Journal articles on the topic 'Robocasting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Robocasting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Daguano, Juliana Kelmy Macário Barboza, Claudinei Santos, Manuel Fellipe Rodrigues Pais Alves, Jorge Vicente Lopes da Silva, Marina Trevelin Souza, and Maria Helena Figueira Vaz Fernandes. "State of the art in the use of bioceramics to elaborate 3D structures using robocasting." International Journal of Advances in Medical Biotechnology - IJAMB 2, no. 1 (2019): 55. http://dx.doi.org/10.25061/2595-3931/ijamb/2019.v2i1.28.
Full textOrtega, Ilida, Lindsey Dew, Adam G. Kelly, Chuh K. Chong, Sheila MacNeil, and Frederik Claeyssens. "Fabrication of biodegradable synthetic perfusable vascular networks via a combination of electrospinning and robocasting." Biomaterials Science 3, no. 4 (2015): 592–96. http://dx.doi.org/10.1039/c4bm00418c.
Full textShao, Huifeng, An Liu, Xiurong Ke, et al. "3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects." Journal of Materials Chemistry B 5, no. 16 (2017): 2941–51. http://dx.doi.org/10.1039/c7tb00217c.
Full textLicu, Lidia, Alexandru-Cristian Matei, Ștefania Caramarin, et al. "Exploring the Potential of Robocasting for High-Density Electrolytes in Solid Oxide Fuel Cells." Inorganics 12, no. 12 (2024): 300. http://dx.doi.org/10.3390/inorganics12120300.
Full textWahl, Larissa, Mylena Lorenz, Jonas Biggemann, and Nahum Travitzky. "Robocasting of reaction bonded silicon carbide structures." Journal of the European Ceramic Society 39, no. 15 (2019): 4520–26. http://dx.doi.org/10.1016/j.jeurceramsoc.2019.06.049.
Full textPeng, Erwin, Xiangxia Wei, Ulf Garbe, et al. "Robocasting of dense yttria-stabilized zirconia structures." Journal of Materials Science 53, no. 1 (2017): 247–73. http://dx.doi.org/10.1007/s10853-017-1491-x.
Full textSchlordt, Tobias, Stanislaus Schwanke, Felix Keppner, Tobias Fey, Nahum Travitzky, and Peter Greil. "Robocasting of alumina hollow filament lattice structures." Journal of the European Ceramic Society 33, no. 15-16 (2013): 3243–48. http://dx.doi.org/10.1016/j.jeurceramsoc.2013.06.001.
Full textBento, Ricardo, Anuraag Gaddam, Párástu Oskoei, Helena Oliveira, and José M. F. Ferreira. "3D Printing of Macro Porous Sol-Gel Derived Bioactive Glass Scaffolds and Assessment of Biological Response." Materials 14, no. 20 (2021): 5946. http://dx.doi.org/10.3390/ma14205946.
Full textLlamas-Unzueta, Raúl, J. Angel Menéndez, Marta Suárez, Adolfo Fernández, and Miguel A. Montes-Morán. "From whey robocasting to custom 3D porous carbons." Additive Manufacturing 59 (November 2022): 103083. http://dx.doi.org/10.1016/j.addma.2022.103083.
Full textCai, Kunpeng, Benito Román-Manso, Jim E. Smay, et al. "Geometrically Complex Silicon Carbide Structures Fabricated by Robocasting." Journal of the American Ceramic Society 95, no. 8 (2012): 2660–66. http://dx.doi.org/10.1111/j.1551-2916.2012.05276.x.
Full textYetna N'Jock, M., E. Camposilvan, L. Gremillard, et al. "Characterization of 100Cr6 lattice structures produced by robocasting." Materials & Design 121 (May 2017): 345–54. http://dx.doi.org/10.1016/j.matdes.2017.02.066.
Full textFeilden, Ezra, Esther García-Tuñón Blanca, Finn Giuliani, Eduardo Saiz, and Luc Vandeperre. "Robocasting of structural ceramic parts with hydrogel inks." Journal of the European Ceramic Society 36, no. 10 (2016): 2525–33. http://dx.doi.org/10.1016/j.jeurceramsoc.2016.03.001.
Full textPeng, Erwin, Danwei Zhang, and Jun Ding. "Ceramic Robocasting: Recent Achievements, Potential, and Future Developments." Advanced Materials 30, no. 47 (2018): 1802404. http://dx.doi.org/10.1002/adma.201802404.
Full textMaazouz, Y., E. B. Montufar, J. Guillem-Marti, et al. "Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks." J. Mater. Chem. B 2, no. 33 (2014): 5378–86. http://dx.doi.org/10.1039/c4tb00438h.
Full textMontero, Javier, Alicia Becerro, Beatriz Pardal-Peláez, Norberto Quispe-López, Juan-Francisco Blanco, and Cristina Gómez-Polo. "Main 3D Manufacturing Techniques for Customized Bone Substitutes. A Systematic Review." Materials 14, no. 10 (2021): 2524. http://dx.doi.org/10.3390/ma14102524.
Full textBarberi, Jacopo, Amy Nommeots-Nomm, Elisa Fiume, Enrica Verné, Jonathan Massera, and Francesco Baino. "Mechanical characterization of pore-graded bioactive glass scaffolds produced by robocasting." Biomedical Glasses 5, no. 1 (2019): 140–47. http://dx.doi.org/10.1515/bglass-2019-0012.
Full textPrzybyła, Szymon, Maciej Kwiatkowski, Michał Kwiatkowski, and Marek Hebda. "Optimization of Ceramic Paste Composition for 3D Printing via Robocasting." Materials 17, no. 18 (2024): 4560. http://dx.doi.org/10.3390/ma17184560.
Full textWahl, Larissa, Michelle Weichelt, and Nahum Travitzky. "Multi-material printing of reaction bonded carbides by robocasting." Additive Manufacturing 48 (December 2021): 102427. http://dx.doi.org/10.1016/j.addma.2021.102427.
Full textFu, Zongwen, Matthias Freihart, Larissa Wahl, Tobias Fey, Peter Greil, and Nahum Travitzky. "Micro- and macroscopic design of alumina ceramics by robocasting." Journal of the European Ceramic Society 37, no. 9 (2017): 3115–24. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.03.052.
Full textGlymond, Daniel, and Luc J. Vandeperre. "Robocasting of MgO-doped alumina using alginic acid slurries." Journal of the American Ceramic Society 101, no. 8 (2018): 3309–16. http://dx.doi.org/10.1111/jace.15509.
Full textKoller, M., A. Kruisová, H. Seiner, et al. "Anisotropic Elasticity of Ceramic Micro-Scaffolds Fabricated by Robocasting." Acta Physica Polonica A 134, no. 3 (2018): 799–803. http://dx.doi.org/10.12693/aphyspola.134.799.
Full textMiranda, Pedro, Antonia Pajares, Eduardo Saiz, Antoni P. Tomsia, and Fernando Guiberteau. "Mechanical properties of calcium phosphate scaffolds fabricated by robocasting." Journal of Biomedical Materials Research Part A 85A, no. 1 (2008): 218–27. http://dx.doi.org/10.1002/jbm.a.31587.
Full textTabard, L., V. Garnier, E. Prud’Homme, et al. "Robocasting of highly porous ceramics scaffolds with hierarchized porosity." Additive Manufacturing 38 (February 2021): 101776. http://dx.doi.org/10.1016/j.addma.2020.101776.
Full textDerevianko, O. V., O. V. Derevianko, V. I. Zakiev, and O. B. Zgalat-Lozynskyy. "3d Printing of Porous Glass Products Using the Robocasting Technique." Powder Metallurgy and Metal Ceramics 60, no. 9-10 (2022): 546–55. http://dx.doi.org/10.1007/s11106-022-00267-z.
Full textFu, Zongwen, Matthias Freihart, Tobias Schlordt, et al. "Robocasting of carbon-alumina core-shell composites using co-extrusion." Rapid Prototyping Journal 23, no. 2 (2017): 423–33. http://dx.doi.org/10.1108/rpj-12-2015-0191.
Full textBen-Arfa, Basam A. E., Ana S. Neto, Ilaria E. Palamá, Isabel M. Miranda Salvado, Robert C. Pullar, and José M. F. Ferreira. "Robocasting of ceramic glass scaffolds: Sol–gel glass, new horizons." Journal of the European Ceramic Society 39, no. 4 (2019): 1625–34. http://dx.doi.org/10.1016/j.jeurceramsoc.2018.11.019.
Full textEqtesadi, Siamak, Azadeh Motealleh, Pedro Miranda, Antonia Pajares, Alexandra Lemos, and José M. F. Ferreira. "Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering." Journal of the European Ceramic Society 34, no. 1 (2014): 107–18. http://dx.doi.org/10.1016/j.jeurceramsoc.2013.08.003.
Full textDietemann, Bastien, Fatih Bosna, Mylena Lorenz, et al. "Modeling robocasting with smoothed particle hydrodynamics: Printing gap-spanning filaments." Additive Manufacturing 36 (December 2020): 101488. http://dx.doi.org/10.1016/j.addma.2020.101488.
Full textSun, Shihao, Qian Xia, Dong Feng, and Hongqiang Ru. "Adsorption effects of polyethylene imine on the rheological properties for robocasting." Journal of Materials Science 57, no. 4 (2022): 3057–66. http://dx.doi.org/10.1007/s10853-021-06802-4.
Full textBaino, Francesco, Jacopo Barberi, Elisa Fiume, Gissur Orlygsson, Jonathan Massera, and Enrica Verné. "Robocasting of Bioactive SiO2-P2O5-CaO-MgO-Na2O-K2O Glass Scaffolds." Journal of Healthcare Engineering 2019 (April 11, 2019): 1–12. http://dx.doi.org/10.1155/2019/5153136.
Full textKruisová, Alena, Hanuš Seiner, Petr Sedlák, et al. "Acoustic metamaterial behavior of three-dimensional periodic architectures assembled by robocasting." Applied Physics Letters 105, no. 21 (2014): 211904. http://dx.doi.org/10.1063/1.4902810.
Full textDorj, Biligzaya, Jeong-Hui Park, and Hae-Won Kim. "Robocasting chitosan/nanobioactive glass dual-pore structured scaffolds for bone engineering." Materials Letters 73 (April 2012): 119–22. http://dx.doi.org/10.1016/j.matlet.2011.12.107.
Full textMiranda, Pedro, Eduardo Saiz, Karol Gryn та Antoni P. Tomsia. "Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications". Acta Biomaterialia 2, № 4 (2006): 457–66. http://dx.doi.org/10.1016/j.actbio.2006.02.004.
Full textMartínez-Vázquez, Francisco J., Antonia Pajares, and Pedro Miranda. "A simple graphite-based support material for robocasting of ceramic parts." Journal of the European Ceramic Society 38, no. 4 (2018): 2247–50. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.10.016.
Full textLiu, Chuanbei, Jianming Gao, Yongbo Tang, and Xuemei Chen. "Preparation and characterization of gypsum-based materials used for 3D robocasting." Journal of Materials Science 53, no. 24 (2018): 16415–22. http://dx.doi.org/10.1007/s10853-018-2800-8.
Full textMiranda, Pedro, Antonia Pajares, Eduardo Saiz, Antoni P. Tomsia, and Fernando Guiberteau. "Fracture modes under uniaxial compression in hydroxyapatite scaffolds fabricated by robocasting." Journal of Biomedical Materials Research Part A 83A, no. 3 (2007): 646–55. http://dx.doi.org/10.1002/jbm.a.31272.
Full textBaumer, Vail, Erin Gunn, Valerie Riegle, Claire Bailey, Clayton Shonkwiler, and David Prawel. "Robocasting of Ceramic Fischer–Koch S Scaffolds for Bone Tissue Engineering." Journal of Functional Biomaterials 14, no. 5 (2023): 251. http://dx.doi.org/10.3390/jfb14050251.
Full textDietemann, Bastien, Larissa Wahl, Nahum Travitzky, Harald Kruggel-Emden, Torsten Kraft, and Claas Bierwisch. "Reorientation of Suspended Ceramic Particles in Robocasted Green Filaments during Drying." Materials 15, no. 6 (2022): 2100. http://dx.doi.org/10.3390/ma15062100.
Full textKruisová, Alena, Hanuš Seiner, Petr Sedlák, et al. "Finite Elements Modeling of Mechanical and Acoustic Properties of a Ceramic Metamaterial Assembled by Robocasting." Applied Mechanics and Materials 821 (January 2016): 364–71. http://dx.doi.org/10.4028/www.scientific.net/amm.821.364.
Full textPaterlini, A., S. Le Grill, F. Brouillet, C. Combes, D. Grossin, and G. Bertrand. "Robocasting of self-setting bioceramics: from paste formulation to 3D part characteristics." Open Ceramics 5 (March 2021): 100070. http://dx.doi.org/10.1016/j.oceram.2021.100070.
Full textStuecker, John N., Joseph Cesarano, and Deidre A. Hirschfeld. "Control of the viscous behavior of highly concentrated mullite suspensions for robocasting." Journal of Materials Processing Technology 142, no. 2 (2003): 318–25. http://dx.doi.org/10.1016/s0924-0136(03)00586-7.
Full textEqtesadi, Siamak, Azadeh Motealleh, Rune Wendelbo, Angel L. Ortiz, and Pedro Miranda. "Reinforcement with reduced graphene oxide of bioactive glass scaffolds fabricated by robocasting." Journal of the European Ceramic Society 37, no. 12 (2017): 3695–704. http://dx.doi.org/10.1016/j.jeurceramsoc.2016.12.047.
Full textRoleček, J., L. Pejchalová, F. J. Martínez-Vázquez, P. Miranda González, and D. Salamon. "Bioceramic scaffolds fabrication: Indirect 3D printing combined with ice-templating vs. robocasting." Journal of the European Ceramic Society 39, no. 4 (2019): 1595–602. http://dx.doi.org/10.1016/j.jeurceramsoc.2018.12.006.
Full textZhao, Santuan, Wei Xiao, Mohamed N. Rahaman, David O'Brien, Jacob W. Seitz-Sampson, and B. Sonny Bal. "Robocasting of silicon nitride with controllable shape and architecture for biomedical applications." International Journal of Applied Ceramic Technology 14, no. 2 (2016): 117–27. http://dx.doi.org/10.1111/ijac.12633.
Full textHoumard, Manuel, Qiang Fu, Eduardo Saiz, and Antoni P. Tomsia. "Sol–gel method to fabricate CaP scaffolds by robocasting for tissue engineering." Journal of Materials Science: Materials in Medicine 23, no. 4 (2012): 921–30. http://dx.doi.org/10.1007/s10856-012-4561-2.
Full textRussias, J., E. Saiz, S. Deville, et al. "Fabrication andin vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting." Journal of Biomedical Materials Research Part A 83A, no. 2 (2007): 434–45. http://dx.doi.org/10.1002/jbm.a.31237.
Full textPośpiech, Joanna, Małgorzata Nadolska, Mateusz Cieślik, et al. "Additive manufacturing of Proton-Conducting Ceramics by robocasting with integrated laser postprocessing." Applied Materials Today 40 (October 2024): 102398. http://dx.doi.org/10.1016/j.apmt.2024.102398.
Full textMichielsen, Bart, Myrjam Mertens, Yoran De Vos, Jasper Lefevere, and Steven Mullens. "Robocasting of porous alumina hollow fibre monoliths by non-solvent induced phase inversion." Open Ceramics 6 (June 2021): 100098. http://dx.doi.org/10.1016/j.oceram.2021.100098.
Full textMonfared, Mahdieh Hajian, Alireza Nemati, Fatemeh Loghman, et al. "A deep insight into the preparation of ceramic bone scaffolds utilizing robocasting technique." Ceramics International 48, no. 5 (2022): 5939–54. http://dx.doi.org/10.1016/j.ceramint.2021.11.268.
Full textAnelli, S., M. Rosa, F. Baiutti, M. Torrell, V. Esposito, and A. Tarancón. "Hybrid-3D printing of symmetric solid oxide cells by inkjet printing and robocasting." Additive Manufacturing 51 (March 2022): 102636. http://dx.doi.org/10.1016/j.addma.2022.102636.
Full text