Journal articles on the topic 'RNG K-2 turbulence model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'RNG K-2 turbulence model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Deng, Yilin, Jian Feng, Fulai Wan, Xi Shen, and Bin Xu. "Evaluation of the Turbulence Model Influence on the Numerical Simulation of Cavitating Flow with Emphasis on Temperature Effect." Processes 8, no. 8 (2020): 997. http://dx.doi.org/10.3390/pr8080997.
Full textWang, Peng, and Hai Lin Mu. "Impact of Different Turbulence Models on Air Pollutant Flow and Distribution." Key Engineering Materials 439-440 (June 2010): 1373–78. http://dx.doi.org/10.4028/www.scientific.net/kem.439-440.1373.
Full textTeixeira, Christopher M. "Incorporating Turbulence Models into the Lattice-Boltzmann Method." International Journal of Modern Physics C 09, no. 08 (1998): 1159–75. http://dx.doi.org/10.1142/s0129183198001060.
Full textHossain, Md Safayet, Md Ishtiaque Hossain, Somit Pramanik, and Dr Jamal Uddin Ahamed. "Analyzing the Turbulent Flow Characteristics by Utilizing k-? Turbulence Model." European Journal of Engineering and Technology Research 2, no. 11 (2017): 28–34. http://dx.doi.org/10.24018/ejeng.2017.2.11.510.
Full textZhao, Xingwang, та Qingyan Chen. "Optimal design of an indoor environment using an adjoint RNG k-ε turbulence model". E3S Web of Conferences 111 (2019): 04037. http://dx.doi.org/10.1051/e3sconf/201911104037.
Full textHossain, Md Safayet, Md Ishtiaque Hossain, Somit Pramanik та Dr Jamal Uddin Ahamed. "Analyzing the Turbulent Flow Characteristics by Utilizing k-ϵ Turbulence Model." European Journal of Engineering Research and Science 2, № 11 (2017): 28. http://dx.doi.org/10.24018/ejers.2017.2.11.510.
Full textOwolabi, Jibola, Khawaja Hassan, and Amar Aganovic. "Comparative Evaluation of Four RANS Turbulence Models for Aerosol Dispersion from a Cough." E3S Web of Conferences 396 (2023): 01072. http://dx.doi.org/10.1051/e3sconf/202339601072.
Full textCoutier-Delgosha, O., R. Fortes-Patella, and J. L. Reboud. "Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation." Journal of Fluids Engineering 125, no. 1 (2003): 38–45. http://dx.doi.org/10.1115/1.1524584.
Full textBudiarso, Ahmad Indra Siswantara, Steven Darmawan та Harto Tanujaya. "Inverse-Turbulent Prandtl Number Effects on Reynolds Numbers of RNG k-ε Turbulence Model on Cylindrical-Curved Pipe". Applied Mechanics and Materials 758 (квітень 2015): 35–44. http://dx.doi.org/10.4028/www.scientific.net/amm.758.35.
Full textHu, Xiao, and Yong Liang Xiong. "Numerical Simulation on Ventilated Cavity Flow with Different Turbulence Models." Applied Mechanics and Materials 368-370 (August 2013): 544–48. http://dx.doi.org/10.4028/www.scientific.net/amm.368-370.544.
Full textJin, Mei, Li Zhan, Guo Xian Yu, Jian Qi Zhang, and Hong Jiao Liu. "Effect of the Flow Models on the Numerical Simulation of Shell and Tube Heat Exchanger." Advanced Materials Research 1008-1009 (August 2014): 910–13. http://dx.doi.org/10.4028/www.scientific.net/amr.1008-1009.910.
Full textVelásquez, Laura, Ainhoa Rubio-Clemente, and Edwin Chica. "Numerical and Experimental Analysis of Vortex Profiles in Gravitational Water Vortex Hydraulic Turbines." Energies 17, no. 14 (2024): 3543. http://dx.doi.org/10.3390/en17143543.
Full textBayraktar, S., and T. Yilmaz. "Two-dimensional numerical investigation of film cooling by a cool jet injected at various angles for different blowing ratios." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 222, no. 7 (2008): 1215–24. http://dx.doi.org/10.1243/09544062jmes905.
Full textSiswantara, Ahmad Indra, Budiarso та Steven Darmawan. "Investigation of Inverse-Turbulent-Prandtl Number with Four RNG k-ε Turbulence Models on Compressor Discharge Pipe of Bioenergy Micro Gas Turbine". Applied Mechanics and Materials 819 (січень 2016): 392–400. http://dx.doi.org/10.4028/www.scientific.net/amm.819.392.
Full textAvramenko, Andrii. "Selecting a k-ε turbulence model for investigating n-decane combustion in a diesel engine combustion chamber". French-Ukrainian Journal of Chemistry 7, № 2 (2019): 80–87. http://dx.doi.org/10.17721/fujcv7i2p80-87.
Full textTanner, F. X., G. S. Zhu, and R. D. Reitz. "A Nonequilibrium Turbulence Dissipation Correction and Its Influence on Pollution Predictions for DI Diesel Engines." Journal of Engineering for Gas Turbines and Power 125, no. 2 (2003): 534–40. http://dx.doi.org/10.1115/1.1501917.
Full textQuaresma, Ana L., Filipe Romão, and António N. Pinheiro. "A Comparative Assessment of Reynolds Averaged Navier–Stokes and Large-Eddy Simulation Models: Choosing the Best for Pool-Type Fishway Flow Simulations." Water 17, no. 5 (2025): 686. https://doi.org/10.3390/w17050686.
Full textWang, Le, Zhengyu Tian, Hang Yu, Ye Zhang, and Hua Li. "Comparative study on the performance of turbulence models in flow separation of large expansion ratio nozzle." Journal of Physics: Conference Series 2364, no. 1 (2022): 012035. http://dx.doi.org/10.1088/1742-6596/2364/1/012035.
Full textYuan, A. Hui, Zhen Zhe Li, Tai Hong Cheng, and Yun De Shen. "Effect of Turbulence Model to Simulation Accuracy of Wind Turbine Blade." Applied Mechanics and Materials 397-400 (September 2013): 248–51. http://dx.doi.org/10.4028/www.scientific.net/amm.397-400.248.
Full textMolchanov, A. M., D. S. Yanyshev, and L. V. Bykov. "Numerical Investigation of a Supersonic Flow in the Near Wake Region of a Cylindrical Afterbody." Herald of the Bauman Moscow State Technical University. Series Natural Sciences, no. 3 (102) (June 2022): 86–95. http://dx.doi.org/10.18698/1812-3368-2022-3-86-95.
Full textEl-Behery, Samy M., Gamal H. Badawy, and Fathi M. Mahfouz. "Three-Dimensional Simulation of Decaying Turbulent Swirling Flow Using Different Turbulence Models." International Journal of Heat and Technology 40, no. 1 (2022): 211–18. http://dx.doi.org/10.18280/ijht.400125.
Full textZhu, WenRuo, ZhongXin Gao, YongJun Tang, JianGuang Zhang, and Li Lu. "Adaptability of turbulence models to predict the performance and blade surface pressure prediction of a Francis turbine." Engineering Computations 33, no. 1 (2016): 238–51. http://dx.doi.org/10.1108/ec-06-2014-0137.
Full textSouid, Anouar, Wassim Kriaa, Hatem Mhiri, Georges Le Palec, and Philippe Bournot. "Numerical Simulation of a Ceramic Furnace Burner - Capacity of Turbulent and Radiation Models." Defect and Diffusion Forum 283-286 (March 2009): 243–49. http://dx.doi.org/10.4028/www.scientific.net/ddf.283-286.243.
Full textYin, Yuan, Yangsen Li, Ruizong Lin, et al. "Research on turbulence model for simulation of wind flow in mountain areas of micro-topography." Journal of Physics: Conference Series 2441, no. 1 (2023): 012012. http://dx.doi.org/10.1088/1742-6596/2441/1/012012.
Full textVarghese, Sonu S., and Steven H. Frankel. "Numerical Modeling of Pulsatile Turbulent Flow in Stenotic Vessels." Journal of Biomechanical Engineering 125, no. 4 (2003): 445–60. http://dx.doi.org/10.1115/1.1589774.
Full textSarmin, Shahliza Azreen, Azli Abd Razak, Fauziah Jerai, and Mohd Khir Harun. "CFD SIMULATION AND VALIDATION FOR MIXING VENTILATION SCALED-DOWN EMPTY AIRCRAFT CABIN USING OPENFOAM." Jurnal Teknologi 85, no. 5 (2023): 191–200. http://dx.doi.org/10.11113/jurnalteknologi.v85.19423.
Full textMarco, Andrés Guevara-Luna, and Carlos Belalcázar-Cerón Luis. "NGL supersonic separator: modeling, improvement, and validation and adjustment of k-epsilon RNG modified for swirl flow turbulence model." Revista Facultad de Ingeniería -redin-, no. 82 (March 16, 2017): 82–93. https://doi.org/10.17533/udea.redin.n82a11.
Full textMolchanov, A. M., and M. V. Siluyanova. "Numerical investigation of a near-wake flowfield with base bleed." Journal of Physics: Conference Series 2308, no. 1 (2022): 012011. http://dx.doi.org/10.1088/1742-6596/2308/1/012011.
Full textCandra Damis Widiawaty, Ahmad Indra Siswantara, Gun Gun R Gunadi та ін. "Optimization of inverse-Prandtl of Dissipation in standard k-ε Turbulence Model for Predicting Flow Field of Crossflow Turbine". CFD Letters 14, № 1 (2022): 112–27. http://dx.doi.org/10.37934/cfdl.14.1.112127.
Full textHayrullin, A. R., A. I. Haibullina, and V. K. Ilyin. "RANS numerical simulation in in-line tube bundle: prediction of heat transfer." IOP Conference Series: Earth and Environmental Science 979, no. 1 (2022): 012157. http://dx.doi.org/10.1088/1755-1315/979/1/012157.
Full textRadomsky, R. W., and K. A. Thole. "Measurements and Predictions of a Highly Turbulent Flowfield in a Turbine Vane Passage." Journal of Fluids Engineering 122, no. 4 (2000): 666–76. http://dx.doi.org/10.1115/1.1313244.
Full textAdanta, Dendy, Dewi Puspita Sari, Nura Muaz Muhammad, and Aji Putro Prakoso. "HISTORY OF UTILIZATION OF THE COMPUTATIONAL FLUID DYNAMICS METHOD FOR STUDY PICO HYDRO TYPE CROSS-FLOW." Indonesian Journal of Engineering and Science 2, no. 1 (2021): 017–24. http://dx.doi.org/10.51630/ijes.v2i1.11.
Full textAzizi, Hossein, Reza Saleh, Mohsen Kahrom, and Reza Andalibi. "Numerical simulation of different turbulence models aiming at perdicting the flow and temperature separation in a Ranque-Hilsch vortex tube." Thermal Science 18, no. 4 (2014): 1159–71. http://dx.doi.org/10.2298/tsci110727201a.
Full textDanilenkaitė, Justina, Aleksandras Chlebnikovas, and Petras Vaitiekūnas. "MATHEMATICAL MODEL OF THE MULTI-CHANNEL SPIRAL CYCLONE / DAUGIAKANALIO SPIRALINIO CIKLONO ORO GREIČIŲ TYRIMAS." Mokslas - Lietuvos ateitis 5, no. 4 (2013): 349–55. http://dx.doi.org/10.3846/mla.2013.56.
Full textHajivand, Masoud. "High-Fidelity RANS CFD Simulations of Physico-Chemical Process of Combustion in Gas Turbine Combustion Chambers in ANSYS CFX." Energy engineering and control systems 10, no. 2 (2024): 81–95. https://doi.org/10.23939/jeecs2024.02.081.
Full textWang, Liu, Wang, Zhou, Jiang, and Li. "Numerical Simulation of the Sound Field of a Five-Stage Centrifugal Pump with Different Turbulence Models." Water 11, no. 9 (2019): 1777. http://dx.doi.org/10.3390/w11091777.
Full textHosseini, Seyyed Hossein, Seyyed Mohammad Javadi, and Ehsan Ebrahimnia-Bajestan. "Turbulent Convective Heat Transfer of Nanofluids." Applied Mechanics and Materials 110-116 (October 2011): 3873–77. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.3873.
Full textMarzouk, Osama, and E. David Huckaby. "Simulation of a Swirling Gas-Particle Flow Using Different k-epsilon Models and Particle-Parcel Relationships." Engineering Letters 18, no. 1 (2010): 7. https://doi.org/10.5281/zenodo.14591654.
Full textSaru, Muhsine, Hıfzı Arda Erşan, and Erhan Pulat. "The Effect of Turbulent Intensity on Friction Coefficient in Boundary-Layer Transitional Flat Plate Flow." Applied Sciences 15, no. 11 (2025): 5852. https://doi.org/10.3390/app15115852.
Full textWu, Jian Feng, Cai Hua Wang, and Yan Chao Zhao. "The Turbulent Flow Model Selection for Numerical Wind Tunnel Simulation of the Low Layer Double Slope Roof." Applied Mechanics and Materials 204-208 (October 2012): 4892–95. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.4892.
Full textNouhaila, Ouyoussef, Moustabchir Hassane, Maria Luminita Scutaru, and Liviu Jelenschi. "On the Accuracy of Turbulence Model Simulations of the Exhaust Manifold." Applied Sciences 14, no. 12 (2024): 5262. http://dx.doi.org/10.3390/app14125262.
Full textBanks, J., and N. W. Bressloff. "Turbulence Modeling in Three-Dimensional Stenosed Arterial Bifurcations." Journal of Biomechanical Engineering 129, no. 1 (2006): 40–50. http://dx.doi.org/10.1115/1.2401182.
Full textZhou, Shao Ping, Pei Wen Lv, Xiao Xia Ding, Yong Sheng Su, and De Quan Chen. "Numerical Simulation and Impeller Optimization of a Centrifugal Pump." Advanced Materials Research 472-475 (February 2012): 2195–98. http://dx.doi.org/10.4028/www.scientific.net/amr.472-475.2195.
Full textKarim, M. M., N. Mostafa, and M. M. A. Sarker. "Numerical study of unsteady flow around a cavitating hydrofoil." Journal of Naval Architecture and Marine Engineering 7, no. 2 (2011): 51–60. http://dx.doi.org/10.3329/jname.v7i2.5270.
Full textAmorim, Felipe Grossi L., Jean Helder M. Ribeiro, Marília Gabriela J. Vaz, and Ramon Molina Valle. "Sensitivity Analysis of the Air Flow inside a Single Cylinder Engine for Different Turbulence Models Using CFD." Advanced Materials Research 1016 (August 2014): 624–29. http://dx.doi.org/10.4028/www.scientific.net/amr.1016.624.
Full textZhang, Ying, Longtao Wang, Angui Li, and Pengfei Tao. "Performance evaluation by computational fluid dynamics modelling of the heavy gas dispersion with a low Froude number in a built environment." Indoor and Built Environment 29, no. 5 (2019): 656–70. http://dx.doi.org/10.1177/1420326x19856041.
Full textWang, Jing Yu, та Xing Jun Hu. "Application of RNG k-ε Turbulence Model on Numerical Simulation in Vehicle External Flow Field". Applied Mechanics and Materials 170-173 (травень 2012): 3324–28. http://dx.doi.org/10.4028/www.scientific.net/amm.170-173.3324.
Full textVaitiekūnas, Petras, Egidijus Petraitis, Albertas Venslovas, and Aleksandras Chlebnikovas. "AIR STREAM VELOCITY MODELLING IN MULTICHANNEL SPIRAL CYCLONE SEPARATOR." JOURNAL OF ENVIRONMENTAL ENGINEERING AND LANDSCAPE MANAGEMENT 22, no. 3 (2014): 183–93. http://dx.doi.org/10.3846/16486897.2014.931283.
Full textTolentino, San, Jorge Mírez, and Omar González. "Evaluation of turbulence models for incompressible flow in a venturi tube." FME Transactions 52, no. 4 (2024): 534–43. http://dx.doi.org/10.5937/fme2404534t.
Full textDehdarinejad, Ehsan, Morteza Bayareh, and Mahmud Ashrafizaadeh. "A numerical study on combined baffles quick-separation device." International Journal of Chemical Reactor Engineering 19, no. 5 (2021): 515–26. http://dx.doi.org/10.1515/ijcre-2021-0007.
Full text