 novel exons, including two intron retentions and a cassette exon, were discovered within the RPMS1 gene.
APA, Harvard, Vancouver, ISO, and other styles
20

Huang, Fenix W. D., Jing Qin, Christian M. Reidys, and Peter F. Stadler. "Partition function and base pairing probabilities for RNA–RNA interaction prediction." Bioinformatics 25, no. 20 (2009): 2646–54. http://dx.doi.org/10.1093/bioinformatics/btp481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zhang, Yang, Tianyuan Liu, Liqun Chen, et al. "RIscoper: a tool for RNA–RNA interaction extraction from the literature." Bioinformatics 35, no. 17 (2019): 3199–202. http://dx.doi.org/10.1093/bioinformatics/btz044.

Full text
Abstract:
Abstract Motivation Numerous experimental and computational studies in the biomedical literature have provided considerable amounts of data on diverse RNA–RNA interactions (RRIs). However, few text mining systems for RRIs information extraction are available. Results RNA Interactome Scoper (RIscoper) represents the first tool for full-scale RNA interactome scanning and was developed for extracting RRIs from the literature based on the N-gram model. Notably, a reliable RRI corpus was integrated in RIscoper, and more than 13 300 manually curated sentences with RRI information were recruited. RIscoper allows users to upload full texts or abstracts, and provides an online search tool that is connected with PubMed (PMID and keyword input), and these capabilities are useful for biologists. RIscoper has a strong performance (90.4% precision and 93.9% recall), integrates natural language processing techniques and has a reliable RRI corpus. Availability and implementation The standalone software and web server of RIscoper are freely available at www.rna-society.org/riscoper/. Supplementary information Supplementary data are available at Bioinformatics online.
APA, Harvard, Vancouver, ISO, and other styles
22

DeLuca, David S., Joshua Z. Levin, Andrey Sivachenko, et al. "RNA-SeQC: RNA-seq metrics for quality control and process optimization." Bioinformatics 28, no. 11 (2012): 1530–32. http://dx.doi.org/10.1093/bioinformatics/bts196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Schnattinger, T., U. Schoning, A. Marchfelder, and H. A. Kestler. "RNA-Pareto: interactive analysis of Pareto-optimal RNA sequence-structure alignments." Bioinformatics 29, no. 23 (2013): 3102–4. http://dx.doi.org/10.1093/bioinformatics/btt536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Huang, Fenix W. D., Jing Qin, Christian M. Reidys, and Peter F. Stadler. "Target prediction and a statistical sampling algorithm for RNA–RNA interaction." Bioinformatics 26, no. 2 (2009): 175–81. http://dx.doi.org/10.1093/bioinformatics/btp635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Giulietti, M., S. A. Milantoni, T. Armeni, G. Principato, and F. Piva. "ExportAid: database of RNA elements regulating nuclear RNA export in mammals." Bioinformatics 31, no. 2 (2014): 246–51. http://dx.doi.org/10.1093/bioinformatics/btu620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Warren, Andrew S., Cristina Aurrecoechea, Brian Brunk, et al. "RNA-Rocket: an RNA-Seq analysis resource for infectious disease research." Bioinformatics 31, no. 9 (2015): 1496–98. http://dx.doi.org/10.1093/bioinformatics/btv002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

DiChiacchio, Laura, Michael F. Sloma, and David H. Mathews. "AccessFold: predicting RNA–RNA interactions with consideration for competing self-structure." Bioinformatics 32, no. 7 (2015): 1033–39. http://dx.doi.org/10.1093/bioinformatics/btv682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Yamasaki, Satoshi, and Kazuhiko Fukui. "2P266 Tertiary structure prediction of RNA-RNA complex structures using secondary structure information(22A. Bioinformatics: Structural genomics,Poster)." Seibutsu Butsuri 53, supplement1-2 (2013): S203. http://dx.doi.org/10.2142/biophys.53.s203_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Janssen, S., and R. Giegerich. "The RNA shapes studio." Bioinformatics 31, no. 3 (2014): 423–25. http://dx.doi.org/10.1093/bioinformatics/btu649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Cloonan, Nicole, Qinying Xu, Geoffrey J. Faulkner, et al. "RNA-MATE: a recursive mapping strategy for high-throughput RNA-sequencing data." Bioinformatics 25, no. 19 (2009): 2615–16. http://dx.doi.org/10.1093/bioinformatics/btp459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Miladi, Milad, Soheila Montaseri, Rolf Backofen, and Martin Raden. "Integration of accessibility data from structure probing into RNA–RNA interaction prediction." Bioinformatics 35, no. 16 (2018): 2862–64. http://dx.doi.org/10.1093/bioinformatics/bty1029.

Full text
Abstract:
Abstract Summary Experimental structure probing data has been shown to improve thermodynamics-based RNA secondary structure prediction. To this end, chemical reactivity information (as provided e.g. by SHAPE) is incorporated, which encodes whether or not individual nucleotides are involved in intra-molecular structure. Since inter-molecular RNA–RNA interactions are often confined to unpaired RNA regions, SHAPE data is even more promising to improve interaction prediction. Here, we show how such experimental data can be incorporated seamlessly into accessibility-based RNA–RNA interaction prediction approaches, as implemented in IntaRNA. This is possible via the computation and use of unpaired probabilities that incorporate the structure probing information. We show that experimental SHAPE data can significantly improve RNA–RNA interaction prediction. We evaluate our approach by investigating interactions of a spliceosomal U1 snRNA transcript with its target splice sites. When SHAPE data is incorporated, known target sites are predicted with increased precision and specificity. Availability and implementation https://github.com/BackofenLab/IntaRNA Supplementary information Supplementary data are available at Bioinformatics online.
APA, Harvard, Vancouver, ISO, and other styles
32

Picardi, Ernesto, Mattia D'Antonio, Danilo Carrabino, Tiziana Castrignanò, and Graziano Pesole. "ExpEdit: a webserver to explore human RNA editing in RNA-Seq experiments." Bioinformatics 27, no. 9 (2011): 1311–12. http://dx.doi.org/10.1093/bioinformatics/btr117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kato, Yuki, Kengo Sato, Michiaki Hamada, Yoshihide Watanabe, Kiyoshi Asai, and Tatsuya Akutsu. "RactIP: fast and accurate prediction of RNA-RNA interaction using integer programming." Bioinformatics 26, no. 18 (2010): i460—i466. http://dx.doi.org/10.1093/bioinformatics/btq372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zhang, Zhaojun, and Wei Wang. "RNA-Skim: a rapid method for RNA-Seq quantification at transcript level." Bioinformatics 30, no. 12 (2014): i283—i292. http://dx.doi.org/10.1093/bioinformatics/btu288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kerpedjiev, Peter, Stefan Hammer, and Ivo L. Hofacker. "Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams." Bioinformatics 31, no. 20 (2015): 3377–79. http://dx.doi.org/10.1093/bioinformatics/btv372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Fricke, Markus, and Manja Marz. "Prediction of conserved long-range RNA-RNA interactions in full viral genomes." Bioinformatics 32, no. 19 (2016): 2928–35. http://dx.doi.org/10.1093/bioinformatics/btw323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Li, Musheng, Xueying Xie, Jing Zhou, et al. "Quantifying circular RNA expression from RNA-seq data using model-based framework." Bioinformatics 33, no. 14 (2017): 2131–39. http://dx.doi.org/10.1093/bioinformatics/btx129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Yan, Yumeng, and Sheng-You Huang. "RRDB: a comprehensive and non-redundant benchmark for RNA–RNA docking and scoring." Bioinformatics 34, no. 3 (2017): 453–58. http://dx.doi.org/10.1093/bioinformatics/btx615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wenzel, Anne, Erdinç Akbaşli, and Jan Gorodkin. "RIsearch: fast RNA–RNA interaction search using a simplified nearest-neighbor energy model." Bioinformatics 28, no. 21 (2012): 2738–46. http://dx.doi.org/10.1093/bioinformatics/bts519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Iwakiri, Junichi, Tomoshi Kameda, Kiyoshi Asai, and Michiaki Hamada. "Analysis of base-pairing probabilities of RNA molecules involved in protein–RNA interactions." Bioinformatics 29, no. 20 (2013): 2524–28. http://dx.doi.org/10.1093/bioinformatics/btt453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Yan, Zichao, William L. Hamilton, and Mathieu Blanchette. "Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions." Bioinformatics 36, Supplement_1 (2020): i276—i284. http://dx.doi.org/10.1093/bioinformatics/btaa456.

Full text
Abstract:
Abstract Motivation RNA-protein interactions are key effectors of post-transcriptional regulation. Significant experimental and bioinformatics efforts have been expended on characterizing protein binding mechanisms on the molecular level, and on highlighting the sequence and structural traits of RNA that impact the binding specificity for different proteins. Yet our ability to predict these interactions in silico remains relatively poor. Results In this study, we introduce RPI-Net, a graph neural network approach for RNA-protein interaction prediction. RPI-Net learns and exploits a graph representation of RNA molecules, yielding significant performance gains over existing state-of-the-art approaches. We also introduce an approach to rectify an important type of sequence bias caused by the RNase T1 enzyme used in many CLIP-Seq experiments, and we show that correcting this bias is essential in order to learn meaningful predictors and properly evaluate their accuracy. Finally, we provide new approaches to interpret the trained models and extract simple, biologically interpretable representations of the learned sequence and structural motifs. Availability and implementation Source code can be accessed at https://www.github.com/HarveyYan/RNAonGraph. Supplementary information Supplementary data are available at Bioinformatics online.
APA, Harvard, Vancouver, ISO, and other styles
42

Bernard, Elsa, Laurent Jacob, Julien Mairal, and Jean-Philippe Vert. "Efficient RNA isoform identification and quantification from RNA-Seq data with network flows." Bioinformatics 30, no. 17 (2014): 2447–55. http://dx.doi.org/10.1093/bioinformatics/btu317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hamilton, Russell S., and Ilan Davis. "RNA localization signals: Deciphering the message with bioinformatics." Seminars in Cell & Developmental Biology 18, no. 2 (2007): 178–85. http://dx.doi.org/10.1016/j.semcdb.2007.02.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sczyrba, A. "RNA-related tools on the Bielefeld Bioinformatics Server." Nucleic Acids Research 31, no. 13 (2003): 3767–70. http://dx.doi.org/10.1093/nar/gkg576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wong, T. K. F., K. L. Wan, B. Y. Hsu, et al. "RNASAlign: RNA Structural Alignment System." Bioinformatics 27, no. 15 (2011): 2151–52. http://dx.doi.org/10.1093/bioinformatics/btr338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Howe, E. A., R. Sinha, D. Schlauch, and J. Quackenbush. "RNA-Seq analysis in MeV." Bioinformatics 27, no. 22 (2011): 3209–10. http://dx.doi.org/10.1093/bioinformatics/btr490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lorenz, Ronny, Ivo L. Hofacker, and Stephan H. Bernhart. "Folding RNA/DNA hybrid duplexes." Bioinformatics 28, no. 19 (2012): 2530–31. http://dx.doi.org/10.1093/bioinformatics/bts466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bryant, D. W., R. Shen, H. D. Priest, W. K. Wong, and T. C. Mockler. "Supersplat--spliced RNA-seq alignment." Bioinformatics 26, no. 12 (2010): 1500–1505. http://dx.doi.org/10.1093/bioinformatics/btq206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Vinogradov, A. E. "Silent DNA: speaking RNA language?" Bioinformatics 19, no. 17 (2003): 2167–70. http://dx.doi.org/10.1093/bioinformatics/btg320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kawamura, Yumi, Shinsuke Koyama, and Ryo Yoshida. "Statistical inference of the rate of RNA polymerase II elongation by total RNA sequencing." Bioinformatics 35, no. 11 (2018): 1877–84. http://dx.doi.org/10.1093/bioinformatics/bty886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography