Journal articles on the topic 'RNases H'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'RNases H.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Allen, S. J. W., S. H. Krawczyk, L. R. McGee, N. Bischofberger, A. S. Mulato, and J. M. Cherrington. "Inhibition of HIV-1 RNase H Activity by Nucleotide Dimers and Monomers." Antiviral Chemistry and Chemotherapy 7, no. 1 (1996): 37–45. http://dx.doi.org/10.1177/095632029600700107.
Full textLeich, Franziska, Nadine Stöhr, Anne Rietz, Renate Ulbrich-Hofmann, and Ulrich Arnold. "Endocytotic Internalization as a Crucial Factor for the Cytotoxicity of Ribonucleases." Journal of Biological Chemistry 282, no. 38 (2007): 27640–46. http://dx.doi.org/10.1074/jbc.m702240200.
Full textWatkins, Harriet A., and Edward N. Baker. "Structural and Functional Characterization of an RNase HI Domain from the Bifunctional Protein Rv2228c from Mycobacterium tuberculosis." Journal of Bacteriology 192, no. 11 (2010): 2878–86. http://dx.doi.org/10.1128/jb.01615-09.
Full textOhtani, Naoto, Mitsuru Haruki, Masaaki Morikawa, and Shigenori Kanaya. "Molecular diversities of RNases H." Journal of Bioscience and Bioengineering 88, no. 1 (1999): 12–19. http://dx.doi.org/10.1016/s1389-1723(99)80168-6.
Full textHyjek, Malwina, Małgorzata Figiel, and Marcin Nowotny. "RNases H: Structure and mechanism." DNA Repair 84 (December 2019): 102672. http://dx.doi.org/10.1016/j.dnarep.2019.102672.
Full textGoulian, Mehran, and Cheryl J. Heard. "Discrimination between mammalian RNases H-1 and H-2." Analytical Biochemistry 192, no. 2 (1991): 398–402. http://dx.doi.org/10.1016/0003-2697(91)90555-8.
Full textLim, Shion A., Kathryn M. Hart, Michael J. Harms, and Susan Marqusee. "Evolutionary trend toward kinetic stability in the folding trajectory of RNases H." Proceedings of the National Academy of Sciences 113, no. 46 (2016): 13045–50. http://dx.doi.org/10.1073/pnas.1611781113.
Full textHiller, Bjoern, Martin Achleitner, Silke Glage, Ronald Naumann, Rayk Behrendt, and Axel Roers. "Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity." Journal of Experimental Medicine 209, no. 8 (2012): 1419–26. http://dx.doi.org/10.1084/jem.20120876.
Full textKirby, Karen A., Bruno Marchand, Yee Tsuey Ong, et al. "Structural and Inhibition Studies of the RNase H Function of Xenotropic Murine Leukemia Virus-Related Virus Reverse Transcriptase." Antimicrobial Agents and Chemotherapy 56, no. 4 (2012): 2048–61. http://dx.doi.org/10.1128/aac.06000-11.
Full textCerritelli, Susana M., and Robert J. Crouch. "RNases H: Multiple roles in maintaining genome integrity." DNA Repair 84 (December 2019): 102742. http://dx.doi.org/10.1016/j.dnarep.2019.102742.
Full textOHTANI, Naoto, Hiroshi YANAGAWA, Masaru TOMITA, and Mitsuhiro ITAYA. "Identification of the first archaeal Type 1 RNase H gene from Halobacterium sp. NRC-1: archaeal RNase HI can cleave an RNA–DNA junction." Biochemical Journal 381, no. 3 (2004): 795–802. http://dx.doi.org/10.1042/bj20040153.
Full textStafford, Kate A., and Arthur G. Palmer III. "Evidence from molecular dynamics simulations of conformational preorganization in the ribonuclease H active site." F1000Research 3 (March 7, 2014): 67. http://dx.doi.org/10.12688/f1000research.3605.1.
Full textSchultz, Sharon J., Miaohua Zhang, and James J. Champoux. "Recognition of Internal Cleavage Sites by Retroviral RNases H." Journal of Molecular Biology 344, no. 3 (2004): 635–52. http://dx.doi.org/10.1016/j.jmb.2004.09.081.
Full textOhtani, Naoto, Masaru Tomita, and Mitsuhiro Itaya. "Junction ribonuclease: a ribonuclease HII orthologue from Thermus thermophilus HB8 prefers the RNA–DNA junction to the RNA/DNA heteroduplex." Biochemical Journal 412, no. 3 (2008): 517–26. http://dx.doi.org/10.1042/bj20080140.
Full textLim, David, G. Glenn Gregorio, Craig Bingman, Erik Martinez-Hackert, Wayne A. Hendrickson, and Stephen P. Goff. "Crystal Structure of the Moloney Murine Leukemia Virus RNase H Domain." Journal of Virology 80, no. 17 (2006): 8379–89. http://dx.doi.org/10.1128/jvi.00750-06.
Full textZimmer, Anjali D., and Douglas Koshland. "Differential roles of the RNases H in preventing chromosome instability." Proceedings of the National Academy of Sciences 113, no. 43 (2016): 12220–25. http://dx.doi.org/10.1073/pnas.1613448113.
Full textGood-Avila, S. V., D. Majumder, H. Amos, and A. G. Stephenson. "Characterization of self-incompatibility in Campanula rapunculoides (Campanulaceae) through genetic analyses and microscopy." Botany 86, no. 1 (2008): 1–13. http://dx.doi.org/10.1139/b07-100.
Full textNowotny, Marcin, Sergei Gaidamakov, Robert J. Crouch, and Wei Yang. "Structural studies of RNases H and their complexes with RNA/DNA hybrids." Acta Crystallographica Section A Foundations of Crystallography 65, a1 (2009): s138. http://dx.doi.org/10.1107/s0108767309097232.
Full textOhtani, Naoto, Mitsuru Haruki, Masaaki Morikawa, Robert J. Crouch, Mitsuhiro Itaya, and Shigenori Kanaya. "Identification of the Genes Encoding Mn2+-Dependent RNase HII and Mg2+-Dependent RNase HIII fromBacillus subtilis: Classification of RNases H into Three Families†." Biochemistry 38, no. 2 (1999): 605–18. http://dx.doi.org/10.1021/bi982207z.
Full textAn Lim, Shion, Kathryn M. Hart, Michael J. Harms, and Susan Marqusee. "An Evolutionary Trend towards Kinetic Stability in the Folding Trajectory of RNases H." Biophysical Journal 112, no. 3 (2017): 59a—60a. http://dx.doi.org/10.1016/j.bpj.2016.11.359.
Full textPermanasari, Etin-Diah, Kiyoshi Yasukawa, and Shigenori Kanaya. "Enzymatic Activities of RNase H Domains of HIV-1 Reverse Transcriptase with Substrate Binding Domains of Bacterial RNases H1 and H2." Molecular Biotechnology 57, no. 6 (2015): 526–38. http://dx.doi.org/10.1007/s12033-015-9846-5.
Full textHafkemeyer, Peter, Klaus Neftel, Reinhard Hobi, et al. "HP 0.35, a cephalosporin degradation product is a specific inhibitor of lentiviral RNAses H." Nucleic Acids Research 19, no. 15 (1991): 4059–65. http://dx.doi.org/10.1093/nar/19.15.4059.
Full textRosen, Laura E., and Susan Marqusee. "Autonomously Folding Protein Fragments Reveal Differences in the Energy Landscapes of Homologous RNases H." PLOS ONE 10, no. 3 (2015): e0119640. http://dx.doi.org/10.1371/journal.pone.0119640.
Full textStaroseletz, Yaroslav, Svetlana Gaponova, Olga Patutina, et al. "Site-Selective Artificial Ribonucleases: Renaissance of Oligonucleotide Conjugates for Irreversible Cleavage of RNA Sequences." Molecules 26, no. 6 (2021): 1732. http://dx.doi.org/10.3390/molecules26061732.
Full textSmith, Robert M., Cherie M. Walton, Catherine H. Wu, and George Y. Wu. "Secondary Structure and Hybridization Accessibility of Hepatitis C Virus 3′-Terminal Sequences." Journal of Virology 76, no. 19 (2002): 9563–74. http://dx.doi.org/10.1128/jvi.76.19.9563-9574.2002.
Full textSchultz, Sharon J., Miaohua Zhang, and James J. Champoux. "Sequence, Distance, and Accessibility Are Determinants of 5′-End-directed Cleavages by Retroviral RNases H." Journal of Biological Chemistry 281, no. 4 (2005): 1943–55. http://dx.doi.org/10.1074/jbc.m510504200.
Full textShen, Ying, Kyung Duk Koh, Bernard Weiss, and Francesca Storici. "Mispaired rNMPs in DNA are mutagenic and are targets of mismatch repair and RNases H." Nature Structural & Molecular Biology 19, no. 1 (2011): 98–104. http://dx.doi.org/10.1038/nsmb.2176.
Full textMeng, Wenzhao, and Allen W. Nicholson. "Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro." Biochemical Journal 410, no. 1 (2008): 39–48. http://dx.doi.org/10.1042/bj20071047.
Full textLi, Chang, Mengqi Lu, Junqin Zhou, et al. "Transcriptome Analysis of the Late-Acting Self-Incompatibility Associated with RNase T2 Family in Camellia oleifera." Plants 12, no. 10 (2023): 1932. http://dx.doi.org/10.3390/plants12101932.
Full textSchultz, Sharon J., Miaohua Zhang, and James J. Champoux. "Multiple Nucleotide Preferences Determine Cleavage-Site Recognition by the HIV-1 and M-MuLV RNases H." Journal of Molecular Biology 397, no. 1 (2010): 161–78. http://dx.doi.org/10.1016/j.jmb.2010.01.059.
Full textSchultz, Sharon J., Miaohua Zhang, and James J. Champoux. "Preferred Sequences within a Defined Cleavage Window Specify DNA 3′ End-directed Cleavages by Retroviral RNases H." Journal of Biological Chemistry 284, no. 47 (2009): 32225–38. http://dx.doi.org/10.1074/jbc.m109.043158.
Full textGugliotti, Lina A., Kiran B. Sakhuja, Hongsheng Wang, et al. "Constitutive Lymphoid Expression of the Nuclear Form of RNase H1 Is Associated with a Developmental Bottleneck at the Pro-B Cell Stage of B Cell Differentiation." Blood 114, no. 22 (2009): 4702. http://dx.doi.org/10.1182/blood.v114.22.4702.4702.
Full textGuo, Yan, Jie Wu, Shilin Zhao, et al. "RNA Sequencing of Formalin-Fixed, Paraffin-Embedded Specimens for Gene Expression Quantification and Data Mining." International Journal of Genomics 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/9837310.
Full textMorris, Shannon, and Jonathan Leis. "Changes in Rous Sarcoma Virus RNA Secondary Structure near the Primer Binding Site upon tRNATrpPrimer Annealing." Journal of Virology 73, no. 8 (1999): 6307–18. http://dx.doi.org/10.1128/jvi.73.8.6307-6318.1999.
Full textDharap, Ashuthosh, Kellie Bowen, Robert Place, Long-Cheng Li, and Raghu Vemuganti. "Transient Focal Ischemia Induces Extensive Temporal Changes in Rat Cerebral MicroRNAome." Journal of Cerebral Blood Flow & Metabolism 29, no. 4 (2009): 675–87. http://dx.doi.org/10.1038/jcbfm.2008.157.
Full textGruber, Cornelia, Torsten Gursinsky, Selma Gago-Zachert, Vitantonio Pantaleo, and Sven-Erik Behrens. "Effective Antiviral Application of Antisense in Plants by Exploiting Accessible Sites in the Target RNA." International Journal of Molecular Sciences 24, no. 24 (2023): 17153. http://dx.doi.org/10.3390/ijms242417153.
Full textLu, Gaofeng, Elena Lomonosova, Xiaohong Cheng, et al. "Hydroxylated Tropolones Inhibit Hepatitis B Virus Replication by Blocking Viral Ribonuclease H Activity." Antimicrobial Agents and Chemotherapy 59, no. 2 (2014): 1070–79. http://dx.doi.org/10.1128/aac.04617-14.
Full textArudchandran, Arulvathani, Susana Cerritelli, Scott Narimatsu, et al. "The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate: implications for roles of RNases H in DNA replication and repair." Genes to Cells 5, no. 10 (2000): 789–802. http://dx.doi.org/10.1046/j.1365-2443.2000.00373.x.
Full textSharma, Vasudha, Prachi Thakore, and Sharmistha Majumdar. "THAP9 Transposase Cleaves DNA via Conserved Acidic Residues in an RNaseH-Like Domain." Cells 10, no. 6 (2021): 1351. http://dx.doi.org/10.3390/cells10061351.
Full textCorona, Angela, Anna Schneider, Kristian Schweimer, Paul Rösch, Birgitta M. Wöhrl, and Enzo Tramontano. "Inhibition of Foamy Virus Reverse Transcriptase by Human Immunodeficiency Virus Type 1 RNase H Inhibitors." Antimicrobial Agents and Chemotherapy 58, no. 7 (2014): 4086–93. http://dx.doi.org/10.1128/aac.00056-14.
Full textCorona, Angela, Francesco Saverio Di Leva, Sylvain Thierry, et al. "Identification of Highly Conserved Residues Involved in Inhibition of HIV-1 RNase H Function by Diketo Acid Derivatives." Antimicrobial Agents and Chemotherapy 58, no. 10 (2014): 6101–10. http://dx.doi.org/10.1128/aac.03605-14.
Full textWang, Yafang, Namin Hu, Chang Liu, et al. "An RNase H-powered DNA walking machine for sensitive detection of RNase H and the screening of related inhibitors." Nanoscale 12, no. 3 (2020): 1673–79. http://dx.doi.org/10.1039/c9nr07550j.
Full textDelviks-Frankenberry, Krista A., Galina N. Nikolenko, Rebekah Barr, and Vinay K. Pathak. "Mutations in Human Immunodeficiency Virus Type 1 RNase H Primer Grip Enhance 3′-Azido-3′-Deoxythymidine Resistance." Journal of Virology 81, no. 13 (2007): 6837–45. http://dx.doi.org/10.1128/jvi.02820-06.
Full textLee, Hyunjee, HyeokJin Cho, Jooyoung Kim, et al. "RNase H is an exo- and endoribonuclease with asymmetric directionality, depending on the binding mode to the structural variants of RNA:DNA hybrids." Nucleic Acids Research 50, no. 4 (2021): 1801–14. http://dx.doi.org/10.1093/nar/gkab1064.
Full textFarias, Richard V., Deborah A. Vargas, Andres E. Castillo, et al. "Expression of an Mg2+-Dependent HIV-1 RNase H Construct for Drug Screening." Antimicrobial Agents and Chemotherapy 55, no. 10 (2011): 4735–41. http://dx.doi.org/10.1128/aac.00658-11.
Full textBrincat, Jennifer L., Julie K. Pfeiffer, and Alice Telesnitsky. "RNase H Activity Is Required for High-Frequency Repeat Deletion during Moloney Murine Leukemia Virus Replication." Journal of Virology 76, no. 1 (2002): 88–95. http://dx.doi.org/10.1128/jvi.76.1.88-95.2002.
Full textKeck, James L., Eric R. Goedken, and Susan Marqusee. "Activation/Attenuation Model for RNase H." Journal of Biological Chemistry 273, no. 51 (1998): 34128–33. http://dx.doi.org/10.1074/jbc.273.51.34128.
Full textKrakowiak, Agnieszka, Alina Owczarek, Maria Koziołkiewicz, and Wojciech J. Stec. "Stereochemical Course ofEscherichia coli RNase H." ChemBioChem 3, no. 12 (2002): 1242–50. http://dx.doi.org/10.1002/1439-7633(20021202)3:12<1242::aid-cbic1242>3.0.co;2-y.
Full textSu, Hua-Poo, Youwei Yan, G. Sridhar Prasad, et al. "Structural Basis for the Inhibition of RNase H Activity of HIV-1 Reverse Transcriptase by RNase H Active Site-Directed Inhibitors." Journal of Virology 84, no. 15 (2010): 7625–33. http://dx.doi.org/10.1128/jvi.00353-10.
Full textCorona, Angela, Valentina Onnis, Claudia Del Vecchio, Francesca Esposito, Yung-Chi Cheng, and Enzo Tramontano. "2-(Arylamino)-6-(trifluoromethyl)nicotinic Acid Derivatives: New HIV-1 RT Dual Inhibitors Active on Viral Replication." Molecules 25, no. 6 (2020): 1338. http://dx.doi.org/10.3390/molecules25061338.
Full text