Academic literature on the topic 'Road condition monitoring'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Road condition monitoring.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Road condition monitoring"
Radopoulou, Stefania C., and Ioannis Brilakis. "Improving Road Asset Condition Monitoring." Transportation Research Procedia 14 (2016): 3004–12. http://dx.doi.org/10.1016/j.trpro.2016.05.436.
Full textLinton, Michael A., and Liping Fu. "Winter Road Surface Condition Monitoring." Transportation Research Record: Journal of the Transportation Research Board 2482, no. 1 (January 2015): 46–56. http://dx.doi.org/10.3141/2482-07.
Full textOladele, Adewole S. "Evaluation and Analysis of Botswana Gravel Road Condition for District Transportation Networks Monitoring." Applied Mechanics and Materials 505-506 (January 2014): 740–44. http://dx.doi.org/10.4028/www.scientific.net/amm.505-506.740.
Full textMarciniuk, Karolina, Maciej Blaszke, and Bożena Kostek. "Acoustic Road Monitoring." MATEC Web of Conferences 231 (2018): 05002. http://dx.doi.org/10.1051/matecconf/201823105002.
Full textÅstrand, Max, Erik Jakobsson, Martin Lindfors, and John Svensson. "A system for underground road condition monitoring." International Journal of Mining Science and Technology 30, no. 3 (May 2020): 405–11. http://dx.doi.org/10.1016/j.ijmst.2020.04.006.
Full textRoberts, Ronald, Gaspare Giancontieri, Laura Inzerillo, and Gaetano Di Mino. "Towards Low-Cost Pavement Condition Health Monitoring and Analysis Using Deep Learning." Applied Sciences 10, no. 1 (January 1, 2020): 319. http://dx.doi.org/10.3390/app10010319.
Full textKunz, Bethany K., Nicholas S. Green, Janice L. Albers, Mark L. Wildhaber, and Edward E. Little. "Use of Real-Time Dust Monitoring and Surface Condition to Evaluate Success of Unpaved Road Treatments." Transportation Research Record: Journal of the Transportation Research Board 2672, no. 52 (October 9, 2018): 195–204. http://dx.doi.org/10.1177/0361198118799167.
Full textDong, Dapeng, and Zili Li. "Smartphone Sensing of Road Surface Condition and Defect Detection." Sensors 21, no. 16 (August 12, 2021): 5433. http://dx.doi.org/10.3390/s21165433.
Full textBoucetta, Zakaria, Abdelaziz Fazziki, and Mohamed Adnani. "A Deep-Learning-Based Road Deterioration Notification and Road Condition Monitoring Framework." International Journal of Intelligent Engineering and Systems 14, no. 3 (June 30, 2021): 503–15. http://dx.doi.org/10.22266/ijies2021.0630.42.
Full textArdian, Muhammad, Sahala Ruben A., and Reza Ardhianto. "HAUL ROAD CONDITION MONITORING USING SENSORS AND GNSS DATA." Prosiding Temu Profesi Tahunan PERHAPI 1, no. 1 (March 29, 2020): 293–304. http://dx.doi.org/10.36986/ptptp.v1i1.73.
Full textDissertations / Theses on the topic "Road condition monitoring"
Hu, Liuqing. "Calibrating Smartphones for Monitoring Road Condition on Paved and Unpaved Roads." Thesis, North Dakota State University, 2018. https://hdl.handle.net/10365/28859.
Full textBeitelmal, Jamal A. "Development of appropriate technology road condition monitoring system." Thesis, University of Newcastle Upon Tyne, 1999. http://hdl.handle.net/10443/533.
Full textKhashayar, Hojjati Emami. "Human-centered Reliability Assessment and Condition Monitoring in Road Transportation Systems." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32126.
Full textHu, Yazhe. "Degenerate Near-planar Road Surface 3D Reconstruction and Automatic Defects Detection." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/98671.
Full textDoctor of Philosophy
Road is one of the key infrastructures for ground transportation. A good road surface condition can benefit mainly on three aspects: 1. Avoiding the potential traffic accident caused by road surface defects, such as potholes. 2. Reducing the damage to the vehicle initiated by the bad road surface condition. 3. Improving the driving and riding comfort on a healthy road surface. With all the benefits mentioned above, it is important to examine and check the road surface quality frequently and efficiently to make sure that the road surface is in a healthy condition. In order to detect any road surface defects on public road in time, this dissertation proposes three techniques to tackle the road surface defects detection problem: First, a near-planar road surface three-dimensional (3D) reconstruction technique is proposed. Unlike traditional 3D reconstruction technique, the proposed technique solves the degenerate issue for road surface 3D reconstruction from two images. The degenerate issue appears when the object reconstructed has near-planar surfaces. Second, after getting the accuracy-enhanced 3D road surface reconstruction, this dissertation proposes an automatic defects detection technique using both the 3D reconstructed road surface and the road surface image information. Although physics-based detection using 3D reconstruction and 2D images are reliable and explainable, it needs more time to process these data. To speed up the road surface defects detection task, the third contribution is a technique that proposes a self-supervised learning structure with data-driven Convolutional Neural Networks (CNN). Different from traditional neural network-based detection techniques, the proposed combines the 3D road information with the CNN output to jointly determine the road surface defects region. All the proposed techniques are evaluated using both the simulation and real-world experiments. Results show the efficacy and efficiency of the proposed techniques in this dissertation.
Brunken, Hauke [Verfasser], Clemens [Akademischer Betreuer] Gühmann, Olaf [Gutachter] Hellwich, and Uwe [Gutachter] Stilla. "Stereo vision-based road condition monitoring / Hauke Brunken ; Gutachter: Olaf Hellwich, Uwe Stilla ; Betreuer: Clemens Gühmann." Berlin : Universitätsverlag der TU Berlin, 2021. http://nbn-resolving.de/urn:nbn:de:101:1-2021092901575243428483.
Full textAxelsson, Tobias. "Using supervised learning algorithms to model the behavior of Road Weather Information System sensors." Thesis, Luleå tekniska universitet, Datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-69972.
Full textSteckenrider, John J. "Multi-Bayesian Approach to Stochastic Feature Recognition in the Context of Road Crack Detection and Classification." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/81752.
Full textMaster of Science
Humans have an outstanding ability to understand things about the world around them. We learn from our youngest years how to make sense of things and perceive our environment even when it is not easy. To do this, we inherently think in terms of probabilities, updating our belief as we gain new information. The methods introduced here allow an autonomous system to think similarly, by applying a fairly common probabilistic technique to the task of perception and classification. In particular, road cracks are observed and classified using these methods, in order to develop an autonomous road condition monitoring system. The results of this research are promising; cracks are identified and correctly categorized with 92% accuracy, and the additional “intelligence” of the system leads to a 33% improvement in road crack assessment. These methods could be applied in a variety of contexts as the leading edge of robotics research seeks to develop more robust and human-like ways of perceiving the world.
Zurita, Millán Daniel. "Contributions to industrial process condition forecasting applied to copper rod manufacturing process." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/461087.
Full textAsegurar la fiabilidad y la robustez es uno de los principales objetivos en la monitorización de los procesos industriales, ya que estos cada vez se encuentran sometidos a demandas de producción más elevadas a la vez que se deben bajar costes de fabricación manteniendo la calidad del producto final. En este sentido, una desviación de la operación del proceso implica una divergencia de los parámetros óptimos preestablecidos, lo que conlleva a una desviación respecto la calidad nominal del producto final, causando así un rechazo de dicho producto y una perdida en costes para la empresa. De hecho, tanto es así, que desde hace más de una década el sector industrial ha dedicado un esfuerzo considerable a la implantación de metodologías de monitorización inteligente. Dichos métodos son capaces extraer información respecto a la condición de las diferentes maquinarias y procesos involucrados en el proceso de fabricación. No obstante, esta información extraída corresponde al estado actual del proceso. Por lo que obtener información respecto a la condición futura de dicho proceso representa una mejora significativa para poder ganar tiempo de respuesta para la detección y corrección de desviaciones en la operación de dicho proceso. Por lo tanto, la combinación del conocimiento futuro del comportamiento del proceso con la consecuente evaluación de la condición del mismo, es un objetivo a cumplir para la definición de las nuevas generaciones de sistemas de monitorización de procesos industriales. En este sentido, la presente tesis tiene como objetivo la propuesta de metodologías para evaluar la condición, actual y futura, de procesos industriales. Dicha metodología debe estimar la condición de forma fiable y con una alta resolución. Por lo tanto, en esta tesis se pretende extraer la información de la condición futura a partir de un modelado, basado en series temporales, de las señales críticas del proceso, para después, en base a enfoques no lineales de preservación de la topología, fusionar dichas señales proyectadas a futuro para conocer la condición. El rendimiento y la bondad de las metodologías propuestas en la tesis han sido validadas mediante su aplicación en un proceso industrial real, concretamente, con datos de una planta de fabricación de alambrón de cobre.
Omer, Raqib. "An Automatic Image Recognition System for Winter Road Condition Monitoring." Thesis, 2011. http://hdl.handle.net/10012/5799.
Full textJang, Jinwoo. "Development of Data Analytics and Modeling Tools for Civil Infrastructure Condition Monitoring Applications." Thesis, 2016. https://doi.org/10.7916/D82N52HN.
Full textBooks on the topic "Road condition monitoring"
Perchanok, M. S. Evaluation of a video system for remote monitoring of winter road surface conditions. Downsview, Ont: Research and Development Branch, Ministry of Transportation, 1994.
Find full textBook chapters on the topic "Road condition monitoring"
Kutila, Matti, Pasi Pyykönen, Johan Casselgren, and Patrik Jonsson. "Road Condition Monitoring." In Computer Vision and Imaging in Intelligent Transportation Systems, 375–97. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118971666.ch15.
Full textHaddar, Maroua, Fathi Djmal, Riadh Chaari, S. Caglar Baslamisli, Fakher Chaari, and Mohamed Haddar. "Adaptive On-Line Estimation of Road Profile in Semi-active Suspension." In Applied Condition Monitoring, 144–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85584-0_15.
Full textCapasso, Clemente, Moncef Hammadi, Stanislao Patalano, Ruixian Renaud, and Ottorino Veneri. "RFLP Approach in the Designing of Power-Trains for Road Electric Vehicles." In Applied Condition Monitoring, 249–58. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14532-7_26.
Full textBen Hassen, Dorra, Mariem Miladi, Mohamed Slim Abbes, S. Caglar Baslamisli, Fakher Chaari, and Mohamed Haddar. "Effect of Non-linear Suspension on the Recognition of the Road Disturbance." In Applied Condition Monitoring, 65–74. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85584-0_7.
Full textBen Hassen, Dorra, Mariem Miladi, Mohamed Slim Abbes, S. Caglar Baslamisli, Fakher Chaari, and Mohamed Haddar. "Estimation of Road Disturbance for a Non Linear Half Car Model Using the Independent Component Analysis." In Applied Condition Monitoring, 96–103. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96181-1_9.
Full textKassem, Diana, and Carlos Arce-Lopera. "Road-Condition Monitoring and Classification for Smart Cities." In Advances in Intelligent Systems and Computing, 437–41. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51328-3_60.
Full textMohamed, Adham, Mohamed Mostafa M. Fouad, Esraa Elhariri, Nashwa El-Bendary, Hossam M. Zawbaa, Mohamed Tahoun, and Aboul Ella Hassanien. "RoadMonitor: An Intelligent Road Surface Condition Monitoring System." In Advances in Intelligent Systems and Computing, 377–87. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11310-4_33.
Full textPerttunen, Mikko, Oleksiy Mazhelis, Fengyu Cong, Mikko Kauppila, Teemu Leppänen, Jouni Kantola, Jussi Collin, et al. "Distributed Road Surface Condition Monitoring Using Mobile Phones." In Ubiquitous Intelligence and Computing, 64–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23641-9_8.
Full textCampos, Jaime, Mirka Kans, and Lars Håkansson. "Information System Requirements Elicitation for Gravel Road Maintenance – A Stakeholder Mapping Approach." In Advances in Asset Management and Condition Monitoring, 377–87. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57745-2_32.
Full textSujatha, K., P. Vijai Babu, A. Ganesan, N. P. G. Bhavani, P. Sinthia, V. Srividhya, and S. Ponmagal. "Cloud Computing for Image Based Condition Monitoring of Road Surface." In International Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI) 2018, 1400–1406. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03146-6_164.
Full textConference papers on the topic "Road condition monitoring"
SASI PRIYA, S., S. Rajarajeshwari, K. Sowmiya, and P. Vinesha. "Road Traffic Condition Monitoring using Deep Learning." In 2020 International Conference on Inventive Computation Technologies (ICICT). IEEE, 2020. http://dx.doi.org/10.1109/icict48043.2020.9112408.
Full textLi, Kang, James A. Misener, and Karl Hedrick. "On-Board Road Condition Monitoring System Using Slip-Based Tire-Road Friction Estimation and Wheel Speed Signal Analysis." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14102.
Full textIto, Kenta, Go Hirakawa, Goshi Sato, and Yoshitaka Shibata. "SDN Based Road Condition Monitoring System for ITS." In 2015 10th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA). IEEE, 2015. http://dx.doi.org/10.1109/bwcca.2015.110.
Full textMori, Teppei, Tomonori Ohiro, Yasushi Hanatsuka, and Tomoyuki Higuchi. "Data-Driven Road Condition Forecasting with High Spatial Resolution: Utilizing Tire-Centric Road Condition Monitoring Technology." In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2020. http://dx.doi.org/10.1109/itsc45102.2020.9294592.
Full textZyabirov, I. M., and A. I. Zyabirov. "METHOD FOR MONITORING THE PARAMETERS OF THE TECH-NICAL CONDITION OF THE TRANSMISSION OF A TRACK." In Innovative technologies in road transport. Voronezh State University of Forestry and Technologies named after G.F. Morozov, Voronezh, Russia, 2021. http://dx.doi.org/10.34220/itrt2021_10-15.
Full textJokela, Maria, Matti Kutila, and Long Le. "Road condition monitoring system based on a stereo camera." In 2009 IEEE 5th International Conference on Intelligent Computer Communication and Processing (ICCP). IEEE, 2009. http://dx.doi.org/10.1109/iccp.2009.5284724.
Full textKortmann, Felix, Julin Horstkotter, Alexander Warnecke, Nicolas Meier, Jens Heger, Burkhardt Funk, and Paul Drews. "Live Demonstration: Passive Sensor Setup for Road Condition Monitoring." In 2020 IEEE SENSORS. IEEE, 2020. http://dx.doi.org/10.1109/sensors47125.2020.9278776.
Full textJang, Jinwoo, Andrew W. Smyth, Yong Yang, and Dave Cavalcanti. "Road surface condition monitoring via multiple sensor-equipped vehicles." In IEEE INFOCOM 2015 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2015. http://dx.doi.org/10.1109/infcomw.2015.7179334.
Full textPawlenka, Tomas, and Jaromir Skuta. "Road Condition Monitoring with Use of MEMS Based Unit." In 2020 21th International Carpathian Control Conference (ICCC). IEEE, 2020. http://dx.doi.org/10.1109/iccc49264.2020.9257232.
Full textBaruah, Barnana, and Subhasish Dhal. "A Secure and Privacy-Preserved Road Condition Monitoring System." In 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS). IEEE, 2020. http://dx.doi.org/10.1109/comsnets48256.2020.9027482.
Full textReports on the topic "Road condition monitoring"
Balali, Vahid, Arash Tavakoli, and Arsalan Heydarian. A Multimodal Approach for Monitoring Driving Behavior and Emotions. Mineta Transportation Institute, July 2020. http://dx.doi.org/10.31979/mti.2020.1928.
Full textLi, Howell, Enrique Saldivar-Carranza, Jijo K. Mathew, Woosung Kim, Jairaj Desai, Timothy Wells, and Darcy M. Bullock. Extraction of Vehicle CAN Bus Data for Roadway Condition Monitoring. Purdue University, 2020. http://dx.doi.org/10.5703/1288284317212.
Full textDesai, Jairaj, Jijo K. Mathew, Woosung Kim, Mingmin Liu, Howell Li, Jeffrey D. Brooks, and Darcy M. Bullock. Dashboards for Real-time Monitoring of Winter Operations Activities and After-action Assessment. Purdue University, 2020. http://dx.doi.org/10.5703/1288284317252.
Full textCooper, Christopher, Jacob McDonald, and Eric Starkey. Wadeable stream habitat monitoring at Congaree National Park: 2018 baseline report. National Park Service, June 2021. http://dx.doi.org/10.36967/nrr-2286621.
Full textPetrie, John, Yan Qi, Mark Cornwell, Md Al Adib Sarker, Pranesh Biswas, Sen Du, and Xianming Shi. Design of Living Barriers to Reduce the Impacts of Snowdrifts on Illinois Freeways. Illinois Center for Transportation, November 2020. http://dx.doi.org/10.36501/0197-9191/20-019.
Full textKwon, Jaymin, Yushin Ahn, and Steve Chung. Spatio-Temporal Analysis of the Roadside Transportation Related Air Quality (STARTRAQ) and Neighborhood Characterization. Mineta Transportation Institute, August 2021. http://dx.doi.org/10.31979/mti.2021.2010.
Full text