To see the other types of publications on this topic, follow the link: Robotic workstation.

Dissertations / Theses on the topic 'Robotic workstation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 dissertations / theses for your research on the topic 'Robotic workstation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Thong, Woon Kong. "The calibration of a robotic workstation /." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=65344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gosine, Raymond Gerard. "An interactive robotic workstation for applications in rehabilitation." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hillman, Michael Raymond. "Design and development of a robotic workstation for the disabled." Thesis, University of Bath, 1992. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

McCaffrey, Edward Jacob. "Kinematic Analysis and Evaluation of Wheelchair Mounted Robotic Arms." [Tampa, Fla.] : University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rochlis, Jennifer Lisa. "Human factors and telerobotics : tools and approaches for designing remote robotic workstation displays." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8109.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, February 2002.
Includes bibliographical references (v. 2, leaves 297-300).
A methodology is created for designing and testing an intuitive synthesized telerobotic workstation display configuration for controlling a high degree of freedom dexterous manipulator for use on the International Space Station. With the construction and maintenance of the International Space Station, the number of Extravehicular Activity (EVA) hours is expected to increase by a factor of four over the current Space Shuttle missions, resulting in higher demands on the EVA crewmembers and EVA crew systems. One approach to utilizing EVA resources more effectively while increasing crew safety and efficiency is to perform routine and high-risk EVA tasks telerobotically. NASA's Johnson Space Center is developing the state-of-the-art dexterous robotic manipulator. An anthropomorphic telerobot called Robonaut is being constructed that is capable of performing all of the tasks required of an EVA suited crewmember. Robonaut is comparable in size to a suited crewmember and consists of two 7 DOF arms, two 12 DOF hands, a 6+ DOF "stinger tail", and a 2+ DOF stereo camera platform. Current robotic workstations are insufficient for controlling highly dexterous manipulators, which require full immersion operator telepresence. The Robonaut workstation must be designed to allow an operator to intuitively control numerous degrees of freedom simultaneously, in varying levels of supervisory control and for all types of EVA tasks. This effort critically reviewed previous research into areas including telerobotic interfaces, human-machine interactions, microgravity physiology, supervisory control, force feedback, virtual reality, and manual control.
(cont.) A methodology is developed for designing and evaluating integrated interfaces for highly dexterous and multi-functional telerobots. In addition a classification of telerobotic tasks is proposed. Experiments were conducted with subjects performing EVA tasks with Space Station hardware using Robonaut and a Robonaut simulation (also under development). Results indicate that Robonaut simulation subject performance matches Robonaut performance. The simulation can be used for training operators for full-immersion teleoperation and for developing and evaluating future telerobotic workstations. A baseline amount of Situation Awareness time was determined and reduced using the display design iteration.
by Jennifer Lisa Rochlis.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
6

Kafuněk, Jan. "Návrh robotizovaného pracoviště pro automatické utahování šroubů spoje opěradlo – sedák a spony pásu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231959.

Full text
Abstract:
This diploma thesis deals with the problem of designing an automatic robotic workstation for automatic tightening screws connections seatback – seat and belt buckle. The research part of this thesis deals with current trends in the automotive industry, especially with the problem of assembling seats part, with focus on screwing. The design part of this thesis maps the process of designing two variants of an automatic robotic workstation. Special attention was given to the process of choosing the right industrial robot for the task, as well as to the construction of the end-effector and of the resulting 3D data. The right version of the workstation for the consecutive implementation was then chosen based on multi-criteria evaluation. The finishing touch of this thesis is a risk analysis for the implemented workstation.
APA, Harvard, Vancouver, ISO, and other styles
7

Pátek, Václav. "Návrh robotického pracoviště pro laserové značení automotive komponent." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444303.

Full text
Abstract:
This diploma thesis is focused on the design of a robotic workstation for laser marking of aluminium hinges for the automotive industry. Robots remove wheel hinges from palettes at the end of a preassembly line, mark them a sort them. At first, selected marking technologies used in the automotive industry are introduced. Afterwards, a few robot and process simulation software are described. Subsequently, several layout variants are created as viable options for process handling and the chosen variant is designed in detail. Using RobotStudio software, a simulation of the robotic marking cell is made for process verification. Finally, a technical - economic evaluation is performed.
APA, Harvard, Vancouver, ISO, and other styles
8

Franc, Vladimír. "Návrh robotické buňky pro obsluhu vstřikolisů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-400976.

Full text
Abstract:
The aim of this thesis is to design a robotic cell for automated injection molding operation. At the beginning of this paper, the input parameters and the assignment are analyzed. This is then followed up by the layout of the workplace, design of its equipment, selection of robots and the design of their end effectors and peripherals with regard to the specified boundary conditions and operator’s safety. The output of this work is a 3D cell model and its simulation model in PLM software Siemens Process Simulate, which verifies the production cycle time.
APA, Harvard, Vancouver, ISO, and other styles
9

Stubbings, Clive Anthony. "Control of sensory assembly workstations." Thesis, University of Hull, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rousová, Michaela. "Zvýšení efektivity při svařování pecních konstrukcí." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-229241.

Full text
Abstract:
This diploma thesis is resolving all the possibilities of enhancing the efficiency of furnace structures welding. Small batch production does not offer many possibilities for implementing mechanization or automation. On the other hand, when using a big batch production, efficiency can be enhanced by means of a robotic workstation. When the production batch is big enough, we will see a costs save after a short time, mainly in labor costs. This means the return of investments will be in short time period. In the LAC company there are three types of products made. At laboratory furnaces the efficiency can be enhance by using fixtures. At other standard and atypical furnaces is very difficult to design fixtures or positioners because of their different sizes. Big complication can be also a company location on second floor. The most suitable product regarding to welding efficiency enhancement is big batch production of heaters. For this type the welding time can be shortened by means of a robotic workstation.
APA, Harvard, Vancouver, ISO, and other styles
11

Batsios, Nicholas. "Design and construction of a multi-segment snake-like wheeled vehicle." Ohio : Ohio University, 1997. http://www.ohiolink.edu/etd/view.cgi?ohiou1177610642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Gonzalez, Victoria, and Castro Pamela Ruiz. "Evaluation of a human-robot collaboration in an industrial workstation." Thesis, Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-37153.

Full text
Abstract:
The fast changes in the industry require improved production workstations which ensure the workers' safety and improve the efficiency of the production. Technology developments and revised legislation have increased the possibility of using collaborative robots. This allows for new types of industry workstations where robots and humans cooperate in performing tasks. In addition to safety, the design of collaborative workstations needs to consider the areas of ergonomics and task allocation to ensure appropriate work conditions for the operators, while providing overall system efficiency. By facilitating the design development process of such workstations, the use of software simulations can help in gaining quality, save time and money by supporting decision making and testing concepts before creating a physical workstation, in turn, aimed to lead to better final solutions and a faster process of implementation or reconfiguration. The aim of this study is to investigate the possibility of having a human-robot collaboration in a workstation that is based on a use-case from the industry. The concept designs will be simulated and verified through a physical prototype, with which ergonomic analysis, time analysis, and risk assessments will be compared to validate the resultant collaborative workstation.
APA, Harvard, Vancouver, ISO, and other styles
13

Černý, Jiří. "Robotizované pracoviště pro plnění meziproduktu „Valve cartridge“ silikonem." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231976.

Full text
Abstract:
This diploma thesis is focused on robotized technological workstation (RTW) for production of “Valve cartridge” product. The production workstation, studied in the diploma thesis, is located at IMI Precision Engineering company and is focused on silicon filling. In the introduction a present workstation is evaluated and a present status of industrial robots and robotized workstation is analyzed. In main part of the thesis two solutions for robotic automation are designed, with respect of assigned parameters. The final solution is chosen by method of multicriteria decisional analysis. Project documentation is created for chosen variant including manipulation work cycle and block diagram of RTW control. The thesis includes calculation of capital return. At the final part of the thesis ergonomics and safety of workstation is analyzed; the risks of robotized technological workstation components are also evaluated. Technologists and quality engineer requirements are taken into account during working on the thesis.
APA, Harvard, Vancouver, ISO, and other styles
14

Azamfirei, Victor. "A visualization approach for improved interpretation and evaluation of assembly line balancing solutions." Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-16249.

Full text
Abstract:
Future manufacturing will be characterized by the complementarity between humans and automation (human-robot collaboration). This requires new methods and tools for the design and operation of optimized manufacturing workplaces in terms of ergonomics, safety, efficiency, complexity management and work satisfaction. There have been some efforts in the recent years to propose a tool for determining optimal human-automation levels for load balancing. Although the topic is quite new, it shares some similarities with some of the existing research in the area of robotic assembly line balancing. Therefore, it is crucial to review the existing literature and find the most similar models and methods to facilitate the development of new optimization models and algorithms. One of the two contributions that this thesis gives to the research world in the RALBP context is a literature review that involves high quality articles from 1993 to beginning 2018. This literature review includes visual and comprehensive tables—and a label system— where previous research patterns and trends are highlighted. Visualization of data and results obtained by assembly line optimization tools is a very important topic that has rarely been studied. Data visualization would provide a: 1. better comprehension of patterns, trends and qualitative data 2. more constructive information absorption 3. better visualization of relationships and patterns between operations, and 4. better contribution to data manipulation and interaction. The second contribution to research found in this thesis is the use of a human modelling (DHM) tool (called IPS), which is proposed as an assessment to the ergonomic risk that a robotic assembly line may involve. This kind of studies are necessary in order to reduce one of the most frequent reasons of work absence in our today society i.e. musculoskeletal disorders (MSDs). MSDs are often the result of poor work environments and they lead to reduced productivity and quality losses at companies. In view of the above, IPS was used in order to resolve the load handling problem between human and robot, depending on their skills and availability, while fulfilling essential ISO standards i.e. 15066 and 10218:1 and :2. The literature review made it possible to select highly useful documents in developing assumptions for the experiment and contributed to consider real features detected in the industry. Results show that even though IPS is not capable of calculating an entire robotic assembly with human-robot collaboration, it is able to simulate a workstation constituted of one robot and one human. Finite and assembly motions for both human and robot are expected to be implemented in future versions of the software. Finally, the main advantages of using DHM tools in assessing ergonomic risks in RALB can be extracted from the results of this thesis. This advantages include 1. ergonomic evaluation for assembly motions 2. ergonomic evaluation for a full working day (available in future version) and 3. essential ISO standard testing (available in future version).
APA, Harvard, Vancouver, ISO, and other styles
15

Visser, Mitchell Dean. "A robotic workstation vision-based safety system for persons with physical disabilities." Thesis, 1996. http://hdl.handle.net/2429/6076.

Full text
Abstract:
The overall goal of this research project was to investigate and develop a vision-based safety system that would either solely, or in combination with another system, provide an acceptable level of safety for a user with a severe physical disability while operating a rehabilitative robotic workstation developed by the Neil Squire Foundation A system was developed that uses a single camera to track the user in a horizontal plane and uses feedback from the robot controller to calculate the position of the robot using kinematic equations. The system is controlled by a computer that can communicate with the robot controller and stop the robot if it detects a safety zone violation. Prior to the development of a vision-based safety system, a safety analysis was performed considering general rehabilitative robotic equipment and a user with a severe physical disability. This analysis revealed injury mechanisms such as collisions, pinning, and pinching and identified levels of injuries from life threatening injuries to undesired contact with the robot. The safety analysis was then specifically targeted to the Neil Squire Foundation robot and used to determine the performance requirements of a variety of safety systems, including a vision-based safety system. Testing of the vision-based safety system on the robotic workstation with potential users showed that the system fulfilled all the project specifications, including preventing all unintentional contact between user and the robot
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography