Academic literature on the topic 'Robot-Robot interaction'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Robot-Robot interaction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Robot-Robot interaction"

1

Qu, Jingtao, Mateusz Jarosz, and Bartlomiej Sniezynski. "Robot Control Platform for Multimodal Interactions with Humans Based on ChatGPT." Applied Sciences 14, no. 17 (2024): 8011. http://dx.doi.org/10.3390/app14178011.

Full text
Abstract:
This paper presents the architecture of a multimodal human–robot interaction control platform that leverages the advanced language capabilities of ChatGPT to facilitate more natural and engaging conversations between humans and robots. Implemented on the Pepper humanoid robot, the platform aims to enhance communication by providing a richer and more intuitive interface. The motivation behind this study is to enhance robot performance in human interaction through cutting-edge natural language processing technology, thereby improving public attitudes toward robots, fostering the development and
APA, Harvard, Vancouver, ISO, and other styles
2

Bharatharaj, Jaishankar, Loulin Huang, Ahmed Al-Jumaily, Rajesh Elara Mohan, and Chris Krägeloh. "Sociopsychological and physiological effects of a robot-assisted therapy for children with autism." International Journal of Advanced Robotic Systems 14, no. 5 (2017): 172988141773689. http://dx.doi.org/10.1177/1729881417736895.

Full text
Abstract:
This article reports our findings from a robot-assisted therapeutic study conducted over 49 days to investigate the sociopsychological and physiological effects in children with autism spectrum disorder using a parrot-inspired robot, KiliRo, that we developed to help in therapeutic settings. We investigated the frequency of participants’ interactions among each other and assessed any changes in interaction using social network analysis. Interactions were assessed through manual observation before and after exposure to the robot. Urinary and salivary tests were performed to obtain protein and α
APA, Harvard, Vancouver, ISO, and other styles
3

Lai, Yujun, Gavin Paul, Yunduan Cui, and Takamitsu Matsubara. "User intent estimation during robot learning using physical human robot interaction primitives." Autonomous Robots 46, no. 2 (2022): 421–36. http://dx.doi.org/10.1007/s10514-021-10030-9.

Full text
Abstract:
AbstractAs robotic systems transition from traditional setups to collaborative work spaces, the prevalence of physical Human Robot Interaction has risen in both industrial and domestic environments. A popular representation for robot behavior is movement primitives which learn, imitate, and generalize from expert demonstrations. While there are existing works in context-aware movement primitives, they are usually limited to contact-free human robot interactions. This paper presents physical Human Robot Interaction Primitives (pHRIP), which utilize only the interaction forces between the human
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Heejin. "A Human-Robot Interaction Entertainment Pet Robot." Journal of Korean Institute of Intelligent Systems 24, no. 2 (2014): 179–85. http://dx.doi.org/10.5391/jkiis.2014.24.2.179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mitsunaga, N., C. Smith, T. Kanda, H. Ishiguro, and N. Hagita. "Adapting Robot Behavior for Human--Robot Interaction." IEEE Transactions on Robotics 24, no. 4 (2008): 911–16. http://dx.doi.org/10.1109/tro.2008.926867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Park, Eunil, and Jaeryoung Lee. "I am a warm robot: the effects of temperature in physical human–robot interaction." Robotica 32, no. 1 (2013): 133–42. http://dx.doi.org/10.1017/s026357471300074x.

Full text
Abstract:
SUMMARYWhat factors affect users' perceptions of physical human–robot interactions? To answer this question, this study examined whether the skin temperature of a social robot affected users' perceptions of the robot during physical interaction. Results from a between-subjects experiment (warm, intermediate, cool, or no interaction) with a dinosaur robot demonstrated that skin temperature significantly affects users' perceptions and evaluations of a socially interactive robot. Additionally, this study found that social presence had partial mediating effects on several dependent variables. Impo
APA, Harvard, Vancouver, ISO, and other styles
7

Takamatsu, Jun. "Human-Robot Interaction." Journal of the Robotics Society of Japan 37, no. 4 (2019): 293–96. http://dx.doi.org/10.7210/jrsj.37.293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jia, Yunyi, Biao Zhang, Miao Li, Brady King, and Ali Meghdari. "Human-Robot Interaction." Journal of Robotics 2018 (October 1, 2018): 1–2. http://dx.doi.org/10.1155/2018/3879547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Murphy, Robin, Tatsuya Nomura, Aude Billard, and Jennifer Burke. "Human–Robot Interaction." IEEE Robotics & Automation Magazine 17, no. 2 (2010): 85–89. http://dx.doi.org/10.1109/mra.2010.936953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sethumadhavan, Arathi. "Human-Robot Interaction." Ergonomics in Design: The Quarterly of Human Factors Applications 20, no. 3 (2012): 27–28. http://dx.doi.org/10.1177/1064804612449796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Robot-Robot interaction"

1

Akan, Batu. "Human Robot Interaction Solutions for Intuitive Industrial Robot Programming." Licentiate thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-14315.

Full text
Abstract:
Over the past few decades the use of industrial robots has increased the efficiency as well as competitiveness of many companies. Despite this fact, in many cases, robot automation investments are considered to be technically challenging. In addition, for most small and medium sized enterprises (SME) this process is associated with high costs. Due to their continuously changing product lines, reprogramming costs are likely to exceed installation costs by a large margin. Furthermore, traditional programming methods for industrial robots are too complex for an inexperienced robot programmer, thu
APA, Harvard, Vancouver, ISO, and other styles
2

Ali, Muhammad. "Contribution to decisional human-robot interaction: towards collaborative robot companions." Phd thesis, INSA de Toulouse, 2012. http://tel.archives-ouvertes.fr/tel-00719684.

Full text
Abstract:
L'interaction homme-robot arrive dans une phase intéressante ou la relation entre un homme et un robot est envisage comme 'un partenariat plutôt que comme une simple relation maitre-esclave. Pour que cela devienne une réalité, le robot a besoin de comprendre le comportement humain. Il ne lui suffit pas de réagir de manière appropriée, il lui faut également être socialement proactif. Pour que ce comportement puis être mise en pratique le roboticien doit s'inspirer de la littérature déjà riche en sciences sociocognitives chez l'homme. Dans ce travail, nous allons identifier les éléments clés d'u
APA, Harvard, Vancouver, ISO, and other styles
3

Ali, Muhammad. "Contributions to decisional human-robot interaction : towards collaborative robot companions." Thesis, Toulouse, INSA, 2012. http://www.theses.fr/2012ISAT0003/document.

Full text
Abstract:
L'interaction homme-robot arrive dans une phase intéressante ou la relation entre un homme et un robot est envisage comme 'un partenariat plutôt que comme une simple relation maitre-esclave. Pour que cela devienne une réalité, le robot a besoin de comprendre le comportement humain. Il ne lui suffit pas de réagir de manière appropriée, il lui faut également être socialement proactif. Pour que ce comportement puis être mise en pratique le roboticien doit s'inspirer de la littérature déjà riche en sciences sociocognitives chez l'homme. Dans ce travail, nous allons identifier les éléments clés d'u
APA, Harvard, Vancouver, ISO, and other styles
4

Alili, Samir. "Interaction décisionnelle homme-robot : planification de tâche pour un robot interactif en environnement humain." Phd thesis, Toulouse 3, 2011. http://thesesups.ups-tlse.fr/2663/.

Full text
Abstract:
Cette thèse aborde la problématique de la décision partagée homme-robot dans une perspective de résolution interactive de problème à laquelle prennent part l'homme et le robot. Le robot et l'homme poursuivent des objectifs communs et doivent déterminer ensemble les moyens de les réaliser (les capacités et les compétences de chacun étant différentes). Les questions à traiter concernent ce partage des rôles, le partage d'autorité dans l'exécution d'une tâche (prise d'initiative), les connaissances à exhiber afin que l'un et l'autre puissent jouer un rôle optimal dans la résolution du problème co
APA, Harvard, Vancouver, ISO, and other styles
5

Alili, Samir. "Interaction décisionnelle Homme-Robot : planification de tâche pour un robot interactif en environnement humain." Phd thesis, Université Paul Sabatier - Toulouse III, 2011. http://tel.archives-ouvertes.fr/tel-01068811.

Full text
Abstract:
Cette thèse aborde la problématique de la décision partagée homme-robot dans une perspective de résolution interactive de problème à laquelle prennent part l'homme et le robot. Le robot et l'homme poursuivent des objectifs communs et doivent déterminer ensemble les moyens de les réaliser (les capacités et les compétences de chacun étant différentes). Les questions à traiter concernent ce partage des rôles, le partage d'autorité dans l'exécution d'une tche (prise d'initiative), les connaissances à exhiber afin que l'un et l'autre puissent jouer un rôle optimal dans la résolution du problème com
APA, Harvard, Vancouver, ISO, and other styles
6

Kruse, Thibault. "Planning for human robot interaction." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30059/document.

Full text
Abstract:
Les avancées récentes en robotique inspirent des visions de robots domestiques et de service rendant nos vies plus faciles et plus confortables. De tels robots pourront exécuter différentes tâches de manipulation d'objets nécessaires pour des travaux de ménage, de façon autonome ou en coopération avec des humains. Dans ce rôle de compagnon humain, le robot doit répondre à de nombreuses exigences additionnelles comparées aux domaines bien établis de la robotique industrielle. Le but de la planification pour les robots est de parvenir à élaborer un comportement visant à satisfaire un but et qui
APA, Harvard, Vancouver, ISO, and other styles
7

Bodiroža, Saša. "Gestures in human-robot interaction." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17705.

Full text
Abstract:
Gesten sind ein Kommunikationsweg, der einem Betrachter Informationen oder Absichten übermittelt. Daher können sie effektiv in der Mensch-Roboter-Interaktion, oder in der Mensch-Maschine-Interaktion allgemein, verwendet werden. Sie stellen eine Möglichkeit für einen Roboter oder eine Maschine dar, um eine Bedeutung abzuleiten. Um Gesten intuitiv benutzen zukönnen und Gesten, die von Robotern ausgeführt werden, zu verstehen, ist es notwendig, Zuordnungen zwischen Gesten und den damit verbundenen Bedeutungen zu definieren -- ein Gestenvokabular. Ein Menschgestenvokabular definiert welche Gesten
APA, Harvard, Vancouver, ISO, and other styles
8

Ahmed, Muhammad Rehan. "Compliance Control of Robot Manipulator for Safe Physical Human Robot Interaction." Doctoral thesis, Örebro universitet, Akademin för naturvetenskap och teknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-13986.

Full text
Abstract:
Inspiration from biological systems suggests that robots should demonstrate same level of capabilities that are embedded in biological systems in performing safe and successful interaction with the humans. The major challenge in physical human robot interaction tasks in anthropic environment is the safe sharing of robot work space such that robot will not cause harm or injury to the human under any operating condition. Embedding human like adaptable compliance characteristics into robot manipulators can provide safe physical human robot interaction in constrained motion tasks. In robotics, thi
APA, Harvard, Vancouver, ISO, and other styles
9

Toris, Russell C. "Bringing Human-Robot Interaction Studies Online via the Robot Management System." Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-theses/1058.

Full text
Abstract:
"Human-Robot Interaction (HRI) is a rapidly expanding field of study that focuses on allowing non-roboticist users to naturally and effectively interact with robots. The importance of conducting extensive user studies has become a fundamental component of HRI research; however, due to the nature of robotics research, such studies often become expensive, time consuming, and limited to constrained demographics. This work presents the Robot Management System, a novel framework for bringing robotic experiments to the web. A detailed description of the open source system, an outline of new security
APA, Harvard, Vancouver, ISO, and other styles
10

Nitz, Pettersson Hannes, and Samuel Vikström. "VISION-BASED ROBOT CONTROLLER FOR HUMAN-ROBOT INTERACTION USING PREDICTIVE ALGORITHMS." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-54609.

Full text
Abstract:
The demand for robots to work in environments together with humans is growing. This calls for new requirements on robots systems, such as the need to be perceived as responsive and accurate in human interactions. This thesis explores the possibility of using AI methods to predict the movement of a human and evaluating if that information can assist a robot with human interactions. The AI methods that were used is a Long Short Term Memory(LSTM) network and an artificial neural network(ANN). Both networks were trained on data from a motion capture dataset and on four different prediction times:
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Robot-Robot interaction"

1

Jost, Céline, Brigitte Le Pévédic, Tony Belpaeme, et al., eds. Human-Robot Interaction. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42307-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mansour, Rahimi, and Karwowski Waldemar 1953-, eds. Human-robot interaction. Taylor & Francis, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Huiying, Geng Yang, Baicun Wang, and Na Dong. Revitalizing Human-Robot Interaction. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-6139-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prassler, Erwin, Gisbert Lawitzky, Andreas Stopp, et al., eds. Advances in Human-Robot Interaction. Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b97960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Goodrich, Michael A. Human-robot interaction: A survey. Now Publishers, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xing, Bo, and Tshilidzi Marwala. Smart Maintenance for Human–Robot Interaction. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67480-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ayanoğlu, Hande, and Emília Duarte, eds. Emotional Design in Human-Robot Interaction. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-96722-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dautenhahn, Kerstin, and Joe Saunders, eds. New Frontiers in Human–Robot Interaction. John Benjamins Publishing Company, 2011. http://dx.doi.org/10.1075/ais.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Xiangyu, ed. Mixed Reality and Human-Robot Interaction. Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0582-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Xiangyu. Mixed Reality and Human-Robot Interaction. Springer Science+Business Media B.V., 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Robot-Robot interaction"

1

Nehmzow, Ulrich. "Computer Modelling of Robot-Environment Interaction." In Robot Behaviour. Springer London, 2008. http://dx.doi.org/10.1007/978-1-84800-397-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Duan, Feng, Wenyu Li, and Ying Tan. "Implementation of Robot Voice Interaction Functionality: PocketSphinx." In Intelligent Robot. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8253-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Duan, Feng, Wenyu Li, and Ying Tan. "Robot Voice Interaction Functions of Basic Theory." In Intelligent Robot. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8253-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ir, André Pirlet. "The Role of Standardization in Technical Regulations." In Human–Robot Interaction. Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315213781-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Takács, Árpád, Imre J. Rudas, and Tamás Haidegger. "The Other End of Human–Robot Interaction." In Human–Robot Interaction. Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315213781-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lőrincz, Márton. "Passive Bilateral Teleoperation with Safety Considerations." In Human–Robot Interaction. Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315213781-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fiorini, Paolo, and Riccardo Muradore. "Human–Robot Interfaces in Autonomous Surgical Robots." In Human–Robot Interaction. Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315213781-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fosch-Villaronga, Eduard, and Angelo Jr Golia. "The Intricate Relationships Between Private Standards and Public Policymaking in Personal Care Robots: Who Cares More?" In Human–Robot Interaction. Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315213781-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fiorini, Sandro Rama, Abdelghani Chibani, Tamás Haidegger, et al. "Standard Ontologies and HRI." In Human–Robot Interaction. Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315213781-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Park, Hong Seong, and Gurvinder Singh Virk. "Robot Modularity for Service Robots." In Human–Robot Interaction. Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315213781-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Robot-Robot interaction"

1

Panzirsch, Michael, Harsimran Singh, and Thomas Hulin. "Elasto-Plastic Robot Compliance in Human-Robot Interaction and Robot-Robot Cooperation." In 2025 20th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 2025. https://doi.org/10.1109/hri61500.2025.10974250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Luu, Quan Khanh, Alessandro Albini, Perla Maiolino, and Van Anh Ho. "TacLink-Integrated Robot Arm toward Safe Human-Robot Interaction." In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10802077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mascaro, Esteve Valls, Yashuai Yan, and Dongheui Lee. "Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction." In 2024 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Billings, Deborah R., Kristin E. Schaefer, Jessie Y. C. Chen, and Peter A. Hancock. "Human-robot interaction." In the seventh annual ACM/IEEE international conference. ACM Press, 2012. http://dx.doi.org/10.1145/2157689.2157709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Human robot interaction." In 2016 9th International Conference on Human System Interactions (HSI). IEEE, 2016. http://dx.doi.org/10.1109/hsi.2016.7529627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

St-Onge, David, Nicolas Reeves, and Nataliya Petkova. "Robot-Human Interaction." In HRI '17: ACM/IEEE International Conference on Human-Robot Interaction. ACM, 2017. http://dx.doi.org/10.1145/3029798.3034785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Björling, Elin A., Emma Rose, and Rachel Ren. "Teen-Robot Interaction." In HRI '18: ACM/IEEE International Conference on Human-Robot Interaction. ACM, 2018. http://dx.doi.org/10.1145/3173386.3177068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shahid, Suleman, Emiel Krahmer, and Marc Swerts. "Child-robot interaction." In the 2011 annual conference extended abstracts. ACM Press, 2011. http://dx.doi.org/10.1145/1979742.1979781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Reynolds-Cuéllar, Pedro, and Andrés F. Salazar-Gómez. "Nature-Robot Interaction." In HRI '23: ACM/IEEE International Conference on Human-Robot Interaction. ACM, 2023. http://dx.doi.org/10.1145/3568294.3580034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jeong-Yean Yang and Dong-Soo Kwon. "The effect of multiple robot interaction on human-robot interaction." In 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, 2012. http://dx.doi.org/10.1109/urai.2012.6462923.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Robot-Robot interaction"

1

Arkin, Ronald C., and Lilia Moshkina. Affect in Human-Robot Interaction. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ada593747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sofge, D., Dennis Perzanowski, M. Skubic, et al. Achieving Collaborative Interaction with a Humanoid Robot. Defense Technical Information Center, 2003. http://dx.doi.org/10.21236/ada434972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Martinson, E., and W. Lawson. Learning Speaker Recognition Models through Human-Robot Interaction. Defense Technical Information Center, 2011. http://dx.doi.org/10.21236/ada550036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Manring, Levi H., John Monroe Pederson, and Dillon Gabriel Potts. Improving Human-Robot Interaction and Control Through Augmented Reality. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1467198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jiang, Shu, and Ronald C. Arkin. Mixed-Initiative Human-Robot Interaction: Definition, Taxonomy, and Survey. Defense Technical Information Center, 2015. http://dx.doi.org/10.21236/ada620347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Scholtz, Jean, Jeff Young, Holly A. Yanco, and Jill L. Drury. Evaluation of Human-Robot Interaction Awareness in Search and Rescue. Defense Technical Information Center, 2006. http://dx.doi.org/10.21236/ada456128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bagchi, Shelly, Murat Aksu, Megan Zimmerman, et al. Workshop Report: Test Methods and Metrics for Effective HRI in Collaborative Human-Robot Teams, ACM/IEEE Human-Robot Interaction Conference, 2019. National Institute of Standards and Technology, 2020. http://dx.doi.org/10.6028/nist.ir.8339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pereira, Ângela, Ana Pinto, Carla Carvalho, and Jean-Christophe Giger. Stress in Human-Robot Interaction in an Industrial Context: a systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, 2025. https://doi.org/10.37766/inplasy2025.1.0042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bagchi, Shelly, Jeremy A. Marvel, Megan Zimmerman, et al. Workshop Report: Test Methods and Metrics for Effective HRI in Real-World Human-Robot Teams, ACM/IEEE Human-Robot Interaction Conference, 2020 (Virtual). National Institute of Standards and Technology, 2021. http://dx.doi.org/10.6028/nist.ir.8345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schaefer, Kristin E., Deborah R. Billings, James L. Szalma, et al. A Meta-Analysis of Factors Influencing the Development of Trust in Automation: Implications for Human-Robot Interaction. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ada607926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!