To see the other types of publications on this topic, follow the link: RNN (recurrent neural networks).

Dissertations / Theses on the topic 'RNN (recurrent neural networks)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'RNN (recurrent neural networks).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Berlati, Alessandro. "Ambiguity in Recurrent Models: Predicting Multiple Hypotheses with Recurrent Neural Networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16611/.

Full text
Abstract:
Multiple Hypothesis Prediction (MHP) models have been introduced to deal with uncertainty in feedforward neural networks, in particular it has been shown how to easily convert a standard single-prediction neural network into one able to show many feasible outcomes. Ambiguity, however, is present also in problems where feedback model are needed, such as sequence generation and time series classification. In our work, we propose an extension of MHP to Recurrent Neural Networks (RNNs), especially those consisting of Long Short-Term Memory units. We test the resulting models on both regression an
APA, Harvard, Vancouver, ISO, and other styles
2

Ljungehed, Jesper. "Predicting Customer Churn Using Recurrent Neural Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210670.

Full text
Abstract:
Churn prediction is used to identify customers that are becoming less loyal and is an important tool for companies that want to stay competitive in a rapidly growing market. In retail, a dynamic definition of churn is needed to identify churners correctly. Customer Lifetime Value (CLV) is the monetary value of a customer relationship. No change in CLV for a given customer indicates a decrease in loyalty. This thesis proposes a novel approach to churn prediction. The proposed model uses a Recurrent Neural Network to identify churners based on Customer Lifetime Value time series regression. The
APA, Harvard, Vancouver, ISO, and other styles
3

Bonato, Tommaso. "Time Series Predictions With Recurrent Neural Networks." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
L'obiettivo principale di questa tesi è studiare come gli algoritmi di apprendimento automatico (machine learning in inglese) e in particolare le reti neurali LSTM (Long Short Term Memory) possano essere utilizzati per prevedere i valori futuri di una serie storica regolare come, per esempio, le funzioni seno e coseno. Una serie storica è definita come una sequenza di osservazioni s_t ordinate nel tempo. Inoltre cercheremo di applicare gli stessi principi per prevedere i valori di una serie storica prodotta utilizzando i dati di vendita di un prodotto cosmetico durante un periodo di tre anni.
APA, Harvard, Vancouver, ISO, and other styles
4

Martins, Helder. "Predicting user churn on streaming services using recurrent neural networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217109.

Full text
Abstract:
Providers of online services have witnessed a rapid growth of their user base in the last few years. The phenomenon has attracted an increasing number of competitors determined on obtaining their own share of the market. In this context, the cost of attracting new customers has increased significantly, raising the importance of retaining existing clients. Therefore, it has become progressively more important for the companies to improve user experience and ensure they keep a larger share of their users active in consuming their product. Companies are thus compelled to build tools that can iden
APA, Harvard, Vancouver, ISO, and other styles
5

Fors, Johansson Christoffer. "Arrival Time Predictions for Buses using Recurrent Neural Networks." Thesis, Linköpings universitet, Artificiell intelligens och integrerade datorsystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-165133.

Full text
Abstract:
In this thesis, two different types of bus passengers are identified. These two types, namely current passengers and passengers-to-be have different needs in terms of arrival time predictions. A set of machine learning models based on recurrent neural networks and long short-term memory units were developed to meet these needs. Furthermore, bus data from the public transport in Östergötland county, Sweden, were collected and used for training new machine learning models. These new models are compared with the current prediction system that is used today to provide passengers with arrival time
APA, Harvard, Vancouver, ISO, and other styles
6

Vikström, Filip. "A recurrent neural network approach to quantification of risks surrounding the Swedish property market." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-126192.

Full text
Abstract:
As the real estate market plays a central role in a countries financial situation, as a life insurer, a bank and a property developer, Skandia wants a method for better assessing the risks connected to the real estate market. The goal of this paper is to increase the understanding of property market risk and its covariate risks and to conduct an analysis of how a fall in real estate prices could affect Skandia’s exposed assets.This paper explores a recurrent neural network model with the aim of quantifying identified risk factors using exogenous data. The recurrent neural network model is comp
APA, Harvard, Vancouver, ISO, and other styles
7

Rosell, Felicia. "Tracking a ball during bounce and roll using recurrent neural networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239733.

Full text
Abstract:
In many types of sports, on-screen graphics such as an reconstructed ball trajectory, can be displayed for spectators or players in order to increase understanding. One sub-problem of trajectory reconstruction is tracking of ball positions, which is a difficult problem due to the fast and often complex ball movement. Historically, physics based techniques have been used to track ball positions, but this thesis investigates using a recurrent neural network design, in the application of tracking bouncing golf balls. The network is trained and tested on synthetically created golf ball shots, crea
APA, Harvard, Vancouver, ISO, and other styles
8

Jansson, Anton. "Predicting trajectories of golf balls using recurrent neural networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210552.

Full text
Abstract:
This thesis is concerned with the problem of predicting the remaining part of the trajectory of a golf ball as it travels through the air where only the three-dimensional position of the ball is captured. The approach taken to solve this problem relied on recurrent neural networks in the form of the long short-term memory networks (LSTM). The motivation behind this choice was that this type of networks had led to state-of-the-art performance for similar problems such as predicting the trajectory of pedestrians. The results show that using LSTMs led to an average reduction of 36.6 % of the erro
APA, Harvard, Vancouver, ISO, and other styles
9

Wen, Tsung-Hsien. "Recurrent neural network language generation for dialogue systems." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275648.

Full text
Abstract:
Language is the principal medium for ideas, while dialogue is the most natural and effective way for humans to interact with and access information from machines. Natural language generation (NLG) is a critical component of spoken dialogue and it has a significant impact on usability and perceived quality. Many commonly used NLG systems employ rules and heuristics, which tend to generate inflexible and stylised responses without the natural variation of human language. However, the frequent repetition of identical output forms can quickly make dialogue become tedious for most real-world users.
APA, Harvard, Vancouver, ISO, and other styles
10

Lousseief, Elias. "MahlerNet : Unbounded Orchestral Music with Neural Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264993.

Full text
Abstract:
Modelling music with mathematical and statistical methods in general, and with neural networks in particular, has a long history and has been well explored in the last decades. Exactly when the first attempt at strictly systematic music took place is hard to say; some would say in the days of Mozart, others would say even earlier, but it is safe to say that the field of algorithmic composition has a long history. Even though composers have always had structure and rules as part of the writing process, implicitly or explicitly, following rules at a stricter level was well investigated in the mi
APA, Harvard, Vancouver, ISO, and other styles
11

Racette, Olsén Michael. "Electrocardiographic deviation detection : Using long short-term memory recurrent neural networks to detect deviations within electrocardiographic records." Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-76411.

Full text
Abstract:
Artificial neural networks have been gaining attention in recent years due to theirimpressive ability to map out complex nonlinear relations within data. In this report,an attempt is made to use a Long short-term memory neural network for detectinganomalies within electrocardiographic records. The hypothesis is that if a neuralnetwork is trained on records of normal ECGs to predict future ECG sequences, it isexpected to have trouble predicting abnormalities not previously seen in the trainingdata. Three different LSTM model configurations were trained using records fromthe MIT-BIH Arrhythmia d
APA, Harvard, Vancouver, ISO, and other styles
12

Gattoni, Giacomo. "Improving the reliability of recurrent neural networks while dealing with bad data." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
In practical applications, machine learning and deep learning models can have difficulty in achieving generalization, especially when dealing with training samples that are either noisy or limited in quantity. Standard neural networks do not guarantee the monotonicity of the input features with respect to the output, therefore they lack interpretability and predictability when it is known a priori that the input-output relationship should be monotonic. This problem can be encountered in the CPG industry, where it is not possible to ensure that a deep learning model will learn the increasing
APA, Harvard, Vancouver, ISO, and other styles
13

Carman, Benjamin Andrew. "Translating LaTeX to Coq: A Recurrent Neural Network Approach to Formalizing Natural Language Proofs." Ohio University Honors Tutorial College / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors161919616626269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Willmott, Devin. "Recurrent Neural Networks and Their Applications to RNA Secondary Structure Inference." UKnowledge, 2018. https://uknowledge.uky.edu/math_etds/58.

Full text
Abstract:
Recurrent neural networks (RNNs) are state of the art sequential machine learning tools, but have difficulty learning sequences with long-range dependencies due to the exponential growth or decay of gradients backpropagated through the RNN. Some methods overcome this problem by modifying the standard RNN architecure to force the recurrent weight matrix W to remain orthogonal throughout training. The first half of this thesis presents a novel orthogonal RNN architecture that enforces orthogonality of W by parametrizing with a skew-symmetric matrix via the Cayley transform. We present rules for
APA, Harvard, Vancouver, ISO, and other styles
15

Max, Lindblad. "The impact of parsing methods on recurrent neural networks applied to event-based vehicular signal data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223966.

Full text
Abstract:
This thesis examines two different approaches to parsing event-based vehicular signal data to produce input to a neural network prediction model: event parsing, where the data is kept unevenly spaced over the temporal domain, and slice parsing, where the data is made to be evenly spaced over the temporal domain instead. The dataset used as a basis for these experiments consists of a number of vehicular signal logs taken at Scania AB. Comparisons between the parsing methods have been made by first training long short-term memory (LSTM) recurrent neural networks (RNN) on each of the parsed datas
APA, Harvard, Vancouver, ISO, and other styles
16

Liu, Chang. "Data Analysis of Minimally-Structured Heterogeneous Logs : An experimental study of log template extraction and anomaly detection based on Recurrent Neural Network and Naive Bayes." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191334.

Full text
Abstract:
Nowadays, the ideas of continuous integration and continuous delivery are under heavy usage in order to achieve rapid software development speed and quick product delivery to the customers with good quality. During the process ofmodern software development, the testing stage has always been with great significance so that the delivered software is meeting all the requirements and with high quality, maintainability, sustainability, scalability, etc. The key assignment of software testing is to find bugs from every test and solve them. The developers and test engineers at Ericsson, who are worki
APA, Harvard, Vancouver, ISO, and other styles
17

Ďuriš, Denis. "Detekce ohně a kouře z obrazového signálu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-412968.

Full text
Abstract:
This diploma thesis deals with the detection of fire and smoke from the image signal. The approach of this work uses a combination of convolutional and recurrent neural network. Machine learning models created in this work contain inception modules and blocks of long short-term memory. The research part describes selected models of machine learning used in solving the problem of fire detection in static and dynamic image data. As part of the solution, a data set containing videos and still images used to train the designed neural networks was created. The results of this approach are evaluated
APA, Harvard, Vancouver, ISO, and other styles
18

Svanberg, John. "Anomaly detection for non-recurring traffic congestions using Long short-term memory networks (LSTMs)." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234465.

Full text
Abstract:
In this master thesis, we implement a two-step anomaly detection mechanism for non-recurrent traffic congestions with data collected from public transport buses in Stockholm. We investigate the use of machine learning to model time series data with LSTMs and evaluate the results with a baseline prediction model. The anomaly detection algorithm embodies both collective and contextual expressivity, meaning it is capable of findingcollections of delayed buses and also takes the temporality of the data into account. Results show that the anomaly detection performance benefits from the lower predic
APA, Harvard, Vancouver, ISO, and other styles
19

Mohammadisohrabi, Ali. "Design and implementation of a Recurrent Neural Network for Remaining Useful Life prediction." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Find full text
Abstract:
A key idea underlying many Predictive Maintenance solutions is Remaining Useful Life (RUL) of machine parts, and it simply involves a prediction on the time remaining before a machine part is likely to require repair or replacement. Nowadays, with respect to fact that the systems are getting more complex, the innovative Machine Learning and Deep Learning algorithms can be deployed to study the more sophisticated correlations in complex systems. The exponential increase in both data accumulation and processing power make the Deep Learning algorithms more desirable that before. In this paper a L
APA, Harvard, Vancouver, ISO, and other styles
20

Forslund, John, and Jesper Fahlén. "Predicting customer purchase behavior within Telecom : How Artificial Intelligence can be collaborated into marketing efforts." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279575.

Full text
Abstract:
This study aims to investigate the implementation of an AI model that predicts customer purchases, in the telecom industry. The thesis also outlines how such an AI model can assist decision-making in marketing strategies. It is concluded that designing the AI model by following a Recurrent Neural Network (RNN) architecture with a Long Short-Term Memory (LSTM) layer, allow for a successful implementation with satisfactory model performances. Stepwise instructions to construct such model is presented in the methodology section of the study. The RNN-LSTM model further serves as an assisting tool
APA, Harvard, Vancouver, ISO, and other styles
21

Shahkarami, Abtin. "Complexity reduction over bi-RNN-based Kerr nonlinearity equalization in dual-polarization fiber-optic communications via a CRNN-based approach." Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAT034.

Full text
Abstract:
Les dégradations dues à la non-linéarité de Kerr dans les fibres optiques limitent les débits d’information des systèmes de communications. Les effets linéaires, tels que la dispersion chromatique et la dispersion modale de polarisation, peuvent être compensés par égalisation linéaire, de mise en oeuvre relativement simple, au niveau du récepteur. A l’inverse, la complexité de calcul des techniques classiques de réduction de la non-linéarité, telles que la rétro-propagation numérique, peut être considérable. Les réseaux neuronaux ont récemment attiré l’attention, dans ce contexte, pour la mise
APA, Harvard, Vancouver, ISO, and other styles
22

Kvita, Jakub. "Popis fotografií pomocí rekurentních neuronových sítí." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2016. http://www.nusl.cz/ntk/nusl-255324.

Full text
Abstract:
Tato práce se zabývá automatickým generovaním popisů obrázků s využitím několika druhů neuronových sítí. Práce je založena na článcích z MS COCO Captioning Challenge 2015 a znakových jazykových modelech, popularizovaných A. Karpathym. Navržený model je kombinací konvoluční a rekurentní neuronové sítě s architekturou kodér--dekodér. Vektor reprezentující zakódovaný obrázek je předáván jazykovému modelu jako hodnoty paměti LSTM vrstev v síti. Práce zkoumá, na jaké úrovni je model s takto jednoduchou architekturou schopen popisovat obrázky a jak si stojí v porovnání s ostatními současnými modely.
APA, Harvard, Vancouver, ISO, and other styles
23

Ridhagen, Markus, and Petter Lind. "A comparative study of Neural Network Forecasting models on the M4 competition data." Thesis, Uppsala universitet, Statistiska institutionen, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445568.

Full text
Abstract:
The development of machine learning research has provided statistical innovations and further developments within the field of time series analysis. This study seeks to investigate two different approaches on artificial neural network models based on different learning techniques, and answering how well the neural network approach compares with a basic autoregressive approach, as well as how the artificial neural network models compare to each other. The models were compared and analyzed in regards to the univariate forecast accuracy on 20 randomly drawn time series from two different time fre
APA, Harvard, Vancouver, ISO, and other styles
24

Kišš, Martin. "Rozpoznávání historických textů pomocí hlubokých neuronových sítí." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2018. http://www.nusl.cz/ntk/nusl-385912.

Full text
Abstract:
The aim of this work is to create a tool for automatic transcription of historical documents. The work is mainly focused on the recognition of texts from the period of modern times written using font Fraktur. The problem is solved with a newly designed recurrent convolutional neural networks and a Spatial Transformer Network. Part of the solution is also an implemented generator of artificial historical texts. Using this generator, an artificial data set is created on which the convolutional neural network for line recognition is trained. This network is then tested on real historical lines of
APA, Harvard, Vancouver, ISO, and other styles
25

Talevi, Luca, and Luca Talevi. "“Decodifica di intenzioni di movimento dalla corteccia parietale posteriore di macaco attraverso il paradigma Deep Learning”." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17846/.

Full text
Abstract:
Le Brain Computer Interfaces (BCI) invasive permettono di restituire la mobilità a pazienti che hanno perso il controllo degli arti: ciò avviene attraverso la decodifica di segnali bioelettrici prelevati da aree corticali di interesse al fine di guidare un arto prostetico. La decodifica dei segnali neurali è quindi un punto critico nelle BCI, richiedendo lo sviluppo di algoritmi performanti, affidabili e robusti. Tali requisiti sono soddisfatti in numerosi campi dalle Deep Neural Networks, algoritmi adattivi le cui performance scalano con la quantità di dati forniti, allineandosi con il cresc
APA, Harvard, Vancouver, ISO, and other styles
26

Andersson, Aron, and Shabnam Mirkhani. "Portfolio Performance Optimization Using Multivariate Time Series Volatilities Processed With Deep Layering LSTM Neurons and Markowitz." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273617.

Full text
Abstract:
The stock market is a non-linear field, but many of the best-known portfolio optimization algorithms are based on linear models. In recent years, the rapid development of machine learning has produced flexible models capable of complex pattern recognition. In this paper, we propose two different methods of portfolio optimization; one based on the development of a multivariate time-dependent neural network,thelongshort-termmemory(LSTM),capable of finding lon gshort-term price trends. The other is the linear Markowitz model, where we add an exponential moving average to the input price data to c
APA, Harvard, Vancouver, ISO, and other styles
27

Raminella, Marco. "Predizione real-time da dati di sensori impiantistici e ambientali." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18643/.

Full text
Abstract:
L'utilizzo dell'Intelligenza Artificiale in ambito industriale sta prendendo piede negli ultimi anni e il caso studiato in questa tesi ne è la prova. Lo sviluppo della tecnologia ha reso disponibile sempre più potenza computazionale a minor prezzo, rendendo possibile l'utilizzo delle Reti Neurali Profonde, studiate fin dagli anni ottanta, in un modo che fino a non molti anni fa era economicamente insostenibile. Si andrà a vedere il caso concreto della realizzazione di un sistema che esegue previsioni in tempo reale su telemetrie di un impianto per la gestione delle acque, con lo scopo di assis
APA, Harvard, Vancouver, ISO, and other styles
28

Nováčik, Tomáš. "Rekurentní neuronové sítě pro rozpoznávání řeči." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2016. http://www.nusl.cz/ntk/nusl-255371.

Full text
Abstract:
This master thesis deals with the implementation of various types of recurrent neural networks via programming language lua using torch library. It focuses on finding optimal strategy for training recurrent neural networks and also tries to minimize the duration of the training. Furthermore various types of regularization techniques are investigated and implemented into the recurrent neural network architecture. Implemented recurrent neural networks are compared on the speech recognition task using AMI dataset, where they model the acustic information. Their performance is also compared to sta
APA, Harvard, Vancouver, ISO, and other styles
29

Żbikowski, Rafal Waclaw. "Recurrent neural networks some control aspects /." Connect to electronic version, 1994. http://hdl.handle.net/1905/180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ahamed, Woakil Uddin. "Quantum recurrent neural networks for filtering." Thesis, University of Hull, 2009. http://hydra.hull.ac.uk/resources/hull:2411.

Full text
Abstract:
The essence of stochastic filtering is to compute the time-varying probability densityfunction (pdf) for the measurements of the observed system. In this thesis, a filter isdesigned based on the principles of quantum mechanics where the schrodinger waveequation (SWE) plays the key part. This equation is transformed to fit into the neuralnetwork architecture. Each neuron in the network mediates a spatio-temporal field witha unified quantum activation function that aggregates the pdf information of theobserved signals. The activation function is the result of the solution of the SWE. Theincorpor
APA, Harvard, Vancouver, ISO, and other styles
31

Zbikowski, Rafal Waclaw. "Recurrent neural networks : some control aspects." Thesis, University of Glasgow, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jacobsson, Henrik. "Rule extraction from recurrent neural networks." Thesis, University of Sheffield, 2006. http://etheses.whiterose.ac.uk/6081/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Silfa, Franyell. "Energy-efficient architectures for recurrent neural networks." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/671448.

Full text
Abstract:
Deep Learning algorithms have been remarkably successful in applications such as Automatic Speech Recognition and Machine Translation. Thus, these kinds of applications are ubiquitous in our lives and are found in a plethora of devices. These algorithms are composed of Deep Neural Networks (DNNs), such as Convolutional Neural Networks and Recurrent Neural Networks (RNNs), which have a large number of parameters and require a large amount of computations. Hence, the evaluation of DNNs is challenging due to their large memory and power requirements. RNNs are employed to solve sequence to sequ
APA, Harvard, Vancouver, ISO, and other styles
34

Brax, Christoffer. "Recurrent neural networks for time-series prediction." Thesis, University of Skövde, Department of Computer Science, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-480.

Full text
Abstract:
<p>Recurrent neural networks have been used for time-series prediction with good results. In this dissertation recurrent neural networks are compared with time-delayed feed forward networks, feed forward networks and linear regression models on a prediction task. The data used in all experiments is real-world sales data containing two kinds of segments: campaign segments and non-campaign segments. The task is to make predictions of sales under campaigns. It is evaluated if more accurate predictions can be made when only using the campaign segments of the data.</p><p>Throughout the entire proje
APA, Harvard, Vancouver, ISO, and other styles
35

Rabi, Gihad. "Visual speech recognition by recurrent neural networks." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0010/MQ36169.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Miller, Paul Ian. "Recurrent neural networks and adaptive motor control." Thesis, University of Stirling, 1997. http://hdl.handle.net/1893/21520.

Full text
Abstract:
This thesis is concerned with the use of neural networks for motor control tasks. The main goal of the thesis is to investigate ways in which the biological notions of motor programs and Central Pattern Generators (CPGs) may be implemented in a neural network framework. Biological CPGs can be seen as components within a larger control scheme, which is basically modular in design. In this thesis, these ideas are investigated through the use of modular recurrent networks, which are used in a variety of control tasks. The first experimental chapter deals with learning in recurrent networks, and i
APA, Harvard, Vancouver, ISO, and other styles
37

Xie, Xiaohui 1972. "Dynamics and learning in recurrent neural networks." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8393.

Full text
Abstract:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2002.<br>Includes bibliographical references (p. 141-151).<br>This thesis is a study of dynamics and learning in recurrent neural networks. Many computations of neural systems are carried out through a network of a large number of neurons. With massive feedback connections among these neurons, a study of its dynamics is necessary in order to understand the network's function. In this thesis, I aim at studying several recurrent network models and relating the dynamics with the networks' computation. Fo
APA, Harvard, Vancouver, ISO, and other styles
38

Potter, Chris, Kurt Kosbar, and Adam Panagos. "MIMO Channel Prediction Using Recurrent Neural Networks." International Foundation for Telemetering, 2008. http://hdl.handle.net/10150/606193.

Full text
Abstract:
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California<br>Adaptive modulation is a communication technique capable of maximizing throughput while guaranteeing a fixed symbol error rate (SER). However, this technique requires instantaneous channel state information at the transmitter. This can be obtained by predicting channel states at the receiver and feeding them back to the transmitter. Existing algorithms used to predict single-inp
APA, Harvard, Vancouver, ISO, and other styles
39

Alam, Samiul. "Recurrent neural networks in electricity load forecasting." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233254.

Full text
Abstract:
In this thesis two main studies are conducted to compare the predictive capabilities of feed-forward neural networks (FFNN) and long short-term memory networks (LSTM) in electricity load forecasting. The first study compares univariate networks using past electricity load, as well as multivariate networks using past electricity load and air temperature, in day-ahead load forecasting using varying lookback periods and sparsity of past observations. The second study compares FFNNs and LSTMs of different complexities (i.e. network sizes) when restrictions imposed by limitations of the real world
APA, Harvard, Vancouver, ISO, and other styles
40

Besharat, Pour Shiva. "Hierarchical sales forecasting using Recurrent Neural Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-290892.

Full text
Abstract:
Sales forecasting equips businesses with the essential basis for planning future investments, controlling costs, and production. This research is in cooperation with a property development company for the purpose of improving the accuracy of manual sales forecasting. The objective is to investigate the effects of using the underlying factors that affect the individual sales of the company in forecasting the company’s income. One approach uses an aggregation of the estimates of the individual sales to approximate the company’s income. This approach uses the underlying hierarchical factors of th
APA, Harvard, Vancouver, ISO, and other styles
41

Tegnér, Gustaf. "Recurrent neural networks for financial asset forecasting." Thesis, KTH, Matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229924.

Full text
Abstract:
The application of neural networks in finance has found renewed interest in the past few years. Neural networks have a proven capability of modeling non-linear relationships and have been proven widely successful in domains such as image and speech recognition. These favorable properties of the Neural Network make them an alluring choice of model when studying the financial markets. This thesis is concerned with investigating the use of recurrent neural networks for predicting future financial asset price movements on a set of futures contracts. To aid our research, we compare them to a set of
APA, Harvard, Vancouver, ISO, and other styles
42

Perumal, Subramoniam. "Stability and Switchability in Recurrent Neural Networks." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1227194814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Graves, Alex. "Supervised sequence labelling with recurrent neural networks." kostenfrei, 2008. http://mediatum2.ub.tum.de/doc/673554/673554.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Le, Ngan Thi Hoang. "Contextual Recurrent Level Set Networks and Recurrent Residual Networks for Semantic Labeling." Research Showcase @ CMU, 2018. http://repository.cmu.edu/dissertations/1166.

Full text
Abstract:
Semantic labeling is becoming more and more popular among researchers in computer vision and machine learning. Many applications, such as autonomous driving, tracking, indoor navigation, augmented reality systems, semantic searching, medical imaging are on the rise, requiring more accurate and efficient segmentation mechanisms. In recent years, deep learning approaches based on Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have dramatically emerged as the dominant paradigm for solving many problems in computer vision and machine learning. The main focus of this thes
APA, Harvard, Vancouver, ISO, and other styles
45

Sarti, Paolo. "Embeddings for text classification with recurrent neural networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
L'importanza di metodi automatici per la classificazione ed estrazione di informazioni da testi è cresciuta significativamente negli ultimi anni, a causa della produzione sempre maggiore di questo tipo di dati, specialmente tramite piattaforme web. Questo ha portato allo sviluppo di nuovi algoritmi per analizzare testi non strutturati. Le tecniche di "Embedding", che associano parole o parti di testo di lunghezza variabile a vettori di dimensione fissa mantenendo relazioni di similarità semantica, sono state un grande progresso per il campo del "Natural Language Processing". Inoltre, avanzamen
APA, Harvard, Vancouver, ISO, and other styles
46

Gers, Félix. "Long short-term memory in recurrent neural networks /." [S.l.] : [s.n.], 2001. http://library.epfl.ch/theses/?nr=2366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Tino, Peter, and Georg Dorffner. "Recurrent neural networks with iterated function systems dynamics." SFB Adaptive Information Systems and Modelling in Economics and Management Science, WU Vienna University of Economics and Business, 1998. http://epub.wu.ac.at/948/1/document.pdf.

Full text
Abstract:
We suggest a recurrent neural network (RNN) model with a recurrent part corresponding to iterative function systems (IFS) introduced by Barnsley [1] as a fractal image compression mechanism. The key idea is that 1) in our model we avoid learning the RNN state part by having non-trainable connections between the context and recurrent layers (this makes the training process less problematic and faster), 2) the RNN state part codes the information processing states in the symbolic input stream in a well-organized and intuitively appealing way. We show that there is a direct correspondence between
APA, Harvard, Vancouver, ISO, and other styles
48

Steinberger, Thomas, and Lucas Zinner. "Complete controllability of discrete-time recurrent neural networks." SFB Adaptive Information Systems and Modelling in Economics and Management Science, WU Vienna University of Economics and Business, 1999. http://epub.wu.ac.at/440/1/document.pdf.

Full text
Abstract:
This paper presents a characterization of complete controllability for the class of discrete-time recurrent neural networks. We prove that complete controllability holds if and only if the rank of the control matrix equals the state space dimension. (author's abstract)<br>Series: Report Series SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
APA, Harvard, Vancouver, ISO, and other styles
49

Mastrogiuseppe, Francesca. "From dynamics to computations in recurrent neural networks." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE048/document.

Full text
Abstract:
Le cortex cérébral des mammifères est constitué de larges et complexes réseaux de neurones. La tâche de ces assemblées de cellules est d’encoder et de traiter, le plus précisément possible, l'information sensorielle issue de notre environnement extérieur. De façon surprenante, les enregistrements électrophysiologiques effectués sur des animaux en comportement ont montré que l’activité corticale est excessivement irrégulière. Les motifs temporels d’activité ainsi que les taux de décharge moyens des cellules varient considérablement d’une expérience à l’autre, et ce malgré des conditions expérim
APA, Harvard, Vancouver, ISO, and other styles
50

Shao, Yuanlong. "Learning Sparse Recurrent Neural Networks in Language Modeling." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1398942373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!