To see the other types of publications on this topic, follow the link: Robots – Apprentissage automatique.

Dissertations / Theses on the topic 'Robots – Apprentissage automatique'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Robots – Apprentissage automatique.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Ahle, Elmar. "Autonomous systems : a cognitive oriented approach applied to mobile robotics /." Aachen : Shaker, 2007. http://catalogue.bnf.fr/ark:/12148/cb41447189p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zennir, Youcef. "Apprentissage par renforcement et systèmes distribués : application à l'apprentissage de la marche d'un robot hexapode." Lyon, INSA, 2004. http://theses.insa-lyon.fr/publication/2004ISAL0034/these.pdf.

Full text
Abstract:
Le but de cette thèse est d'étudier et de proposer des techniques d'apprentissage par renforcement pour l'apprentissage de la marche d'un robot marcheur hexapode. L'hypothèse sur laquelle repose ce travail est que des marches peuvent être obtenues lorsque la commande des mouvements est distribuée au niveau de chaque patte plutôt que d'être centralisée. Une approche distribuée de l'apprentissage par renforcement de type Q-learning a été retenue dans laquelle les agents (les contrôleurs de mouvement) contribuant à une même tâche mènent leur propre apprentissage en tenant compte ou non de l'existence des autres agents. Différentes simulations et tests on été menés avec pour objectif la génération de marches périodiques stables. La marche apparaît comme un phénomène émergeant des mouvements individuels des pattes. L'influence des paramètres d'apprentissage sur les marches obtenues est étudiée. Sont aussi traités des problèmes de tolérances aux fautes et de manque d'information sur l'état du robot. Enfin il est vérifié en simulation que, avec les algorithmes développés, le robot apprend à rattraper une trajectoire prédéfinie tout en contrôlant sa posture
The goal of this thesis is to study and to develop reinforcement learning techniques in order a hexapod robot to learn to walk. The main assumption on which this work is based is that effective gaits can be obtained as the control of the movements is distributed on each leg rather than centralised in a single decision centre. A distributed approach of the Q-learning technique is adopted in which the agents contributing to the same global objective perform their own learning process taking into account or not the other agents. The centralised and distributed approaches are compared. Different simulations and tests are carried out so as to generate stable periodic gaits. The influence of the learning parameters on the quality of the gaits are studied. The walk appears as an emerging phenomenon from the individual movements of the legs. Problems of fault tolerance and lack of state information are investigated. Finally it is verified that with the developed algorithm the simulated robot learns how to reach a desired trajectory while controlling its posture
APA, Harvard, Vancouver, ISO, and other styles
3

Paléologue, Victor. "Teaching Robots Behaviors Using Spoken Language in Rich and Open Scenarios." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS458.

Full text
Abstract:
Des robots sociaux tels que Pepper sont déjà présents "dans la nature". Leur comportements sont adaptés à chaque cas d'usage par des experts. Permettre au grand public d'enseigner de nouveaux comportements pourrait mener à une meilleure adaptation à moindre coût. Dans cette thèse nous étudions un système cognitif et des comportements robotiques permettant à des utilisateurs de Pepper à domicile de composer de nouveaux comportements à partir de comportements existants, par le langage parlé. Les domiciles sont des mondes ouverts qui ne peuvent pas être prédéterminés. Pepper doit donc, en plus d'apprendre de nouveaux comportements, être capable de découvrir son environnement, et de s'y rendre utile ou de divertir : c'est un scénario riche. L'enseignement de comportements que nous démontrons s'effectue donc dans ces conditions uniques : par le seul langage parlé, dans des scénarios riches et ouverts, et sur un robot Pepper standard. Grâce à la transcription automatique de la parole et au traitement automatique du langage, notre système reconnaît les enseignements de comportement que nous n'avions pas prédéterminés. Les nouveaux comportements peuvent solliciter des entités qui auraient été appris dans d'autres contextes, pour les accepter et s'en servir comme paramètres. Par des expériences de complexité croissante, nous montrons que des conflits entre les comportements apparaissent dans les scénarios riches, et proposons de les résoudre à l'aide de planification de tâche et de règles de priorités. Nos résultats reposent sur des méthodes qualitatives et quantitatives et soulignent les limitations de notre solution, ainsi que les nouvelles applications qu'elle rend possible
Social robots like Pepper are already found "in the wild". Their behaviors must be adapted for each use case by experts. Enabling the general public to teach new behaviors to robots may lead to better adaptation at lesser cost. In this thesis, we study a cognitive system and a set of robotic behaviors allowing home users of Pepper robots to teach new behaviors as a composition of existing behaviors, using solely the spoken language. Homes are open worlds and are unpredictable. In open scenarios, a home social robot should learn about its environment. The purpose of such a robot is not restricted to learning new behaviors or about the environment: it should provide entertainment or utility, and therefore support rich scenarios. We demonstrate the teaching of behaviors in these unique conditions: the teaching is achieved by the spoken language on Pepper robots deployed in homes, with no extra device and using its standard system, in a rich and open scenario. Using automatic speech transcription and natural language processing, our system recognizes unpredicted teachings of new behaviors, and a explicit requests to perform them. The new behaviors may invoke existing behaviors parametrized with objects learned in other contexts, and may be defined as parametric. Through experiments of growing complexity, we show conflicts between behaviors in rich scenarios, and propose a solution based on symbolic task planning and priorization rules to resolve them. The results rely on qualitative and quantitative analysis and highlight the limitations of our solution, but also the new applications it enables
APA, Harvard, Vancouver, ISO, and other styles
4

Lucidarme, Philippe. "Apprentissage et adaptation pour des ensembles de robots réactifs coopérants." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2003. http://tel.archives-ouvertes.fr/tel-00641563.

Full text
Abstract:
Ces travaux de thèse se placent dans le contexte des systèmes multi-agents distribués. L'objectif est l'étude de méthodes d'auto-apprentissage appliquées à des ensembles de robots réactifs. Ces travaux se focalisent sur l'apprentissage de comportements sensorimoteurs de bas niveaux. Il nous semble important que les méthodes proposées puissent être appliquées sur des systèmes réels, dont les contraintes sont parfois loin de celles de la simulation. C'est pour cette raison que nous avons imaginé et conçu une plate-forme expérimentale composée de 4 robots mobiles, un manipulateur mobile miniature et un système de vision stéréoscopique. Cette étude se décompose en deux parties. La première, appliquée aux systèmes homogènes, présente l'étude de méthodes évolutionnistes appliquées aux systèmes multirobots. La seconde, appliquée aux systèmes hétérogènes, s'intéresse à la possibilité d'utiliser la technique du recuit simulé pour optimiser les poids d'un contrôleur neuronal. Toujours dans ce contexte d'hétérogénéité, une seconde méthode basée sur l'apprentissage par renforcement est expérimentée.
APA, Harvard, Vancouver, ISO, and other styles
5

Rafflin, catherine. "Conception d'un système de programmation et de commande de robots mobiles par apprentissage." Montpellier 2, 1995. http://www.theses.fr/1995MON20093.

Full text
Abstract:
Cette these presente un systeme de programmation et de commande de robots mobiles par apprentissage. Dans le but d'assurer la faisabilite des missions, nous avons mis au point une methode d'apprentissage des trajectoires grace a laquelle le robot connait d'une part, les chemins des missions et d'autre part, les actions a accomplir. L'originalite de la methode reside dans l'utilisation conjointe d'une base de donnees de trajectoires apprises et d'informations delivrees en ligne par les capteurs, de facon a autoriser des manuvres telles que le recalage du robot ou les evitements d'obstacles. Dans le premier chapitre, nous posons le probleme de la commande de robots mobiles en environnement interieur, tant sur le plan des strategies de navigation que sur le plan des systemes de localisation ou des structures de commande. Dans le deuxieme chapitre, nous presentons la phase d'acquisition des trajectoires. Pendant cette etape principale, le robot est teleopere tandis que son systeme de localisation est actif et delivre des informations qui sont traitees puis memorisees sous forme de fichiers d'apprentissage. L'execution d'une trajectoire apprise necessite d'une part, une generation de mouvement qui utilise aussi bien des points acquis en ligne que des points acquis pendant la phase d'apprentissage, et d'autre part, le calcul des variables de commande pour le robot considere. Nous decrivons l'une et l'autre dans le troisieme chapitre. Le quatrieme chapitre presente tous les outils necessaires a l'apprentissage des trajectoires d'un ensemble de missions tels que la structuration des chemins, la validation et la correction eventuelle des fichiers d'apprentissage, la gestion de l'enchainement des phases, l'interface homme/machine, la programmation des actions du robot. Nous avons implante le systeme complet de programmation et de commande par apprentissage sur le robot du projet first, dedie au transport de charges en milieu hospitalier. Dans le dernier chapitre, nous presentons ce projet, l'implantation du systeme et les differents essais effectues
APA, Harvard, Vancouver, ISO, and other styles
6

Xia, Chen. "Apprentissage Intelligent des Robots Mobiles dans la Navigation Autonome." Thesis, Ecole centrale de Lille, 2015. http://www.theses.fr/2015ECLI0026/document.

Full text
Abstract:
Les robots modernes sont appelés à effectuer des opérations ou tâches complexes et la capacité de navigation autonome dans un environnement dynamique est un besoin essentiel pour les robots mobiles. Dans l’objectif de soulager de la fastidieuse tâche de préprogrammer un robot manuellement, cette thèse contribue à la conception de commande intelligente afin de réaliser l’apprentissage des robots mobiles durant la navigation autonome. D’abord, nous considérons l’apprentissage des robots via des démonstrations d’experts. Nous proposons d’utiliser un réseau de neurones pour apprendre hors-ligne une politique de commande à partir de données utiles extraites d’expertises. Ensuite, nous nous intéressons à l’apprentissage sans démonstrations d’experts. Nous utilisons l’apprentissage par renforcement afin que le robot puisse optimiser une stratégie de commande pendant le processus d’interaction avec l’environnement inconnu. Un réseau de neurones est également incorporé et une généralisation rapide permet à l’apprentissage de converger en un certain nombre d’épisodes inférieur à la littérature. Enfin, nous étudions l’apprentissage par fonction de récompenses potentielles compte rendu des démonstrations d’experts optimaux ou non-optimaux. Nous proposons un algorithme basé sur l’apprentissage inverse par renforcement. Une représentation non-linéaire de la politique est désignée et la méthode du max-margin est appliquée permettant d’affiner les récompenses et de générer la politique de commande. Les trois méthodes proposées sont évaluées sur des robots mobiles afin de leurs permettre d’acquérir les compétences de navigation autonome dans des environnements dynamiques et inconnus
Modern robots are designed for assisting or replacing human beings to perform complicated planning and control operations, and the capability of autonomous navigation in a dynamic environment is an essential requirement for mobile robots. In order to alleviate the tedious task of manually programming a robot, this dissertation contributes to the design of intelligent robot control to endow mobile robots with a learning ability in autonomous navigation tasks. First, we consider the robot learning from expert demonstrations. A neural network framework is proposed as the inference mechanism to learn a policy offline from the dataset extracted from experts. Then we are interested in the robot self-learning ability without expert demonstrations. We apply reinforcement learning techniques to acquire and optimize a control strategy during the interaction process between the learning robot and the unknown environment. A neural network is also incorporated to allow a fast generalization, and it helps the learning to converge in a number of episodes that is greatly smaller than the traditional methods. Finally, we study the robot learning of the potential rewards underneath the states from optimal or suboptimal expert demonstrations. We propose an algorithm based on inverse reinforcement learning. A nonlinear policy representation is designed and the max-margin method is applied to refine the rewards and generate an optimal control policy. The three proposed methods have been successfully implemented on the autonomous navigation tasks for mobile robots in unknown and dynamic environments
APA, Harvard, Vancouver, ISO, and other styles
7

Soula, Hédi Favrel Joel Beslon Guillaume. "Dynamique et plasticité dans les réseaux de neurones à impulsions étude du couplage temporel réseau / agent / environnement /." Villeurbanne : Doc'INSA, 2005. http://docinsa.insa-lyon.fr/these/pont.php?id=soula.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Soula, Hédi. "Dynamique et plasticité dans les réseaux de neurones à impulsions : étude du couplage temporel réseau / agent / environnement." Lyon, INSA, 2005. http://theses.insa-lyon.fr/publication/2005ISAL0056/these.pdf.

Full text
Abstract:
Dans ce travail, une approche de "vie artificielle" est utilisée pour étudier le support neural des comportements. Un comportement est issu d'une bonne adéquation entre le système de contrôle, les capacités sensori-motrices de l'agent et de l'environnement. Dans un paradigme dynamique, un comportement est ainsi un attracteur dans l'espace perception/action - composé de la dynamique interne du contrôleur et de celle obtenue par l'évolution de l'agent. La dynamique neurale est à l'origine de la dynamique interne. L'apprentissage de comportement revient donc à coupler ces deux dynamiques. Nous introduisons, dans un premier temps, une étude détaillée de la dynamique nerveuse dans le cas de réseaux de neurones à impulsions. En mode spontané (c'est-à-dire sans entrées), ces réseaux opèrent de manière non triviale. Selon les paramètres de la distribution de poids synaptiques, nous sommes en mesure d'estimer complètement l'activité de décharge. On montre l'existence d'une bifurcation pour le paramètre de couplage : la variance de la distribution. Nous montrons aussi que ce facteur de couplage mesure le charactère chaotique du fonctionnement du réseau. Pour apprendre des comportement, nous utilisons un algorithme biologiquement plausible la Spike-Time Dependent Plasticity qui permet de coupler la dynamique neurale. Nous montrons en dynamique spontanée l'influence des paramètres d'apprentissage sur le fonctionnement du réseau. Nous montrons que la STDP permet de rester dans un régime "au bord du chaos". Dans le but de valider cette approche, nous utilisons le réseau pour controler un robot qui doit apprendre à éviter les obstacles en servant uniquement du flot visuel
An «artificial life » approach is conducted in order to assess the neural basis of behaviours. Behaviour is the consequence of a good concordance between the controller, the agent’s sensori-motors capabilities and the environment. Within a dynamical system paradigm, behaviours are viewed as attractors in the perception/action space – derived from the composition of the internal and external dynamics. Since internal dynamics is originated by the neural dynamics, learning behaviours therefore consists on coupling external and internal dynamics by modifying network’s free parameters. We begin by introducing a detailed study of the dynamics of large networks of spiking neurons. In spontaneous mode (i. E. Without any input), these networks have a non trivial functioning. According to the parameters of the weight distribution and provided independence hypotheses, we are able to describe completely the spiking activity. Among other results, a bifurcation is predicted according to a coupling factor (the variance of the distribution). We also show the influence of this parameter on the chaotic dynamics of the network. To learn behaviours, we use a biologically plausible learning paradigm – the Spike-Timing Dependent Plasticity (STDP) that allows us to couple neural and external dynamics. Applying shrewdly this learning law enables the network to remain “at the edge of chaos” which corresponds to an interesting state of activity for learning. In order to validate our approach, we use these networks to control an agent whose task is to avoid obstacles using only the visual flow coming from its linear camera. We detail the results of the learning process for both simulated and real robotics platform
APA, Harvard, Vancouver, ISO, and other styles
9

Salaün, Camille. "Learning models to control redundancy in robotics." Paris 6, 2010. http://www.theses.fr/2010PA066238.

Full text
Abstract:
La robotique de service est un domaine émergent où il est nécessaire de commander des robots en interaction forte avec leur environnement. Ce travail présente une méthode adaptative de commande combinant de l'apprentissage de modèles physiques et de la commande dans l'espace opérationnel de robots redondants. L'apprentissage des modèles cinématiques est obtenu soit par dérivation de modèles géométriques appris, soit par apprentissage direct. Ces modèles cinématiques, également appelés matrices Jacobiennes, peuvent être utilisés dans le calcul de pseudo-inverse ou de projecteurs pour la commande du robot. Cette combinaison de méthodes permet d'obtenir un contrôleur qui s'adapte à la géométrie du robot commandé. D'une façon similaire, il est également possible d'apprendre un modèle dynamique inverse du robot de manière à commander le robot en couple plutôt qu'en vitesse. Cela a pour avantage de pouvoir s'adapter aux modifications dynamiques qui s'appliquent sur le robot comme par exemple l'application d'une force extérieure ou l'ajout d'un poids. Les expériences menées dans le cadre de cette thèse montrent comment réaliser plusieurs tâches hiérarchiques ou comment s'adapter à des perturbations avec des modèles appris. Des application sur un robots réel ont également été menées afin de rendre compte de la plausibilité de l'approche proposée.
APA, Harvard, Vancouver, ISO, and other styles
10

Benureau, Fabien. "Self Exploration of Sensorimotor Spaces in Robots." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0072/document.

Full text
Abstract:
La robotique développementale a entrepris, au courant des quinze dernières années,d’étudier les processus développementaux, similaires à ceux des systèmes biologiques,chez les robots. Le but est de créer des robots qui ont une enfance—qui rampent avant d’essayer de courir, qui jouent avant de travailler—et qui basent leurs décisions sur l’expérience de toute une vie, incarnés dans le monde réel.Dans ce contexte, cette thèse étudie l’exploration sensorimotrice—la découverte pour un robot de son propre corps et de son environnement proche—pendant les premiers stage du développement, lorsque qu’aucune expérience préalable du monde n’est disponible. Plus spécifiquement, cette thèse se penche sur comment générer une diversité d’effets dans un environnement inconnu. Cette approche se distingue par son absence de fonction de récompense ou de fitness définie par un expert, la rendant particulièrement apte à être intégrée sur des robots auto-suffisants.Dans une première partie, l’approche est motivée et le problème de l’exploration est formalisé, avec la définition de mesures quantitatives pour évaluer le comportement des algorithmes et d’un cadre architectural pour la création de ces derniers. Via l’examen détaillé de l’exemple d’un bras robot à multiple degrés de liberté, la thèse explore quelques unes des problématiques fondamentales que l’exploration sensorimotrice pose, comme la haute dimensionnalité et la redondance sensorimotrice. Cela est fait en particulier via la comparaison entre deux stratégies d’exploration: le babillage moteur et le babillage dirigé par les objectifs. Plusieurs algorithmes sont proposés tour à tour et leur comportement est évalué empiriquement, étudiant les interactions qui naissent avec les contraintes développementales, les démonstrations externes et les synergies motrices. De plus, parce que même des algorithmes efficaces peuvent se révéler terriblement inefficaces lorsque leurs capacités d’apprentissage ne sont pas adaptés aux caractéristiques de leur environnement, une architecture est proposée qui peut dynamiquement choisir la stratégie d’exploration la plus adaptée parmi un ensemble de stratégies. Mais même avec de bons algorithmes, l’exploration sensorimotrice reste une entreprise coûteuse—un problème important, étant donné que les robots font face à des contraintes fortes sur la quantité de données qu’ils peuvent extraire de leur environnement;chaque observation prenant un temps non-négligeable à récupérer. [...] À travers cette thèse, les contributions les plus importantes sont les descriptions algorithmiques et les résultats expérimentaux. De manière à permettre la reproduction et la réexamination sans contrainte de tous les résultats, l’ensemble du code est mis à disposition. L’exploration sensorimotrice est un mécanisme fondamental du développement des systèmes biologiques. La séparer délibérément des mécanismes d’apprentissage et l’étudier pour elle-même dans cette thèse permet d’éclairer des problèmes importants que les robots se développant seuls seront amenés à affronter
Developmental robotics has begun in the last fifteen years to study robots that havea childhood—crawling before trying to run, playing before being useful—and that are basing their decisions upon a lifelong and embodied experience of the real-world. In this context, this thesis studies sensorimotor exploration—the discovery of a robot’s own body and proximal environment—during the early developmental stages, when no prior experience of the world is available. Specifically, we investigate how to generate a diversity of effects in an unknown environment. This approach distinguishes itself by its lack of user-defined reward or fitness function, making it especially suited for integration in self-sufficient platforms. In a first part, we motivate our approach, formalize the exploration problem, define quantitative measures to assess performance, and propose an architectural framework to devise algorithms. through the extensive examination of a multi-joint arm example, we explore some of the fundamental challenges that sensorimotor exploration faces, such as high-dimensionality and sensorimotor redundancy, in particular through a comparison between motor and goal babbling exploration strategies. We propose several algorithms and empirically study their behaviour, investigating the interactions with developmental constraints, external demonstrations and biologicallyinspired motor synergies. Furthermore, because even efficient algorithms can provide disastrous performance when their learning abilities do not align with the environment’s characteristics, we propose an architecture that can dynamically discriminate among a set of exploration strategies. Even with good algorithms, sensorimotor exploration is still an expensive proposition— a problem since robots inherently face constraints on the amount of data they are able to gather; each observation takes a non-negligible time to collect. [...] Throughout this thesis, our core contributions are algorithms description and empirical results. In order to allow unrestricted examination and reproduction of all our results, the entire code is made available. Sensorimotor exploration is a fundamental developmental mechanism of biological systems. By decoupling it from learning and studying it in its own right in this thesis, we engage in an approach that casts light on important problems facing robots developing on their own
APA, Harvard, Vancouver, ISO, and other styles
11

Bideaux, Eric. "Stan : systeme de transport a apprentissage neuronal. application de la vision omnidirectionnelle a la localisation d'un robot mobile autonome." Besançon, 1995. http://www.theses.fr/1995BESA2008.

Full text
Abstract:
Ce travail introduit une nouvelle methode d'interpretation de la vision du monde reel et applique cette technique a la navigation d'un robot mobile autonome dans un milieu industriel. Stan, systeme de transport a apprentissage neuronal, a pour objectif d'accroitre a moindre cout, la flexibilite et l'autonomie locale de robots mobiles. Cette proposition s'appuie essentiellement sur deux points. Premierement, le systeme de perception, base sur un systeme de vision omnidirectionnelle, permet de collecter des informations dans toutes les directions autour du robot en une seule prise d'image. Ce systeme consiste en la photographie du reflet de l'environnement sur un miroir conique. L'image obtenue fournit une signature caracteristique de la position dans l'environnement. Cette methode de perception est etudiee a travers deux prototypes: l'un permettant la prise d'une seule image, l'autre realisant la prise d'un couple d'images stereoscopiques. Deuxiemement, notre point de vue revise les developpements actuels des methodes de guidage et de navigation. Il s'appuie sur la reconnaissance des signatures caracteristiques de la position que fournit le systeme de perception afin de calculer la position du vehicule. La methode se decompose en deux etapes: un mode apprentissage ou un operateur enseigne la trajectoire de travail au robot, et, un mode operatoire ou le robot realise une reconnaissance des images recues. Ces deux phases constituent les etapes d'entrainement et d'utilisation de reseaux de neurones a retropropagation du gradient. Ce memoire souligne dans un premier temps la problematique liee a l'utilisation de vehicules autonomes dans un milieu industriel. Ces observations amenent alors la proposition d'une solution originale dont les differents points specifiques sont ensuite abordes a travers une presentation generale du projet stan. Un ensemble de resultats issus de simulations et experimentations permet ensuite la validation de l'idee generale a travers la comparaison de plusieurs architectures neuronales. Un bilan des contributions et des perspectives ouvertes par le projet stan conclut enfin sur l'avancement des travaux
APA, Harvard, Vancouver, ISO, and other styles
12

Arora, Ankuj. "Apprentissage du modèle d'action pour une interaction socio-communicative des hommes-robots." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM081/document.

Full text
Abstract:
Conduite dans le but de rendre les robots comme socio-communicatifs, les chercheurs ont cherché à mettre au point des robots dotés de compétences sociales et de «bon sens» pour les rendre acceptables. Cette intelligence sociale ou «sens commun» du robot est ce qui finit par déterminer son acceptabilité sociale à long terme.Cependant, ce n'est pas commun. Les robots peuvent donc seulement apprendre à être acceptables avec l'expérience. Cependant, en enseignant à un humanoïde, les subtilités d'une interaction sociale ne sont pas évidentes. Même un échange de dialogue standard intègre le panel le plus large possible de signes qui interviennent dans la communication et sont difficiles à codifier (synchronisation entre l'expression du corps, le visage, le ton de la voix, etc.). Dans un tel scénario, l'apprentissage du modèle comportemental du robot est une approche prometteuse. Cet apprentissage peut être réalisé avec l'aide de techniques d'IA. Cette étude tente de résoudre le problème de l'apprentissage des modèles comportementaux du robot dans le paradigme automatisé de planification et d'ordonnancement (APS) de l'IA. Dans le domaine de la planification automatisée et de l'ordonnancement (APS), les agents intelligents nécessitent un modèle d'action (plans d'actions dont les exécutions entrelacées effectuent des transitions de l'état système) afin de planifier et résoudre des problèmes réels. Au cours de cette thèse, nous présentons deux nouveaux systèmes d'apprentissage qui facilitent l'apprentissage des modèles d'action et élargissent la portée de ces nouveaux systèmes pour apprendre les modèles de comportement du robot. Ces techniques peuvent être classées dans les catégories non optimale et optimale. Les techniques non optimales sont plus classiques dans le domaine, ont été traitées depuis des années et sont de nature symbolique. Cependant, ils ont leur part de quirks, ce qui entraîne un taux d'apprentissage moins élevé que souhaité. Les techniques optimales sont basées sur les progrès récents dans l'apprentissage en profondeur, en particulier la famille à long terme (LSTM) de réseaux récurrents récurrents. Ces techniques sont de plus en plus séduisantes par la vertu et produisent également des taux d'apprentissage plus élevés. Cette étude met en vedette ces deux techniques susmentionnées qui sont testées sur des repères d'IA pour évaluer leurs prouesses. Ils sont ensuite appliqués aux traces HRI pour estimer la qualité du modèle de comportement du robot savant. Ceci est dans l'intérêt d'un objectif à long terme d'introduire l'autonomie comportementale dans les robots, afin qu'ils puissent communiquer de manière autonome avec les humains sans avoir besoin d'une intervention de «magicien»
Driven with the objective of rendering robots as socio-communicative, there has been a heightened interest towards researching techniques to endow robots with social skills and ``commonsense'' to render them acceptable. This social intelligence or ``commonsense'' of the robot is what eventually determines its social acceptability in the long run.Commonsense, however, is not that common. Robots can, thus, only learn to be acceptable with experience. However, teaching a humanoid the subtleties of a social interaction is not evident. Even a standard dialogue exchange integrates the widest possible panel of signs which intervene in the communication and are difficult to codify (synchronization between the expression of the body, the face, the tone of the voice, etc.). In such a scenario, learning the behavioral model of the robot is a promising approach. This learning can be performed with the help of AI techniques. This study tries to solve the problem of learning robot behavioral models in the Automated Planning and Scheduling (APS) paradigm of AI. In the domain of Automated Planning and Scheduling (APS), intelligent agents by virtue require an action model (blueprints of actions whose interleaved executions effectuates transitions of the system state) in order to plan and solve real world problems. During the course of this thesis, we introduce two new learning systems which facilitate the learning of action models, and extend the scope of these new systems to learn robot behavioral models. These techniques can be classified into the categories of non-optimal and optimal. Non-optimal techniques are more classical in the domain, have been worked upon for years, and are symbolic in nature. However, they have their share of quirks, resulting in a less-than-desired learning rate. The optimal techniques are pivoted on the recent advances in deep learning, in particular the Long Short Term Memory (LSTM) family of recurrent neural networks. These techniques are more cutting edge by virtue, and produce higher learning rates as well. This study brings into the limelight these two aforementioned techniques which are tested on AI benchmarks to evaluate their prowess. They are then applied to HRI traces to estimate the quality of the learnt robot behavioral model. This is in the interest of a long term objective to introduce behavioral autonomy in robots, such that they can communicate autonomously with humans without the need of ``wizard'' intervention
APA, Harvard, Vancouver, ISO, and other styles
13

MOGA, SORIN DANIEL. "Apprendre par imitation : une nouvelle voie d'apprentissage pour les robots autonomes." Cergy-Pontoise, 2000. http://www.theses.fr/2000CERG0111.

Full text
Abstract:
L'objectif de la these est de concevoir une architecture neuronale permettant a un robot autonome d'apprendre par imitation. Cet objectif s'inscrit dans une problematique plus generale de l'intelligence artificielle : l'apprentissage autonome. La demarche choisie consiste a s'inspirer du vivant (la psychologie developpementale, la neurobiologie et la philosophie). Nous avons demontre qu'un tres simple mecanisme d'imitation peut emerger comme effet de bord d'un systeme homeostatique. Par la suite, nous avons mis en place un mecanisme neuronal permettant d'apprendre des sequences de mouvements en respectant le sequencement et la duree entre les mouvements. Ce modele, inspire de structures neuronales telles que l'hippocampe et le cervelet, a la capacite de predire des evenements en respectant la loi de weber (l'incertitude entre la precision de la prediction et la duree de l'intervalle a predire). Finalement, nous avons introduit un mecanisme permettant a notre robot d'apprendre en ligne a reconnaitre la forme du son professeur. Le resultat peut-etre le plus important de ma these a consiste a montrer que la modelisation de mecanismes d'apprentissage par imitation pour un robot mobile passe par la prise en compte des aspects tres differents les uns des autres : vision, controle moteur, apprentissage de sequences j'ai etudie chaque probleme separement tout en montrant que la prise en compte des interactions entre ces differents problemes etait primordiale pour obtenir un systeme reellement fonctionnel.
APA, Harvard, Vancouver, ISO, and other styles
14

Martinez, Margarit Aleix. "Apprentissage visuel dans un système de vision active : application dans un contexte de robotique et reconnaissance du visage." Paris 8, 1998. http://www.theses.fr/1998PA081521.

Full text
Abstract:
Dans cette these, nous presentons de nouvelles idees pour le developpement des plates-formes actives qui aident un agent autonome (artificiel) a reconnaitre des objets et a se reperer dans un environnement spatial. Pour resoudre ce probleme, nous avons etudie des representations distinctes basees sur l'aspect exterieur. Plus concretement, nous avons etudie l'utilisation de divers filtres gaussiens et particulierement les filtres orientables. Nous montrons comment ces filtres s'adaptent bien aux situations reelles et peuvent etre utilises de maniere efficace sur des plates-formes de vision active. Nous presentons des idees de base avec la description de sujets et l'etude de representation de donnees visuelles. Pour ceci, nous analyserons les differents filtres (gaussiens, premiere et deuxieme derivee de la gaussienne), ainsi qu'une nouvelle idee de representation iconique basee sur des filtres orientes. Posterieurement, nous decrivons une nouvelle idee pour l'utilisation de cette representation iconique dans des applications reelles, basee sur le balayage du systeme visuel humain. Des ordres assez simples, permettent d'obtenir de tres bons resultats en reconnaissance de visages et d'environnements spatiaux. Le systeme se divise en trois parties : 1) attention visuelle. 2) extraction de l'information et reduction de la dimensionnalite. 3) strategie de balayage visuel. L'objectif final est d'ameliorer quelques uns des problemes evoques dans les chapitres precedents. Pour obtenir de meilleurs resultats, nous avons formalise l'algorithme em (esperance - maximisation) avec des algorithmes genetiques. Nous avons implemente un nouvel algorithme de navigation active pour la navigation d'un robot dans un environnement inconnu. Ce systeme de navigation utilise des annotations de haut niveau pour la communication avec l'usager et les autres modules du systeme. Le dernier chapitre decrit les conclusions et les lignes de poursuite de la these.
APA, Harvard, Vancouver, ISO, and other styles
15

Latulippe, Maxime. "Calage robuste et accéléré de nuages de points en environnements naturels via l'apprentissage automatique." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/30226/30226.pdf.

Full text
Abstract:
En robotique mobile, un élément crucial dans la réalisation de la navigation autonome est la localisation du robot. En utilisant des scanners laser, ceci peut être réalisé en calant les nuages de points consécutifs. Pour ce faire, l’utilisation de points de repères appelés descripteurs sont généralement efficaces, car ils permettent d’établir des correspondances entre les nuages de points. Cependant, nous démontrons que dans certains environnements naturels, une proportion importante d’entre eux peut ne pas être fiable, dégradant ainsi les performances de l’alignement. Par conséquent, nous proposons de filtrer les descripteurs au préalable afin d’éliminer les nuisibles. Notre approche consiste à utiliser un algorithme d’apprentissage rapide, entraîné à la volée sous le paradigme positive and unlabeled learning sans aucune intervention humaine nécessaire. Les résultats obtenus montrent que notre approche permet de réduire significativement le nombre de descripteurs utilisés tout en augmentant la proportion de descripteurs fiables, accélérant et augmentant ainsi la robustesse de l’alignement.
Localization of a mobile robot is crucial for autonomous navigation. Using laser scanners, this can be facilitated by the pairwise alignment of consecutive scans. For this purpose, landmarks called descriptors are generally effective as they facilitate point matching. However, we show that in some natural environments, many of them are likely to be unreliable. The presence of these unreliable descriptors adversely affects the performances of the alignment process. Therefore, we propose to filter unreliable descriptors as a prior step to alignment. Our approach uses a fast machine learning algorithm, trained on-the-fly under the positive and unlabeled learning paradigm without the need for human intervention. Our results show that the number of descriptors can be significantly reduced, while increasing the proportion of reliable ones, thus speeding up and improving the robustness of the scan alignment process.
APA, Harvard, Vancouver, ISO, and other styles
16

Langlois, Julien. "Vision industrielle et réseaux de neurones profonds : application au dévracage de pièces plastiques industrielles." Thesis, Nantes, 2019. http://www.theses.fr/2019NANT4010/document.

Full text
Abstract:
Ces travaux de thèse présentent une méthode d’estimation de pose de pièces industrielles en vue de leur dévracage à partir d’un système mono-caméra 2D en utilisant une approche par apprentissage avec des réseaux profonds. Dans un premier temps, des réseaux de neurones assurent la segmentation d’un nombre prédéterminé de pièces dans la scène. En appliquant le masque binaire d’une pièce à l’image originale, un second réseau infère la profondeur locale de cet objet. En parallèle des coordonnées de la pièce dans l’image, cette profondeur est employée dans deux réseaux estimant à la fois l’orientation de l’objet sous la forme d’un quaternion et sa translation sur l’axe Z. Enfin, un module de recalage travaillant sur la rétro-projection de la profondeur et le modèle 3D de l’objet, permet d’affiner la pose prédite par les réseaux. Afin de pallier le manque de données réelles annotées dans un contexte industriel, un processus de création de données synthétiques est proposé. En effectuant des rendus aux multiples luminosités, la versatilité du jeu de données permet d’anticiper les différentes conditions hostiles d’exploitation du réseau dans un environnement de production
This work presents a pose estimation method from a RGB image of industrial parts placed in a bin. In a first time, neural networks are used to segment a certain number of parts in the scene. After applying an object mask to the original image, a second network is inferring the local depth of the part. Both the local pixel coordinates of the part and the local depth are used in two networks estimating the orientation of the object as a quaternion and its translation on the Z axis. Finally, a registration module working on the back-projected local depth and the 3D model of the part is refining the pose inferred from the previous networks. To deal with the lack of annotated real images in an industrial context, an data generation process is proposed. By using various light parameters, the dataset versatility allows to anticipate multiple challenging exploitation scenarios within an industrial environment
APA, Harvard, Vancouver, ISO, and other styles
17

Chatzilygeroudis, Konstantinos. "Micro-Data Reinforcement Learning for Adaptive Robots." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0276/document.

Full text
Abstract:
Les robots opèrent dans le monde réel, dans lequel essayer quelque chose prend beaucoup de temps. Pourtant, les methodes d’apprentissage par renforcement actuels (par exemple, deep reinforcement learning) nécessitent de longues périodes d’interaction pour trouver des politiques efficaces. Dans cette thèse, nous avons exploré des algorithmes qui abordent le défi de l’apprentissage par essai-erreur en quelques minutes sur des robots physiques. Nous appelons ce défi “Apprentissage par renforcement micro-data”. Dans la première contribution, nous avons proposé un nouvel algorithme d’apprentissage appelé “Reset-free Trial-and-Error” qui permet aux robots complexes de s’adapter rapidement dans des circonstances inconnues (par exemple, des dommages) tout en accomplissant leurs tâches; en particulier, un robot hexapode endommagé a retrouvé la plupart de ses capacités de marche dans un environnement avec des obstacles, et sans aucune intervention humaine. Dans la deuxième contribution, nous avons proposé un nouvel algorithme de recherche de politique “basé modèle”, appelé Black-DROPS, qui: (1) n’impose aucune contrainte à la fonction de récompense ou à la politique, (2) est aussi efficace que les algorithmes de l’état de l’art, et (3) est aussi rapide que les approches analytiques lorsque plusieurs processeurs sont disponibles. Nous avons aussi proposé Multi-DEX, une extension qui s’inspire de l’algorithme “Novelty Search” et permet de résoudre plusieurs scénarios où les récompenses sont rares. Dans la troisième contribution, nous avons introduit une nouvelle procédure d’apprentissage du modèle dans Black-DROPS qui exploite un simulateur paramétré pour permettre d’apprendre des politiques sur des systèmes avec des espaces d’état de grande taille; par exemple, cette extension a trouvé des politiques performantes pour un robot hexapode (espace d’état 48D et d’action 18D) en moins d’une minute d’interaction. Enfin, nous avons exploré comment intégrer les contraintes de sécurité, améliorer la robustesse et tirer parti des multiple a priori en optimisation bayésienne. L'objectif de la thèse était de concevoir des méthodes qui fonctionnent sur des robots physiques (pas seulement en simulation). Par conséquent, tous nos approches ont été évaluées sur au moins un robot physique. Dans l’ensemble, nous proposons des méthodes qui permettre aux robots d’être plus autonomes et de pouvoir apprendre en poignée d’essais
Robots have to face the real world, in which trying something might take seconds, hours, or even days. Unfortunately, the current state-of-the-art reinforcement learning algorithms (e.g., deep reinforcement learning) require big interaction times to find effective policies. In this thesis, we explored approaches that tackle the challenge of learning by trial-and-error in a few minutes on physical robots. We call this challenge “micro-data reinforcement learning”. In our first contribution, we introduced a novel learning algorithm called “Reset-free Trial-and-Error” that allows complex robots to quickly recover from unknown circumstances (e.g., damages or different terrain) while completing their tasks and taking the environment into account; in particular, a physical damaged hexapod robot recovered most of its locomotion abilities in an environment with obstacles, and without any human intervention. In our second contribution, we introduced a novel model-based reinforcement learning algorithm, called Black-DROPS that: (1) does not impose any constraint on the reward function or the policy (they are treated as black-boxes), (2) is as data-efficient as the state-of-the-art algorithm for data-efficient RL in robotics, and (3) is as fast (or faster) than analytical approaches when several cores are available. We additionally proposed Multi-DEX, a model-based policy search approach, that takes inspiration from novelty-based ideas and effectively solved several sparse reward scenarios. In our third contribution, we introduced a new model learning procedure in Black-DROPS (we call it GP-MI) that leverages parameterized black-box priors to scale up to high-dimensional systems; for instance, it found high-performing walking policies for a physical damaged hexapod robot (48D state and 18D action space) in less than 1 minute of interaction time. Finally, in the last part of the thesis, we explored a few ideas on how to incorporate safety constraints, robustness and leverage multiple priors in Bayesian optimization in order to tackle the micro-data reinforcement learning challenge. Throughout this thesis, our goal was to design algorithms that work on physical robots, and not only in simulation. Consequently, all the proposed approaches have been evaluated on at least one physical robot. Overall, this thesis aimed at providing methods and algorithms that will allow physical robots to be more autonomous and be able to learn in a handful of trials
APA, Harvard, Vancouver, ISO, and other styles
18

Marin, Didier. "Méthodes d'apprentissage pour l'interaction physique homme-robot : application à l'assistance robotisée pour le transfert assis-debout." Paris 6, 2013. http://www.theses.fr/2013PA066293.

Full text
Abstract:
La verticalisation est une tâche qui devient de plus en plus difficile avec l’âge. Elle est cependant nécessaire à l’autonomie, car elle précède la marche. La robotique d’assistance physique propose des solutions robotisées permettant une assistance active dans la réalisation de tâches motrices. Elle offre la possibilité d’adapter l’assistance suivant les besoins et les spécificités de chaque utilisateur. Notre travail propose et implémente un mécanisme d’adaptation automatique du comportement d’un robot d’assistance à son utilisateur. L'assistance apportée est évalué à l'aide d'un critère de confort spécifique à la tâche. L'adaptation consiste en une optimisation des paramètres de la commande robotique à l’aide des méthodes de l’apprentissage par renforcement. Cette approche est testée sur des prototypes de déambulateur intelligent, avec des sujets sains et des patients
Sit-to-stand is a task that becomes increasingly difficult with aging. It is however necessary for an autonomous life, since it precedes walking. Physical assistance robotics offers solutions that provide an active assistance in the realization of motor tasks. It gives the possibility to adapt the assistance to the specific needs of each user. Our work proposes and implements a mechanism for automatic adaptation of an assistance robot behaviour to its user. The provided assistance is evaluated using a confort criterion which is specific to the task. The adaptation consists in an optimisation of control parameters using Reinforcement Learning methods. This approach is tested on smart walker prototypes, with healthy subjects and patients
APA, Harvard, Vancouver, ISO, and other styles
19

Geisert, Mathieu. "Optimal control and machine learning for humanoid and aerial robots." Thesis, Toulouse, INSA, 2018. http://www.theses.fr/2018ISAT0011/document.

Full text
Abstract:
Quelle sont les points communs entre un robot humanoïde et un quadrimoteur ? Et bien, pas grand-chose… Cette thèse est donc dédiée au développement d’algorithmes permettant de contrôler un robot de manière dynamique tout en restant générique par rapport au model du robot et à la tâche que l’on cherche à résoudre. Le contrôle optimal numérique est pour cela un bon candidat. Cependant il souffre de plusieurs difficultés comme un nombre important de paramètres à ajuster et des temps de calcul relativement élevés. Ce document présente alors plusieurs améliorations permettant d’atténuer ces difficultés. D’un côté, l’ordonnancement des différentes tâches sous la forme d’une hiérarchie et sa résolution avec un algorithme adapté permet de réduire le nombre de paramètres à ajuster. D’un autre côté, l’utilisation de l’apprentissage automatique afin d’initialiser l’algorithme d’optimisation ou de générer un modèle simplifié du robot permet de fortement diminuer les temps de calcul
What are the common characteristics of humanoid robots and quadrotors? Well, not many… Therefore, this thesis focuses on the development of algorithms allowing to dynamically control a robot while staying generic with respect to the model of the robot and the task that needs to be solved. Numerical optimal control is good candidate to achieve such objective. However, it suffers from several difficulties such as a high number of parameters to tune and a relatively important computation time. This document presents several ameliorations allowing to reduce these problems. On one hand, the tasks can be ordered according to a hierarchy and solved with an appropriate algorithm to lower the number of parameters to tune. On the other hand, machine learning can be used to initialize the optimization solver or to generate a simplified model of the robot, and therefore can be used to decrease the computation time
APA, Harvard, Vancouver, ISO, and other styles
20

Kaushik, Rituraj. "Data-Efficient Robot Learning using Priors from Simulators." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0105.

Full text
Abstract:
Quand les robots doivent affronter le monde réel, ils doivent s'adapter à diverses situations imprévues en acquérant de nouvelles compétences le plus rapidement possible. Les algorithmes d'apprentissage par renforcement (par exemple, l'apprentissage par renforcement profond) pourraient permettre d’apprendre de telles compétences, mais les algorithmes actuels nécessitent un temps d'interaction trop important. Dans cette thèse, nous avons exploré des méthodes permettant à un robot d'acquérir de nouvelles compétences par essai-erreur en quelques minutes d'interaction physique. Notre objectif principal est de combiner des connaissances acquises sur un simulateur avec les expériences réelles du robot afin d'obtenir un apprentissage et une adaptation rapides. Dans notre première contribution, nous proposons un nouvel algorithme de recherche de politiques basé sur un modèle, appelé Multi-DEX, qui (1) est capable de trouver des politiques dans des scénarios aux récompenses rares, (2) n'impose aucune contrainte sur le type de politique ou le type de fonction de récompense et (3) est aussi efficace en termes de données que l'algorithme de recherche de politiques de l’état de l’art dans des scénarios de récompenses non rares. Dans notre deuxième contribution, nous proposons un algorithme d'apprentissage en ligne basé sur un répertoire, appelé APROL, qui permet à un robot de s'adapter rapidement à des dommages physiques (par exemple, une patte endommagée) ou à des perturbations environnementales (par exemple, les conditions du terrain) et de résoudre la tâche donnée. Nous montrons qu'APROL surpasse plusieurs lignes de base, y compris l'algorithme d'apprentissage par répertoire RTE (Reset Free Trial and Error), en résolvant les tâches en un temps d'interaction beaucoup plus court que les algorithmes avec lesquels nous l’avons comparé. Dans notre troisième contribution, nous présentons un algorithme de méta-apprentissage basé sur les gradients appelé FAMLE. FAMLE permet d'entraîner le modèle dynamique du robot à partir de données simulées afin que le modèle puisse être adapté rapidement à diverses situations invisibles grâce aux observations du monde réel. En utilisant FAMLE pour améliorer un modèle pour la commande prédictive, nous montrons que notre approche surpasse plusieurs algorithmes d'apprentissage basés ou non sur un modèle, et résout les tâches données en moins de temps d'interaction que les algorithmes avec lesquels nous l’avons comparé
As soon as the robots step out in the real and uncertain world, they have to adapt to various unanticipated situations by acquiring new skills as quickly as possible. Unfortunately, on robots, current state-of-the-art reinforcement learning (e.g., deep-reinforcement learning) algorithms require large interaction time to train a new skill. In this thesis, we have explored methods to allow a robot to acquire new skills through trial-and-error within a few minutes of physical interaction. Our primary focus is to incorporate prior knowledge from a simulator with real-world experiences of a robot to achieve rapid learning and adaptation. In our first contribution, we propose a novel model-based policy search algorithm called Multi-DEX that (1) is capable of finding policies in sparse reward scenarios (2) does not impose any constraints on the type of policy or the type of reward function and (3) is as data-efficient as state-of-the-art model-based policy search algorithm in non-sparse reward scenarios. In our second contribution, we propose a repertoire-based online learning algorithm called APROL which allows a robot to adapt to physical damages (e.g., a damaged leg) or environmental perturbations (e.g., terrain conditions) quickly and solve the given task. In this work, we use several repertoires of policies generated in simulation for a subset of possible situations that the robot might face in real-world. During the online learning, the robot automatically figures out the most suitable repertoire to adapt and control the robot. We show that APROL outperforms several baselines including the current state-of-the-art repertoire-based learning algorithm RTE by solving the tasks in much less interaction times than the baselines. In our third contribution, we introduce a gradient-based meta-learning algorithm called FAMLE. FAMLE meta-trains the dynamical model of the robot from simulated data so that the model can be adapted to various unseen situations quickly with the real-world observations. By using FAMLE with a model-predictive control framework, we show that our approach outperforms several model-based and model-free learning algorithms, and solves the given tasks in less interaction time than the baselines
APA, Harvard, Vancouver, ISO, and other styles
21

Pastor, Philippe. "Étude et application des méthodes d'apprentissage pour la navigation d'un robot en environnement inconnu." Toulouse, ENSAE, 1995. http://www.theses.fr/1995ESAE0013.

Full text
Abstract:
L'objet de cette thèse est l'étude des méthodes d'apprentissage par renforcement en vue de son application à la navigation d'un robot mobile autonome. Après une présentation des méthodes d'apprentissage développées depuis les débuts de la Cybernétique jusqu'à aujourd'hui en Intelligence Artificielle, nous présentons les fondements mathématiques de l'apprentissage par renforcement que sont la théorie des automates d'apprentissage et la Programmation Dynamique en temps réel. Les chapitres suivants sont consacrés au problème de la navigation d'un robot mobile autonome évoluant dans un environnement qui lui est inconnu. Pour répondre à ce problème, nous proposons d'utiliser différents algorithmes d'apprentissage par renforcement issus, soit des automates d'apprentissage, soit du G-learning. Les performances de ces algorithmes sont ensuite comparées à partir d'expérimentations menées sur un système non-holonome. Enfin, le derneir chapitre propose une extension originale de ce type d'apprentissage dans le but de construire une carte représentant la topolgie de l'environnement dans lequel le robot évolue.
APA, Harvard, Vancouver, ISO, and other styles
22

Blanchet, Katleen. "Au coeur de l’interaction humain-robot collaboratif : comment concevoir une assistance personnalisée au profil utilisateur ?" Electronic Thesis or Diss., Institut polytechnique de Paris, 2021. http://www.theses.fr/2021IPPAS001.

Full text
Abstract:
La transformation des usines de production s’accélère, dirigée par les progrès de la robotique collaborative et de la science des données. L’organisation du travail évolue en conséquence, ce qui impacte directement les conditions de travail des opérateurs. Diminution d’autonomie, surcharge d’informations, cadence accrue, les opérateurs doivent modifier leurs habitudes et apprendre à collaborer avec le robot. Dans ce contexte, l’objectif de ce travail de recherche est d’améliorer la qualité de vie au travail des opérateurs, lors de la réalisation d’une tâche collaborative avec contact physique, par une assistance personnalisée au profil utilisateur. Dans la littérature, les assistances s'appuient sur des dispositifs d'observation externes, sources de stress, et proposent exclusivement des ajustements du comportement du robot, basés sur des connaissances à priori. Ainsi, ces assistances ne s'adaptent pas dynamiquement aux variations du comportement de l'homme. Afin de pallier ces verrous scientifiques, cette étude présente deux contributions. En premier lieu, nous proposons une méthodologie d'extraction d'informations haut niveau sur le profil utilisateur à partir des signaux bruts du robot, appliquée à l'expertise. Dans un second temps, nous soumettons une approche hybride d'assistance au profil, qui combine l'apprentissage par renforcement centré sur l'humain et l'approche symbolique (ontologie et raisonnement logique), pour guider les opérateurs vers une montée en compétence. Cette synergie garantit une adaptation en ligne aux besoins des utilisateurs tout en réduisant le processus d'apprentissage. Puis, nous enrichissons l’assistance motrice (robotique) par une assistance informative. Nous avons démontré, par une simulation et des expérimentations en conditions réelles sur trois cas d'usage robotique, la cohérence de notre profil ainsi que l'effet positif de l'assistance sur l'acquisition des compétences. Nous créons ainsi un climat plus propice à l'épanouissement professionnel en diminuant la charge mentale
The transformation of production plants is accelerating, driven by advances in collaborative robotics and data science. As a result, the organisation of work is changing, directly affecting the working conditions of operators. Loss of autonomy, information overload, increased pace, operators have to change their habits and learn to collaborate with the robot. In this context, the aim of this research work is to improve the operators quality of life at work, while performing a physical collaborative task, by means of user profile-based assistance. In the literature, the assistance mainly relies on external observation devices, causes of stress, and proposes exclusively a priori-based adjustments of the robot's behaviour. Thus, these assistance do not dynamically adapt to human behaviour variations. In order to overcome these challenges, this study presents two contributions. Firstly, we propose a methodology for extracting high-level information on the user profile from the robot raw signals, which is applied to expertise. We then introduce a hybrid approach to profile-based assistance which combines human-centered reinforcement learning and symbolic logic (ontology and reasoning) to guide operators towards skill improvement. This synergy guarantees online adaptation to user needs while reducing the learning process. Then, we extend the robotic assistance with informative assistance. We have demonstrated, through simulation and experiments in real conditions on three robotic usecases, the consistency of our profile as well as the positive effect of the assistance on the skills acquisition. We thereby create a more favourable environment for professional satisfaction by reducing the mental workload
APA, Harvard, Vancouver, ISO, and other styles
23

Paquier, Williams. "Apprentissage ouvert de représentations et de fonctionalités en robotique : analyse, modèles et implémentation." Toulouse 3, 2004. http://www.theses.fr/2004TOU30233.

Full text
Abstract:
L'acquisition autonome de représentations et de fonctionnalités en robotique pose de nombreux problèmes théoriques. Aujourd'hui, les systèmes robotiques autonomes sont conçus autour d'un ensemble de fonctionnalités. Leurs représentations du monde sont issues de l’analyse d'un problème et d'une modélisation préalablement données par les concepteurs. Cette approche limite les capacités d'apprentissage. Nous proposons dans cette thèse un système ouvert de représentations et de fonctionnalités. Ce système apprend en expérimentant son environnement et est guidé par l’augmentation d’une fonction de valeur. L'objectif du système consiste à agir sur son environnement pour réactiver les représentations dont il avait appris une connotation positive. Une analyse de la capacité à généraliser la production d'actions appropriées pour ces réactivations conduit à définir un ensemble de propriétés nécessaires pour un tel système. Le système de représentation est constitué d'un réseau d'unités de traitement semblables et utilise un codage par position. Le sens de l'état d'une unité dépend de sa position dans le réseau. Ce système de représentation possède des similitudes avec le principe de numération par position. Une représentation correspond à l'activation d'un ensemble d'unités. Ce système a été implémenté dans une suite logicielle appelée NeuSter qui permet de simuler des réseaux de plusieurs millions d'unités et milliard de connexions sur des grappes hétérogènes de machines POSIX. Les premiers résultats permettent de valider les contraintes déduites de l'analyse. Un tel système permet d'apprendre dans un même réseau, de façon hiérarchique et non supervisée, des détecteurs de bords et de traits, de coins, de terminaisons de traits, de visages, de directions de mouvement, de rotations, d'expansions, et de phonèmes. NeuSter apprend en ligne en utilisant uniquement les données de ses capteurs. Il a été testé sur des robots mobiles pour l'apprentissage et le suivi d'objets
Autonomous acquisition of representations and functionalities by a machine address several theoretical questions. Today’s autonomous robots are developed around a set of functionalities. Their representations of the world are deduced from the analysis and modeling of a given problem, and are initially given by the developers. This limits the learning capabilities of robots. In this thesis, we propose an approach and a system able to build open-ended representation and functionalities. This system learns through its experimentations of the environment and aims to augment a value function. Its objective consists in acting to reactivate the representations it has already learnt to connote positively. An analysis of the generalization capabilities to produce appropriate actions enable define a minimal set of properties needed by such a system. The open-ended representation system is composed of a network of homogeneous processing units and is based on position coding. The meaning of a processing unit depends on its position in the global network. This representation system presents similarities with the principle of numeration by position. A representation is given by a set of active units. This system is implemented in a suite of software called NeuSter, which is able to simulate million unit networks with billions of connections on heterogeneous clusters of POSIX machines. .
APA, Harvard, Vancouver, ISO, and other styles
24

Munzer, Thibaut. "Représentations relationnelles et apprentissage interactif pour l'apprentissage efficace du comportement coopératif." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0574/document.

Full text
Abstract:
Cette thèse présente de nouvelles approches permettant l’apprentissage efficace et intuitif de plans de haut niveau pour les robots collaboratifs. Plus précisément, nous étudions l’application d’algorithmes d’apprentissage par démonstration dans des domaines relationnels. L’utilisation de domaines relationnels pour représenter le monde permet de simplifier la représentation de comportements concurrents et collaboratifs. Nous avons commencé par développer et étudier le premier algorithme d’apprentissage par renforcement inverse pour domaines relationnels. Nous avons ensuite présenté comment utiliser le formalisme RAP pour représenter des tâches collaboratives comprenant un robot et un opérateur humain. RAP est une extension des MDP relationnels qui permet de modéliser des activités concurrentes. Utiliser RAP nous a permis de représenter à la fois l’humain et le robot dans le même processus, mais également de modéliser des activités concurrentes du robot. Sous ce formalisme, nous avons montré qu’il était possible d’apprendre le comportement d’une équipe, à la fois comme une politique et une récompense. Si des connaissances a priori sur la tâche à réaliser sont disponibles, il est possible d’utiliser le même algorithme pour apprendre uniquement les préférences de l’opérateur. Cela permet de s’adapter à l’utilisateur. Nous avons montré que l’utilisation des représentations relationnelles permet d’apprendre des comportements collaboratifs à partir de peu de démonstrations.Ces comportements sont à la fois robustes au bruit, généralisables à de nouveaux états, et transférables à de nouveaux domaines (par exemple en ajoutant des objets). Nous avons également introduit une architecture d’apprentissage interactive qui permet au système de faire moins d’erreurs tout en demandant moins d’efforts à l’opérateur humain. Le robot, en estimant sa confiance dans ses décisions, est capable de demander des instructions quand il est incertain de l’activité à réaliser. Enfin, nous avons implémenté ces approches sur un robot et montré leurs impacts potentiels dans un scenario réaliste
This thesis presents new approaches toward efficient and intuitive high-level plan learning for cooperative robots. More specifically this work study Learning from Demonstration algorithm for relational domains. Using relational representation to model the world, simplify representing concurrentand cooperative behavior.We have first developed and studied the first algorithm for Inverse ReinforcementLearning in relational domains. We have then presented how one can use the RAP formalism to represent Cooperative Tasks involving a robot and a human operator. RAP is an extension of the Relational MDP framework that allows modeling concurrent activities. Using RAP allow us to represent both the human and the robot in the same process but also to model concurrent robot activities. Under this formalism, we have demonstrated that it is possible to learn behavior, as policy and as reward, of a cooperative team. Prior knowledge about the task can also be used to only learn preferences of the operator.We have shown that, using relational representation, it is possible to learn cooperative behaviors from a small number of demonstration. That these behaviors are robust to noise, can generalize to new states and can transfer to different domain (for example adding objects). We have also introduced an interactive training architecture that allows the system to make fewer mistakes while requiring less effort from the human operator. By estimating its confidence the robot is able to ask for instructions when the correct activity to dois unsure. Lastly, we have implemented these approaches on a real robot and showed their potential impact on an ecological scenario
APA, Harvard, Vancouver, ISO, and other styles
25

Dermy, Oriane. "Prédiction du mouvement humain pour la robotique collaborative : du geste accompagné au mouvement corps entier." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0227/document.

Full text
Abstract:
Cette thèse se situe à l’intersection de l’apprentissage automatique et de la robotique humanoïde, dans le domaine de la robotique collaborative. Elle se focalise sur les interactions non verbales humain-robot, en particulier sur l’interaction gestuelle. La prédiction de l’intention, la compréhension et la reproduction de gestes sont les questions centrales de cette thèse. Dans un premier temps, le robot apprend des gestes par démonstration : un utilisateur prend le bras du robot et lui fait réaliser les gestes à apprendre plusieurs fois. Le robot doit alors reproduire ces différents mouvements tout en les généralisant pour les adapter au contexte. Pour cela, à l’aide de ses capteurs proprioceptifs, il interprète les signaux perçus pour comprendre le mouvement guidé par l’utilisateur, afin de pouvoir en générer des similaires. Dans un second temps, le robot apprend à reconnaître l’intention de l’humain avec lequel il interagit, à partir des gestes que ce dernier initie. Le robot produit ensuite des gestes adaptés à la situation et correspondant aux attentes de l’utilisateur. Cela nécessite que le robot comprenne la gestuelle de l’utilisateur. Pour cela, différentes modalités perceptives ont été explorées. À l’aide de capteurs proprioceptifs, le robot ressent les gestes de l’utilisateur au travers de son propre corps : il s’agit alors d’interaction physique humain-robot. À l’aide de capteurs visuels, le robot interprète le mouvement de la tête de l’utilisateur. Enfin, à l’aide de capteurs externes, le robot reconnaît et prédit le mouvement corps entier de l’utilisateur. Dans ce dernier cas, l’utilisateur porte lui-même des capteurs (vêtement X-Sens) qui transmettent sa posture au robot. De plus, le couplage de ces modalités a été étudié. D’un point de vue méthodologique, nous nous sommes focalisés sur les questions d’apprentissage et de reconnaissance de gestes. Une première approche permet de modéliser statistiquement des primitives de mouvements representant les gestes : les ProMPs. La seconde, ajoute à la première du Deep Learning, par l’utilisation d’auto-encodeurs, afin de modéliser des gestes corps entier contenant beaucoup d’informations, tout en permettant une prédiction en temps réel mou. Différents enjeux ont notamment été pris en compte, concernant la prédiction des durées des trajectoires, la réduction de la charge cognitive et motrice imposée à l’utilisateur, le besoin de rapidité (temps réel mou) et de précision dans les prédictions
This thesis lies at the intersection between machine learning and humanoid robotics, under the theme of human-robot interaction and within the cobotics (collaborative robotics) field. It focuses on prediction for non-verbal human-robot interactions, with an emphasis on gestural interaction. The prediction of the intention, understanding, and reproduction of gestures are therefore central topics of this thesis. First, the robots learn gestures by demonstration: a user grabs its arm and makes it perform the gestures to be learned several times. The robot must then be able to reproduce these different movements while generalizing them to adapt them to the situation. To do so, using its proprioceptive sensors, it interprets the perceived signals to understand the user's movement in order to generate similar ones later on. Second, the robot learns to recognize the intention of the human partner based on the gestures that the human initiates. The robot can then perform gestures adapted to the situation and corresponding to the user’s expectations. This requires the robot to understand the user’s gestures. To this end, different perceptual modalities have been explored. Using proprioceptive sensors, the robot feels the user’s gestures through its own body: it is then a question of physical human-robot interaction. Using visual sensors, the robot interprets the movement of the user’s head. Finally, using external sensors, the robot recognizes and predicts the user’s whole body movement. In that case, the user wears sensors (in our case, a wearable motion tracking suit by XSens) that transmit his posture to the robot. In addition, the coupling of these modalities was studied. From a methodological point of view, the learning and the recognition of time series (gestures) have been central to this thesis. In that aspect, two approaches have been developed. The first is based on the statistical modeling of movement primitives (corresponding to gestures) : ProMPs. The second adds Deep Learning to the first one, by using auto-encoders in order to model whole-body gestures containing a lot of information while allowing a prediction in soft real time. Various issues were taken into account during this thesis regarding the creation and development of our methods. These issues revolve around: the prediction of trajectory durations, the reduction of the cognitive and motor load imposed on the user, the need for speed (soft real-time) and accuracy in predictions
APA, Harvard, Vancouver, ISO, and other styles
26

Cruz, maya Arturo. "The Role of Personality, Memory, and Regulatory Focus for Human-Robot Interaction." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLY002/document.

Full text
Abstract:
Dans le domaine de l'Interaction Homme-Robot, et plus particulièrement dans le domaine de la robotique sociale, les robots compagnons font de plus en plus partie de notre vie quotidienne et ont un grand potentiel pour aider les gens dans leurs activités quotidiennes, speciallement dans le cas d'une interaction "one to one". Ce scénario où les robots partagent le même environnement avec les humains et interagissent avec eux peut être bénéfique mais il peut aussi présenter des effets négatifs, comme générer un stress sur les utilisateurs humains, c'est aussi le cas de l'effet de la facilitation sociale, abordé au début de ce travail.Avoir des robots qui nous aident dans nos activités quotidiennes conduit à la nécessité de les doter de capacités sociales afin d'adapter leur comportement à leurs utilisateurs, leur environnement et leurs tâches. Néanmoins, comment réaliser cette adaptation reste un défi.Afin de répondre à ces questions de recherche, "Comment atteindre l'apprentissage tout au long de la vie et l'adaptation pour l'interaction humaine-robot personnalisée?" et "Quel est le rôle de la personnalité, de la mémoire et de l'orientation réglementaire dans HRI?", nous proposons l'utilisation du modèle "Big 5 traits" de personnalité afin d'adapter le comportement du robot au profil des utilisateurs. De plus, notre système contient une implémentation du modèle OCC et une mémoire de type épisodique, afin de générer un comportement naturel, capable de se souvenir des événements passés et de se comporter en conséquence. Nous présentons plusieurs études expérimentales, où nous testons notre système, et où nous analysons le lien entre les traits de personnalité de l'utilisateur humain et le comportement du robot. La contrainte générée sur les utilisateurs a été mesurée en utilisant des capteurs externes tels qu'une caméra thermique et un capteur GSR. Notre système proposé s'est révélé efficace pour générer un comportement de robot adapté à la personnalité des utilisateurs. Nous avons trouvé quelques relations entre la personnalité, les préférences de l'utilisateur et la performance de la tâche, qui sont détaillées dans ce travail. Nos études ont montré que les personnes ayant un haut niveau de conscience ont une meilleure performance que les personnes peu consciencieuses. En outre, les personnes introverties étaient plus influencées pour effectuer une tâche que les personnes extraverties. En outre, nous avons observé une augmentation du stress de l'utilisateur, causée par un robot avec une voix semblable à une machine.En plus de s'adapter aux préférences des utilisateurs, nous voulions que notre système soit capable de générer des comportements de robot capables depersuader efficacement leurs utilisateurs d'accomplir les tâches qu'ils doivent accomplir (prendre des médicaments, appeler des membres de la famille, etc.). Pour cette raison, nous proposons l'utilisation de la théorie Regulatory Focus, qui se concentre sur les inclinations que les gens ont lorsqu'ils prennent des décisions, et comment augmenter la motivation des gens à atteindre un objectif. Nous avons mené plusieurs expériences afin de valider cette théorie dans le contexte de l'interaction homme-robot. Nos résultats montrent que les comportements de robot basés sur la théorie de la focalisation réglementaire, y compris les gestes corporels et la vitesse de la parole, sont efficaces pour persuader les utilisateurs d'accomplir une tâche. Nous avons également constaté une augmentation du stress chez les utilisateurs lorsque le robot ne correspondait pas à l'état réglementaire de l'utilisateur.Nous concluons que les sujets abordés dans cette thèse, à savoir: personnalité, mémoire et focus réglementaire, doivent être inclus dans la conception des comportements des robots, afin d'avoir des robots plus efficaces sur les tâches persuasives, et moins stressant pour leurs utilisateurs
In the domain of Human-Robot Interaction, and more specifically in the social robotics field, companion robots are more and more part of our daily lives and they have a great potential for helping people in their daily activities, especially in tasks that need one-on-one interaction. This scenario where robots are sharing the same environment with the humans and interact with them can be beneficial but it can also present some negative effects like generating stress on the human users, this is also the case of the social facilitation effect, aborded at the beggining of this work.Having robots helping us with our daily activities leads to the need of endowing them with social capabilities in order to adapt their behavior to their users, environment, and tasks. Nevertheless, how to achieve this adaptation remains a challenge.In order to address these research questions, "How to achieve lifelong learning and adaptation for personalized Human-Robot Interaction?" and "What is the role of personality, memory, and regulatory focus in HRI?",we propose the use of the Big 5 personality traits model in order to adapt the robot's behavior to the profile of the users. Moreover, our system contains an implementation of the OCC Model, and an Episodic-like Memory, in order to generate a natural behavior, being capable of remembering past events and behaving accordingly. We present several experimental studies, where we test our system, and where we analyze the link between the human user's personality traits and robot's behavior. The generated stress on the users was measured by using external sensors such as a thermal camera and a GSR sensor. Our proposed system showed to be effective in generating a robot behavior adapted to users personality. We found some relations between personality, user preferences and task performance, which are detailed in this work. Our studies showed that people with high conscientiousness have greater task performance than people with low conscientiousness. Also, that introverted people were more influenced to perform a task than extroverted people. Also, we observed an increase on user stress, caused by a robot with a machine-like voice.Besides of adapting to the users preferences, we wanted our system to be able to generate robot behaviors capable ofpersuading effectively their users in achieving the tasks they need to do (i.e. taking medication, calling family members, etc). For this reason, we propose the use of the Regulatory Focus theory, which concentrate on the inclinations that people have when taking decisions, and how to increase the motivation on people to achieve an objective. We conducted several experiments in order to validate this theory in the context of human-robot interaction. Our results show that robot behaviors based on the Regulatory Focus Theory, including body gestures and speech speed, are effective in persuading users to accomplish a task. We also found an increase on user stress when the robot did not match the user Chronic Regulatory State.We conclude that the topics aborded on this thesis, that is to say: Personality, Memory and Regulatory Focus, have to be included in the design of robot behaviors, ir order to have more efficient robots on persuasive tasks, and less stressing to their users
APA, Harvard, Vancouver, ISO, and other styles
27

Carpentier, Justin. "Computational foundations of anthropomorphic locomotion." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30376/document.

Full text
Abstract:
La locomotion anthropomorphe est un processus complexe qui met en jeu un très grand nombre de degrés de liberté, le corps humain disposant de plus de trois cents articulations contre une trentaine chez les robots humanoïdes. Pris dans leur ensemble, ces degrés de liberté montrent une certaine cohérence rendant possible la mise en mouvement du système anthropomorphe et le maintien de son équilibre, dans le but d'éviter la chute. Cette thèse met en lumière les fondements calculatoires à l'origine de cette orchestration. Elle introduit un cadre mathématique unifié permettant à la fois l'étude de la locomotion humaine, et la génération de trajectoires locomotrices pour les robots humanoïdes. Ce cadre consiste en une réduction de la dynamique corps-complet du système pour ne considérer que sa projection autour du centre de gravité, aussi appelée dynamique centroïdale. Bien que réduite, nous montrons que cette dynamique centroïdale joue un rôle central dans la compréhension et la formation des mouvements locomoteurs. Pour ce faire, nous établissons dans un premier temps les conditions d'observabilité de cette dynamique, c'est-à-dire que nous montrons dans quelle mesure cette donnée peut être appréhendée à partir des capteurs couramment employés en biomécanique et en robotique. Forts de ces conditions d'observabilité, nous proposons un estimateur capable de reconstruire la position non-biaisée du centre de gravité. A partir de cet estimateur et de l'acquisition de mouvements de marche sur divers sujets, nous mettons en évidence la présence d'un motif cycloïdal du centre de gravité dans le plan sagittal lorsque l'humain marche de manière nominale, c'est-à-dire sans y penser. La présence de ce motif suggère l'existence d'une synergie motrice jusqu'alors ignorée, soutenant la théorie d'une coordination générale des mouvements pendant la locomotion. La dernière contribution de cette thèse porte sur la locomotion multi-contacts. Les humains ont une agilité remarquable pour effectuer des mouvements locomoteurs qui nécessitent l'utilisation conjointe des bras et des jambes, comme lors de l'ascension d'une paroi rocheuse. Comment doter les robots humanoïdes de telles capacités ? La difficulté n'est certainement pas technologique, puisque les robots actuels sont capables de développer des puissances mécaniques suffisantes. Leurs performances, évaluées tant en termes de qualité des mouvements que de temps de calcul, restent très limitées. Dans cette thèse, nous abordons le problème de génération de trajectoires multi-contacts sous la forme d'un problème de commande optimale. L'intérêt de cette formulation est de partir du modèle réduit de la dynamique centroïdale tout en répondant aux contraintes d'équilibre. L'idée originale consiste à maximiser la vraisemblance de cette dynamique réduite vis-à-vis de la dynamique corps-complet. Elle repose sur l'apprentissage d'une mesure d'occupation qui reflète les capacités cinématiques et dynamiques du robot. Elle est effective : l'algorithmique qui en découle est compatible avec des applications temps réel. L'approche a été évaluée avec succès sur le robot humanoïde HRP-2, sur plusieurs modes de locomotions, démontrant ainsi sa polyvalence
Anthropomorphic locomotion is a complex process that involves a very large number of degrees of freedom, the human body having more than three hundred joints against thirty in humanoid robots. Taken as a whole, these degrees of freedom show a certain coherence making it possible to set the anthropomorphic system in motion and maintain its equilibrium, in order to avoid falling. This thesis highlights the computational foundations behind this orchestration. It introduces a unified mathematical framework allowing both the study of human locomotion and the generation of locomotive trajectories for humanoid robots. This framework consists of a reduction of the body-complete dynamics of the system to consider only its projection around the center of gravity, also called centroid dynamics. Although reduced, we show that this centroidal dynamics plays a central role in the understanding and formation of locomotive movements. To do this, we first establish the observability conditions of this dynamic, that is to say that we show to what extent this data can be apprehended from sensors commonly used in biomechanics and robotics. Based on these observability conditions, we propose an estimator able to reconstruct the unbiased position of the center of gravity. From this estimator and the acquisition of walking motions on various subjects, we highlight the presence of a cycloidal pattern of the center of gravity in the sagittal plane when the human is walking nominally, that is, to say without thinking. The presence of this motif suggests the existence of a motor synergy hitherto unknown, supporting the theory of a general coordination of movements during locomotion. The last contribution of this thesis is on multi-contact locomotion. Humans have remarkable agility to perform locomotive movements that require joint use of the arms and legs, such as when climbing a rock wall. How to equip humanoid robots with such capabilities? The difficulty is certainly not technological, since current robots are able to develop sufficient mechanical powers. Their performances, evaluated both in terms of quality of movement and computing time, remain very limited. In this thesis, we address the problem of generating multi-contact trajectories in the form of an optimal control problem. The interest of this formulation is to start from the reduced model of centroid dynamics while responding to equilibrium constraints. The original idea is to maximize the likelihood of this reduced dynamic with respect to body-complete dynamics. It is based on learning a measurement of occupation that reflects the kinematic and dynamic capabilities of the robot. It is effective: the resulting algorithmic is compatible with real-time applications. The approach has been successfully evaluated on the humanoid robot HRP-2, on several modes of locomotion, thus demonstrating its versatility
APA, Harvard, Vancouver, ISO, and other styles
28

Melnyk, Artem. "Perfectionnement des algorithmes de contrôle-commande des robots manipulateur électriques en interaction physique avec leur environnement par une approche bio-inspirée." Thesis, Cergy-Pontoise, 2014. http://www.theses.fr/2014CERG0745/document.

Full text
Abstract:
Les robots intégrés aux chaînes de production sont généralement isolés des ouvriers et ne prévoient pas d'interaction physique avec les humains. Dans le futur, le robot humanoïde deviendra un partenaire pour vivre ou travailler avec les êtres humains. Cette coexistence prévoit l'interaction physique et sociale entre le robot et l'être humain. En robotique humanoïde les futurs progrès dépendront donc des connaissances dans les mécanismes cognitifs présents dans les interactions interpersonnelles afin que les robots interagissent avec les humains physiquement et socialement. Un bon exemple d'interaction interpersonnelle est l'acte de la poignée de la main qui possède un rôle social très important. La particularité de cette interaction est aussi qu'elle est basée sur un couplage physique et social qui induit une synchronisation des mouvements et des efforts. L'intérêt d'étudier la poignée de main pour les robots consiste donc à élargir leurs propriétés comportementales pour qu'ils interagissent avec les humains de manière plus habituelle.Cette thèse présente dans un premier chapitre un état de l'art sur les travaux dans les domaines des sciences humaines, de la médecine et de la robotique humanoïde qui sont liés au phénomène de la poignée de main. Le second chapitre, est consacré à la nature physique du phénomène de poignée de main chez l'être humain par des mesures quantitatives des mouvements. Pour cela un système de mesures a été construit à l'Université Nationale Technique de Donetsk (Ukraine). Il est composé d'un gant instrumenté par un réseau de capteurs portés qui permet l'enregistrement des vitesses et accélérations du poignet et les forces aux points de contact des paumes, lors de l'interaction. Des campagnes de mesures ont permis de montrer la présence d'un phénomène de synchronie mutuelle précédé d'une phase de contact physique qui initie cette synchronie. En tenant compte de cette nature rythmique, un contrôleur à base de neurones rythmiques de Rowat-Selverston, intégrant un mécanisme d'apprentissage de la fréquence d'interaction, est proposé et etudié dans le troisième chapitre pour commander un bras robotique. Le chapitre quatre est consacré aux expériences d'interaction physique homme/robot. Des expériences avec un bras robotique Katana montrent qu'il est possible d'apprendre à synchroniser la rythmicité du robot avec celle imposée par une per-sonne lors d'une poignée de main grâce à ce modèle de contrôleur bio-inspiré. Une conclusion générale dresse le bilan des travaux menés et propose des perspectives
Automated production lines integrate robots which are isolated from workers, so there is no physical interaction between a human and robot. In the near future, a humanoid robot will become a part of the human environment as a companion to help or work with humans. The aspects of coexistence always presuppose physical and social interaction between a robot and a human. In humanoid robotics, further progress depends on knowledge of cognitive mechanisms of interpersonal interaction as robots physically and socially interact with humans. An illustrative example of interpersonal interaction is an act of a handshake that plays a substantial social role. The particularity of this form of interpersonal interaction is that it is based on physical and social couplings which lead to synchronization of motion and efforts. Studying a handshake for robots is interesting as it can expand their behavioral properties for interaction with a human being in more natural way. The first chapter of this thesis presents the state of the art in the fields of social sciences, medicine and humanoid robotics that study the phenomenon of a handshake. The second chapter is dedicated to the physical nature of the phenomenon between humans via quantitative measurements. A new wearable system to measure a handshake was built in Donetsk National Technical University (Ukraine). It consists of a set of several sensors attached to the glove for recording angular velocities and gravitational acceleration of the hand and forces in certain points of hand contact during interaction. The measurement campaigns have shown that there is a phenomenon of mutual synchrony that is preceded by the phase of physical contact which initiates this synchrony. Considering the rhythmic nature of this phenomenon, the controller based on the models of rhythmic neuron of Rowat-Selverston, with learning the frequency during interaction was proposed and studied in the third chapter. Chapter four deals with the experiences of physical human-robot interaction. The experimentations with robot arm Katana show that it is possible for a robot to learn to synchronize its rhythm with rhythms imposed by a human during handshake with the proposed model of a bio-inspired controller. A general conclusion and perspectives summarize and finish this work
APA, Harvard, Vancouver, ISO, and other styles
29

Malik, Muhammad Usman. "Learning multimodal interaction models in mixed societies A novel focus encoding scheme for addressee detection in multiparty interaction using machine learning algorithms." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMIR18.

Full text
Abstract:
Les travaux de recherche proposés se situe au carrefour de deux domaines de recherche, l'interaction humain-agent et l'apprentissage automatique. L’interaction humain-agent fait référence aux techniques et concepts impliqués dans le développement des agents intelligents, tels que les robots et les agents virtuels, capables d'interagir avec les humains pour atteindre un objectif commun. L’apprentissage automatique, d'autre part, exploite des algorithmes statistiques pour apprendre des modèles de donnée. Les interactions humaines impliquent plusieurs modalités, qui peuvent être verbales comme la parole et le texte, ainsi que les comportements non-verbaux, c'est-à-dire les expressions faciales, le regard, les gestes de la tête et des mains, etc. Afin d'imiter l'interaction humain-humain en temps réel en interaction humain-agent, plusieurs modalités d'interaction peuvent être exploitées. Avec la disponibilité de corpus d'interaction multimodales humain-humain et humain-agent, les techniques d'apprentissage automatique peuvent alors être utilisées pour développer des modèles interdépendants participant à l'interaction humain-agent. À cet égard, nos travaux de recherche proposent des modèles originaux pour la détection de destinataires d'énoncés, le changement de tour de parole et la prédiction du prochain locuteur, et enfin la génération de comportement d'attention visuelle en interaction multipartie. Notre modèle de détection de destinataire prédit le destinataire d'un énoncé lors d'interactions impliquant plus de deux participant. Le problème de détection de destinataires a été traité comme un problème d'apprentissage automatique multiclasse supervisé. Plusieurs algorithmes d'apprentissage ont été entrainés pour développer des modèles de détection de destinataires. Les résultats obtenus montrent que ces propositions sont plus performants qu'un algorithme de référence. Le second modèle que nous proposons concerne le changement de tour de parole et la prédiction du prochain locuteur dans une interaction multipartie. La prédiction du changement de tour est modélisée comme un problème de classification binaire alors que le modèle de prédiction du prochain locuteur est considéré comme un problème de classification multiclasse. Des algorithmes d'apprentissage automatique sont entraînés pour résoudre ces deux problèmes interdépendants. Les résultats montrent que les modèles proposés sont plus performants que les modèles de référence. Enfin, le troisième modèle proposé concerne le problème de génération du comportement d'attention visuelle (CAV) pour les locuteurs et les auditeurs dans une interaction multipartie. Ce modèle est divisé en plusieurs sous-modèles qui sont entraînés par l'apprentissage machine ainsi que par des techniques heuristiques. Les résultats attestent que les systèmes que nous proposons sont plus performants que les modèles de référence développés par des approches aléatoires et à base de règles. Le modèle de génération de comportement CAV proposé est mis en œuvre sous la forme d’une série de quatre modules permettant de créer différents scénarios d’interaction entre plusieurs agents virtuels. Afin de l’évaluer, des vidéos enregistrées pour les modèles de génération de CAV pour les orateurs et les auditeurs, sont présentées à des évaluateurs humains qui évaluent les comportements de référence, le comportement réel issu du corpus et les modèles proposés de CAV sur plusieurs critères de naturalité du comportement. Les résultats montrent que le comportement de CAV généré via le modèle est perçu comme plus naturel que les bases de référence et aussi naturel que le comportement réel
Human -Agent Interaction and Machine learning are two different research domains. Human-agent interaction refers to techniques and concepts involved in developing smart agents, such as robots or virtual agents, capable of seamless interaction with humans, to achieve a common goal. Machine learning, on the other hand, exploits statistical algorithms to learn data patterns. The proposed research work lies at the crossroad of these two research areas. Human interactions involve multiple modalities, which can be verbal such as speech and text, as well as non-verbal i.e. facial expressions, gaze, head and hand gestures, etc. To mimic real-time human-human interaction within human-agent interaction,multiple interaction modalities can be exploited. With the availability of multimodal human-human and human-agent interaction corpora, machine learning techniques can be used to develop various interrelated human-agent interaction models. In this regard, our research work proposes original models for addressee detection, turn change and next speaker prediction, and finally visual focus of attention behaviour generation, in multiparty interaction. Our addressee detection model predicts the addressee of an utterance during interaction involving more than two participants. The addressee detection problem has been tackled as a supervised multiclass machine learning problem. Various machine learning algorithms have been trained to develop addressee detection models. The results achieved show that the proposed addressee detection algorithms outperform a baseline. The second model we propose concerns the turn change and next speaker prediction in multiparty interaction. Turn change prediction is modeled as a binary classification problem whereas the next speaker prediction model is considered as a multiclass classification problem. Machine learning algorithms are trained to solve these two interrelated problems. The results depict that the proposed models outperform baselines. Finally, the third proposed model concerns the visual focus of attention (VFOA) behaviour generation problem for both speakers and listeners in multiparty interaction. This model is divided into various sub-models that are trained via machine learning as well as heuristic techniques. The results testify that our proposed systems yield better performance than the baseline models developed via random and rule-based approaches. The proposed VFOA behavior generation model is currently implemented as a series of four modules to create different interaction scenarios between multiple virtual agents. For the purpose of evaluation, recorded videos for VFOA generation models for speakers and listeners, are presented to users who evaluate the baseline, real VFOA behaviour and proposed VFOA models on the various naturalness criteria. The results show that the VFOA behaviour generated via the proposed VFOA model is perceived more natural than the baselines and as equally natural as real VFOA behaviour
APA, Harvard, Vancouver, ISO, and other styles
30

Lallée, Stéphane. "Towards a distributed, embodied and computational theory of cooperative interaction." Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10052/document.

Full text
Abstract:
Les robots vont peu à peu intégrer nos foyers sous la forme d’assistants et de compagnons,humanoïdes ou non. Afin de remplir leur rôle efficacement ils devront s’adapter àl’utilisateur, notamment en apprenant de celui-ci le savoir ou les capacités qui leur fontdéfaut. Dans ce but, leur manière d’interagir doit être naturelle et évoquer les mêmesmécanismes coopératifs que ceux présent chez l’homme. Au centre de ces mécanisme setrouve le concept d’action : qu’est-ce qu’une action, comment les humains les reconnaissent,comment les produire ou les décrire ? La modélisation de toutes ces fonctionnalitésconstituera la fondation de cette thèse et permettra la mise en place de mécanismescoopératifs de plus haut niveau, en particulier les plan partagés qui permettent à plusieursindividus d’oeuvrer de concert afin d’atteindre un but commun. Finalement, je présenteraiune différence fondamentale entre la représentation de la connaissance chez l’homme etchez la machine, toujours dans le cadre de l’interaction coopérative : la dissociation possibleentre le corps d’un robot et sa cognition, ce qui n’est pas imaginable chez l’homme. Cettedissociation m’amènera notamment à explorer le « shared experience framework », unesituation dans laquelle une cognition artificielle centrale gère l’expérience partagée demultiples individus ayant chacun une identité propre. Cela m’amènera finalement àquestionner les différentes philosophies de l’esprit du point de vue de l’attribution d’unesprit à une machine et de ce que cela impliquerai quant à l’esprit humain
Robots will gradually integrate our homes wielding the role of companions, humanoids ornot. In order to cope with this status they will have to adapt to the user, especially bylearning knowledge or skills from him that they may lack. In this context, their interactionshould be natural and evoke the same cooperative mechanisms that humans use. At thecore of those mechanisms is the concept of action: what is an action, how do humansrecognize them, how they produce or describe them? The modeling of aspects of thesefunctionalities will be the basis of this thesis and will allow the implementation of higherlevel cooperative mechanisms. One of these is the ability to handle “shared plans” whichallow two (or more) individuals to cooperate in order to reach a goal shared by all.Throughout the thesis I will attempt to make links between the human development ofthese capabilities, their neurophysiology, and their robotic implementation. As a result ofthis work, I will present a fundamental difference between the representation of knowledgein humans and machines, still in the framework of cooperative interaction: the possibledissociation of a robot body and its cognition, which is not easily imaginable for humans.This dissociation will lead me to explore the “shared experience framework, a situationwhere a central artificial cognition manages the shared knowledge of multiple beings, eachof them owning some kind of individuality. In the end this phenomenon will interrogate thevarious philosophies of mind by asking the question of the attribution of a mind to amachine and the consequences of such a possibility regarding the human mind
APA, Harvard, Vancouver, ISO, and other styles
31

Coupeté, Eva. "Reconnaissance de gestes et actions pour la collaboration homme-robot sur chaîne de montage." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM062/document.

Full text
Abstract:
Les robots collaboratifs sont de plus en plus présents dans nos vies quotidiennes. En milieu industriel, ils sont une solution privilégiée pour rendre les chaînes de montage plus flexibles, rentables et diminuer la pénibilité du travail des opérateurs. Pour permettre une collaboration fluide et efficace, les robots doivent être capables de comprendre leur environnement, en particulier les actions humaines.Dans cette optique, nous avons décidé d’étudier la reconnaissance de gestes techniques afin que le robot puisse se synchroniser avec l’opérateur, adapter son allure et comprendre si quelque chose d’inattendu survient.Pour cela, nous avons considéré deux cas d’étude, un cas de co-présence et un cas de collaboration, tous les deux inspirés de cas existant sur les chaînes de montage automobiles.Dans un premier temps, pour le cas de co-présence, nous avons étudié la faisabilité de la reconnaissance des gestes en utilisant des capteurs inertiels. Nos très bons résultats (96% de reconnaissances correctes de gestes isolés avec un opérateur) nous ont encouragés à poursuivre dans cette voie.Sur le cas de collaboration, nous avons privilégié l’utilisation de capteurs non-intrusifs pour minimiser la gêne des opérateurs, en l’occurrence une caméra de profondeur positionnée avec une vue de dessus pour limiter les possibles occultations.Nous proposons un algorithme de suivi des mains en calculant les distances géodésiques entre les points du haut du corps et le haut de la tête. Nous concevons également et évaluons un système de reconnaissance de gestes basé sur des Chaînes de Markov Cachées (HMM) discrètes et prenant en entrée les positions des mains. Nous présentons de plus une méthode pour adapter notre système de reconnaissance à un nouvel opérateur et nous utilisons des capteurs inertiels sur les outils pour affiner nos résultats. Nous obtenons le très bon résultat de 90% de reconnaissances correctes en temps réel pour 13 opérateurs.Finalement, nous formalisons et détaillons une méthodologie complète pour réaliser une reconnaissance de gestes techniques sur les chaînes de montage
Collaborative robots are becoming more and more present in our everyday life. In particular, within the industrial environment, they emerge as one of the preferred solution to make assembly line in factories more flexible, cost-effective and to reduce the hardship of the operators’ work. However, to enable a smooth and efficient collaboration, robots should be able to understand their environment and in particular the actions of the humans around them.With this aim in mind, we decided to study technical gestures recognition. Specifically, we want the robot to be able to synchronize, adapt its speed and understand if something unexpected arises.We considered two use-cases, one dealing with copresence, the other with collaboration. They are both inspired by existing task on automotive assembly lines.First, for the co-presence use case, we evaluated the feasibility of technical gestures recognition using inertial sensors. We obtained a very good result (96% of correct recognition with one operator) which encouraged us to follow this idea.On the collaborative use-case, we decided to focus on non-intrusive sensors to minimize the disturbance for the operators and we chose to use a depth-camera. We filmed the operators with a top view to prevent most of the potential occultations.We introduce an algorithm that tracks the operator’s hands by calculating the geodesic distances between the points of the upper body and the top of the head.We also design and evaluate an approach based on discrete Hidden Markov Models (HMM) taking the hand positions as an input to recognize technical gestures. We propose a method to adapt our system to new operators and we embedded inertial sensors on tools to refine our results. We obtain the very good result of 90% of correct recognition in real time for 13 operators.Finally, we formalize and detail a complete methodology to realize technical gestures recognition on assembly lines
APA, Harvard, Vancouver, ISO, and other styles
32

Sigaud, Olivier. "Automatisme et subjectivité : l'anticipation au coeur de l'expérience." Paris 1, 2002. http://www.theses.fr/2002PA010658.

Full text
Abstract:
La thèse vise à déterminer si la robotique peut contribuer à l'élaboration d'une théorie de la conscience, sur la base d'un rapprochement épistémologique entre la phénoménologie et les travaux de l'approche animat. Elle se décompose en trois points. D'abord, l'approche enactiviste de la cognition permet de refonder la phénoménologie génétique en modélisant les processus automatiques impliqués dans la constitution de l'expérience des objets. Ensuite, l'anticipation des régularités joue un rôle déterminant dans l'articulation entre automatismes et actes volontaires. Ce processus peut expliquer la structuration de l'expérience consciente, moyennant l'adoption d'une hypothèse métaphysique selon laquelle la boucle sensori-motrice d'un robot le dote d'une forme élémentaire d'expérience. Enfin, la validité de l'hypothèse ci-dessus est confrontée à une hypothèse cybernétique plus forte selon laquelle la propriété autopoiétique des être vivants est à l'origine de leur capacité à éprouver.
APA, Harvard, Vancouver, ISO, and other styles
33

Desrochers, Benoît. "Simultaneous localization and mapping in unstructured environments : a set-membership approach." Thesis, Brest, École nationale supérieure de techniques avancées Bretagne, 2018. http://www.theses.fr/2018ENTA0006/document.

Full text
Abstract:
Cette thèse étudie le problème de la localisation et de la cartographie simultanée (SLAM), dans des environnements non structurés, c'est-à-dire, qui ne peuvent pas être décrits par des équations ou des formes géométriques. Ces types d'environnements sont souvent rencontrés dans le domaine sous-marin. Contrairement aux approches classiques, l'environnement n'est pas modélisé par une collection de descripteurs ou d'amers ponctuels, mais directement par des ensembles. Ces ensembles, appelés forme ou shape, sont associés à des caractéristiques physiques de l'environnement, comme par exemple, des textures, du relief ou, de manière plus symbolique, à l'espace libre autour du véhicule. D'un point de vue théorique, le problème du SLAM, basé sur des formes, est formalisé par un réseau de contraintes hybrides dont les variables sont des vecteurs de Rn et des sous-ensembles de Rn. De la même façon que l'incertitude sur une variable réelle est représentée par un intervalle de réels, l'incertitude sur les formes sera représentée par un intervalle de forme. La principale contribution de cette thèse est de proposer un formalisme, basé sur le calcul par intervalle, capable de calculer ces domaines. En application, les algorithmes développés ont été appliqués au problème du SLAM à partir de données bathymétriques recueillies par un véhicule sous-marin autonome (AUV)
This thesis deals with the simultaneous localization and mapping (SLAM) problem in unstructured environments, i.e. which cannot be described by geometrical features. This type of environment frequently occurs in an underwater context.Unlike classical approaches, the environment is not described by a collection of punctual features or landmarks, but directly by sets. These sets, called shapes, are associated with physical features such as the relief, some textures or, in a more symbolic way, the space free of obstacles that can be sensed around a robot. In a theoretical point of view, the SLAM problem is formalized as an hybrid constraint network where the variables are vectors and subsets of Rn. Whereas an uncertain real number is enclosed in an interval, an uncertain shape is enclosed in an interval of sets. The main contribution of this thesis is the introduction of a new formalism, based on interval analysis, able to deal with these domains. As an application, we illustrate our method on a SLAM problem based on bathymetric data acquired by an autonomous underwater vehicle (AUV)
APA, Harvard, Vancouver, ISO, and other styles
34

Ramezanpanah, Zahra. "Bi-lateral interaction between a humanoid robot and a human in mixed reality." Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASG039.

Full text
Abstract:
Cette thèse peut être divisée en deux parties: la reconnaissance des actions et la reconnaissance des émotions. Chaque partie se fait selon deux méthodes, la méthode classique de Machine Learning et le réseau profond. Dans la section Reconnaissance des actions, nous avons d'abord défini un descripteur local basé sur la LMA, pour décrire les mouvements. LMA est un algorithme pour décrire un mouvement en utilisant ses quatre composants: le corps, l'espace, la forme et l'effort. Le seul objectif de cette partie étant la reconnaissance des gestes, seuls les trois premiers facteurs ont été utilisés. L'algorithme DTW, est implémenté pour trouver les similitudes des courbes obtenues à partir des vecteurs descripteurs obtenus par la méthode LMA. Enfin SVM, l'algorithme est utilisé pour former et classer les données. Dans la deuxième partie de cette section, nous avons construit un nouveau descripteur basé sur les coordonnées géométriques de différentes parties du corps pour présenter un mouvement. Pour ce faire, en plus des distances entre le centre de la hanche et les autres articulations du corps et les changements des angles de quaternion dans le temps, nous définissons les triangles formés par les différentes parties du corps et calculons leur surface. Nous calculons également l'aire de la seule frontière 3D conforme autour de toutes les articulations du corps. À la fin, nous ajoutons la vitesse de l'articulation différente dans le descripteur proposé. Nous avons utilisé LSTM pour évaluer ce descripteur. Dans la deuxième partie de cette thèse, nous avons d'abord présenté un module de niveau supérieur pour identifier les sentiments intérieurs des êtres humains en observant leurs mouvements corporels. Afin de définir un descripteur robuste, deux méthodes sont mises en œuvre: La première méthode est la LMA, qui en ajoutant le facteur «Effort» est devenue un descripteur robuste, qui décrit un mouvement et l'état dans lequel il a été effectué. De plus, le second sur est basé sur un ensemble de caractéristiques spatio-temporelles. Dans la suite de cette section, un pipeline de reconnaissance des mouvements expressifs est proposé afin de reconnaître les émotions des personnes à travers leurs gestes par l'utilisation de méthodes d'apprentissage automatique. Une étude comparative est faite entre ces 2 méthodes afin de choisir la meilleure. La deuxième partie de cette partie consiste en une étude statistique basée sur la perception humaine afin d'évaluer le système de reconnaissance ainsi que le descripteur de mouvement proposé
This thesis can be divided into two parts: action recognition and emotion recognition. Each part is done in two method, classic method of Machine Learning and deep network. In the Action Recognition section, we first defined a local descriptor based on the LMA, to describe the movements. LMA is an algorithm to describe a motion by using its four components: Body, Space, Shape and Effort. Since the only goal in this part is gesture recognition, only the first three factors have been used. The DTW, algorithm is implemented to find the similarities of the curves obtained from the descriptor vectors obtained by the LMA method. Finally SVM, algorithm is used to train and classify the data. In the second part of this section, we constructed a new descriptor based on the geometric coordinates of different parts of the body to present a movement. To do this, in addition to the distances between hip centre and other joints of the body and the changes of the quaternion angles in time, we define the triangles formed by the different parts of the body and calculated their area. We also calculate the area of the single conforming 3-D boundary around all the joints of the body. At the end we add the velocity of different joint in the proposed descriptor. We used LSTM to evaluate this descriptor. In second section of this thesis, we first presented a higher-level module to identify the inner feelings of human beings by observing their body movements. In order to define a robust descriptor, two methods are carried out: The first method is the LMA, which by adding the "Effort" factor has become a robust descriptor, which describes a movement and the state in which it was performed. In addition, the second on is based on a set of spatio-temporal features. In the continuation of this section, a pipeline of recognition of expressive motions is proposed in order to recognize the emotions of people through their gestures by the use of machine learning methods. A comparative study is made between these 2 methods in order to choose the best one. The second part of this part consists of a statistical study based on human perception in order to evaluate the recognition system as well as the proposed motion descriptor
APA, Harvard, Vancouver, ISO, and other styles
35

Raiola, Gennaro. "Co-manipulation with a library of virtual guides." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLY001/document.

Full text
Abstract:
Les robots ont un rôle fondamental dans la fabrication industrielle. Non seulement ils augmentent l'efficacité et la qualité des lignes de production, mais aussi diminuent considérablement la charge de travail des humains.Cependant, en raison des limites des robots industriels en termes de flexibilité, de perception et de sécurité,Leur utilisation est limitée à un environnement structuré bien connu. En outre, il n'est pas toujours rentable d'utiliser des robots autonomes industriels dans de petites usines à faibles volumes de production.Cela signifie que des travailleurs humains sont encore nécessaires dans de nombreuses chaînes d'assemblage pour exécuter des tâches spécifiques.Par conséquent, ces dernières années, une grande impulsion a été donnée à la co-manipulation homme-robot.En permettant aux humains et aux robots de travailler ensemble, il est possible de combiner les avantages des deux; La compréhension des tâches abstraites et la perception robuste typique d'un être humain avec la précision et la force d'un robot industriel.Une approche réussie pour faciliter la co-manipulation homme-robot, est l'approche de guides virtuels qui contraint le mouvement du robot sur seulement certaines trajectoires pertinentes. Le guide virtuel ainsi réalisé agit comme un outil passif qui améliore les performances de l'utilisateur en termes de temps de tâche, de charge de travail mentale et d'erreurs.L'aspect innovant de notre travail est de présenter une bibliothèque de guides virtuels qui permet à l'utilisateur de facilement sélectionner, générer et modifier les guides grâce à une interaction intuitive haptique avec le robot.Nous avons démontré, dans deux tâches industrielles, que ces innovations fournissent une interface novatrice et intuitive pour l'accomplissement des tâches par les humains et les robots
Robots have a fundamental role in industrial manufacturing. They not only increase the efficiency and the quality of production lines, but also drastically decrease the work load carried out by humans.However, due to the limitations of industrial robots in terms of flexibility, perception and safety, their use is limited to well-known structured environment. Moreover, it is not always cost-effective to use industrial autonomous robots in small factories with low production volumes.This means that human workers are still needed in many assembly lines to carry out specific tasks.Therefore, in recent years, a big impulse has been given to human-robot co-manipulation.By allowing humans and robots to work together, it is possible to combine the advantages of both; abstract task understanding and robust perception typical of human beings with the accuracy and the strength of industrial robots.One successful method to facilitate human-robot co-manipulation, is the Virtual Guides approach which constrains the motion of the robot along only certain task-relevant trajectories. The so realized virtual guide acts as a passive tool that improves the performances of the user in terms of task time, mental workload and errors.The innovative aspect of our work is to present a library of virtual guides that allows the user to easily select, generate and modify the guides through an intuitive haptic interaction with the robot.We demonstrated in two industrial tasks that these innovations provide a novel and intuitive interface for joint human-robot completion of tasks
APA, Harvard, Vancouver, ISO, and other styles
36

Génevé, Lionel. "Système de déploiement d'un robot mobile autonome basé sur des balises." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD024/document.

Full text
Abstract:
Cette thèse s’inscrit dans le cadre d’un projet visant à développer un robot mobile autonome capable de réaliser des tâches spécifiques dans une zone préalablement définie par l’utilisateur. Afin de faciliter la mise en œuvre du système, des balises radiofréquences fournissant des mesures de distance par rapport au robot sont disposées au préalable autour du terrain. Le déploiement du robot s’effectue en deux phases, une première d’apprentissage du terrain, puis une seconde, où le robot effectue ses tâches de façon autonome. Ces deux étapes nécessitent de résoudre les problèmes de localisation et de localisation et cartographie simultanées pour lesquels différentes solutions sont proposées et testées en simulation et sur des jeux de données réelles. De plus, afin de faciliter l’installation et d’améliorer les performances du système, un algorithme de placement des balises est présenté puis testé en simulation afin de valider notamment l’amélioration des performances de localisation
This thesis is part of a project which aims at developing an autonomous mobile robot able to perform specific tasks in a preset area. To ease the setup of the system, radio-frequency beacons providing range measurements with respect to the robot are set up beforehand on the borders of the robot’s workspace. The system deployment consists in two steps, one for learning the environment, then a second, where the robot executes its tasks autonomously. These two steps require to solve the localization and simultaneous localization and mapping problems for which several solutions are proposed and tested in simulation and on real datasets. Moreover, to ease the setup and improve the system performances, a beacon placement algorithm is presented and tested in simulation in order to validate in particular the improvement of the localization performances
APA, Harvard, Vancouver, ISO, and other styles
37

Le, Goff Léni. "Bootstrapping Robotic Ecological Perception with Exploration and Interactions." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS219.

Full text
Abstract:
La robotique a atteint une grande précision sur beaucoup de tâches, comme par exemple la manipulation ou la navigation. Mais la plupart des études sont basées sur une analyse complète du problème à résoudre par un ingénieur en robotique. Ces approches sont ainsi limitées aux environnements traités par l'ingénieur, en d'autres termes, à des environnements contrôlés. Aujourd'hui, la communauté de recherche en robotique adresse la problématique de permettre à des robots de réaliser des tâches de façon autonome dans des environnements réalistes et ouverts. De tel environnements sont complexes et dynamiques, comme par exemple notre environnement de tous les jours qui parait simple et structuré mais qui varie beaucoup d'un endroit à un autre. Dans ce genre de contextes, le robot doit être capable de s'adapter à de nouvelles situations qui n'ont pas pu être prévues par les ingénieurs qui l'ont conçu. Notre travail de recherche se concentre sur le développement d'une perception écologique adaptative pour un système robotique. La perception écologique d'un agent qualifie sa perception du monde à travers ses sens et ses capacités d'action. D'après J.J. Gibson qui a initié la psychologie écologique, les humains et les animaux perçoivent le monde par les actions qu'ils peuvent utiliser. Ainsi, un système robotique équipé de la compétence de réinitialiser de façon autonome sa perception quand il fait face à une nouvelle situation, serait hautement adaptatif. Notre but est de fournir à un robot la capacité d'apprendre une première représentation de ce qui l'entoure, capacité qui fonctionnerait sur n'importe quel environnement. Cela permettrait au robot d'apprendre de nouvelles représentations à partir de situations inconnues. Il est proposé de générer cette capacité par une méthode de perception interactive. Les méthodes de perception interactive prennent avantage de l'action pour construire ou améliorer la perception du monde. Pour ensuite exploiter ces représentations afin d'avoir des actions plus précises. Cette relation entre action et perception peut être formalisée facilement grâce aux affordances. Une affordance est un concept introduit par J.J. Gibson. C'est une relation entre des caractéristiques visuelles, des compétences de l'agent et des effets possibles. Le système collecte des données de l'environnement en interagissant avec lui grâce à une action spécifique associée à un effet attendu. Avec ces données, un classifieur probabiliste est entraîné en ligne pour construire une carte de perception. Cette carte représente les zones qui génèrent l'effet attendu quand l'action est appliquée. La carte est appelée une carte de pertinence. Plusieurs cartes de pertinence peuvent être construites en fonction de différentes actions et effets, la somme de ces cartes représente une perception riche de ce que le robot peut faire sur ce qui l'entoure. Nous nommons cette carte finale une carte d'affordances puisqu'elle permet au robot de percevoir l'environnement à travers les actions qu'il peut utiliser. Notre méthode a été testée sur le robot PR2
Robotics has reached a high accuracy on many tasks, like for instance manipulation or navigation. But most of the studies are based on a deep analysis of the problem to solve by the robot designer. These approaches are thus limited to the environment considered by the robot designer, i.e. to a closed environment. Robotics research community is now addressing the issue to allow robots to autonomously achieve tasks in realistic open environments. Such environments are complex and dynamic, like for instance human everyday environment which seems simple but vary a lot from one place to another. In this kind of contexts, the robots must be able to adapt to new situations which were not forecasted by the engineers who designed the robot. Our research work is focused on the development of an adaptive ecological perception for a robotic system. An agent ecological perception defines how it perceives the real world environment through its sensing and acting capabilities. According to J.J. Gibson who has initiated ecological psychology, humans and animals perceive the world through the actions that they can use. Thus, providing a robotic system with the skill to bootstrap autonomously its perception when facing a new unknown situation, would allow the system to be highly adaptive. Our goal is to provide the robot with the capacity to learn a first representation of its surrounding which would work on any environment. This would allow the robot to learn new representations from unknown situations. It is proposed to generate this ability through an interactive perception method. Interactive perception methods take advantage from action to build or enhance representations of the world and then exploit these representations to have more accurate actions. This relation between action and perception can be easily formalized thanks to affordances. Affordance is a concept introduced by J.J. Gibson which is a relationship between visual features, agent skills, and possible effects. The system collects data from an environment by interacting with it thanks to a specific action associated to an expected effect. With these data a probabilistic classifier is trained online to build a perceptual map. This map represents the areas that generate the expected effect when the action is applied. Therefore, the map is called a relevance map. Several relevance maps could be built according to different actions and effects, the sum of these maps represents a rich perception of what the robot can do on its surrounding. We name this final map an affordances map as it allows the robot to perceive the environment through the actions it can use. Our methods was tested on the PR2 robots
APA, Harvard, Vancouver, ISO, and other styles
38

Grizou, Jonathan. "Apprentissage simultané d'une tâche nouvelle et de l'interprétation de signaux sociaux d'un humain en robotique." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0146/document.

Full text
Abstract:
Cette thèse s'intéresse à un problème logique dont les enjeux théoriques et pratiques sont multiples. De manière simple, il peut être présenté ainsi : imaginez que vous êtes dans un labyrinthe, dont vous connaissez toutes les routes menant à chacune des portes de sortie. Derrière l'une de ces portes se trouve un trésor, mais vous n'avez le droit d'ouvrir qu'une seule porte. Un vieil homme habitant le labyrinthe connaît la bonne sortie et se propose alors de vous aider à l'identifier. Pour cela, il vous indiquera la direction à prendre à chaque intersection. Malheureusement, cet homme ne parle pas votre langue, et les mots qu'il utilise pour dire ``droite'' ou ``gauche'' vous sont inconnus. Est-il possible de trouver le trésor et de comprendre l'association entre les mots du vieil homme et leurs significations ? Ce problème, bien qu'en apparence abstrait, est relié à des problématiques concrètes dans le domaine de l'interaction homme-machine. Remplaçons le vieil homme par un utilisateur souhaitant guider un robot vers une sortie spécifique du labyrinthe. Ce robot ne sait pas en avance quelle est la bonne sortie mais il sait où se trouvent chacune des portes et comment s'y rendre. Imaginons maintenant que ce robot ne comprenne pas a priori le langage de l'humain; en effet, il est très difficile de construire un robot à même de comprendre parfaitement chaque langue, accent et préférence de chacun. Il faudra alors que le robot apprenne l'association entre les mots de l'utilisateur et leur sens, tout en réalisant la tâche que l'humain lui indique (i.e.trouver la bonne porte). Une autre façon de décrire ce problème est de parler d'auto-calibration. En effet, le résoudre reviendrait à créer des interfaces ne nécessitant pas de phase de calibration car la machine pourrait s'adapter,automatiquement et pendant l'interaction, à différentes personnes qui ne parlent pas la même langue ou qui n'utilisent pas les mêmes mots pour dire la même chose. Cela veut aussi dire qu'il serait facile de considérer d’autres modalités d'interaction (par exemple des gestes, des expressions faciales ou des ondes cérébrales). Dans cette thèse, nous présentons une solution à ce problème. Nous appliquons nos algorithmes à deux exemples typiques de l'interaction homme robot et de l'interaction cerveau machine: une tâche d'organisation d'une série d'objets selon les préférences de l'utilisateur qui guide le robot par la voix, et une tâche de déplacement sur une grille guidé par les signaux cérébraux de l'utilisateur. Ces dernières expériences ont été faites avec des utilisateurs réels. Nos résultats démontrent expérimentalement que notre approche est fonctionnelle et permet une utilisation pratique d’une interface sans calibration préalable
This thesis investigates how a machine can be taught a new task from unlabeled humaninstructions, which is without knowing beforehand how to associate the human communicative signals withtheir meanings. The theoretical and empirical work presented in this thesis provides means to createcalibration free interactive systems, which allow humans to interact with machines, from scratch, using theirown preferred teaching signals. It therefore removes the need for an expert to tune the system for eachspecific user, which constitutes an important step towards flexible personalized teaching interfaces, a key forthe future of personal robotics.Our approach assumes the robot has access to a limited set of task hypotheses, which include the task theuser wants to solve. Our method consists of generating interpretation hypotheses of the teaching signalswith respect to each hypothetic task. By building a set of hypothetic interpretation, i.e. a set of signallabelpairs for each task, the task the user wants to solve is the one that explains better the history of interaction.We consider different scenarios, including a pick and place robotics experiment with speech as the modalityof interaction, and a navigation task in a brain computer interaction scenario. In these scenarios, a teacherinstructs a robot to perform a new task using initially unclassified signals, whose associated meaning can bea feedback (correct/incorrect) or a guidance (go left, right, up, ...). Our results show that a) it is possible tolearn the meaning of unlabeled and noisy teaching signals, as well as a new task at the same time, and b) itis possible to reuse the acquired knowledge about the teaching signals for learning new tasks faster. Wefurther introduce a planning strategy that exploits uncertainty from the task and the signals' meanings toallow more efficient learning sessions. We present a study where several real human subjects controlsuccessfully a virtual device using their brain and without relying on a calibration phase. Our system identifies, from scratch, the target intended by the user as well as the decoder of brain signals.Based on this work, but from another perspective, we introduce a new experimental setup to study howhumans behave in asymmetric collaborative tasks. In this setup, two humans have to collaborate to solve atask but the channels of communication they can use are constrained and force them to invent and agree ona shared interaction protocol in order to solve the task. These constraints allow analyzing how acommunication protocol is progressively established through the interplay and history of individual actions
APA, Harvard, Vancouver, ISO, and other styles
39

Lesort, Timothée. "Continual Learning : Tackling Catastrophic Forgetting in Deep Neural Networks with Replay Processes." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAE003.

Full text
Abstract:
Les humains apprennent toute leur vie. Ils accumulent des connaissances à partir d'une succession d'expériences d'apprentissage et en mémorisent les aspects essentiels sans les oublier. Les réseaux de neurones artificiels ont des difficultés à apprendre dans de telles conditions. Ils ont en général besoin d'ensembles de données rigoureusement préparés pour pouvoir apprendre à résoudre des problèmes comme de la classification ou de la régression. En particulier, lorsqu'ils apprennent sur des séquences d'ensembles de données, les nouvelles expériences leurs font oublier les anciennes. Ainsi, ils sont souvent incapables d'appréhender des scénarios réels tels ceux de robots autonomes apprenant en temps réel à s'adapter à de nouvelles situations et devant résoudre des problèmes sans oublier leurs expériences passées.L'apprentissage continu est une branche de l'apprentissage automatique s'attaquant à ce type de scénarios. Les algorithmes continus sont créés pour apprendre des connaissances, les enrichir et les améliorer au cours d'un curriculum d'expériences d'apprentissage.Dans cette thèse, nous proposons d'explorer l'apprentissage continu avec rejeu de données. Les méthodes de rejeu de données rassemblent les méthodes de répétitions et les méthodes de rejeu par génération. Le rejeu par génération consiste à utiliser un réseau de neurones auxiliaire apprenant à générer les données actuelles. Ainsi plus tard le réseau auxiliaire pourra être utilisé pour régénérer des données du passé et les remémorer au modèle principal. La répétition a le même objectif, mais cette méthode sauve simplement des images spécifiques et les rejoue plus tard au modèle principal pour éviter qu'il ne les oublie. Les méthodes de rejeu permettent de trouver un compromis entre l'optimisation de l'objectif d'apprentissage actuel et ceux du passé. Elles permettent ainsi d'apprendre sans oublier sur des séquences de tâches.Nous montrons que ces méthodes sont prometteuses pour l'apprentissage continu.En particulier, elles permettent la réévaluation des données du passé avec des nouvelles connaissances et de confronter des données issues de différentes expériences. Nous démontrons la capacité des méthodes de rejeu à apprendre continuellement à travers des tâches d'apprentissage non-supervisées, supervisées et de renforcements
Humans learn all their life long. They accumulate knowledge from a sequence of learning experiences and remember the essential concepts without forgetting what they have learned previously. Artificial neural networks struggle to learn similarly. They often rely on data rigorously preprocessed to learn solutions to specific problems such as classification or regression.In particular, they forget their past learning experiences if trained on new ones.Therefore, artificial neural networks are often inept to deal with real-lifesuch as an autonomous-robot that have to learn on-line to adapt to new situations and overcome new problems without forgetting its past learning-experiences.Continual learning (CL) is a branch of machine learning addressing this type of problems.Continual algorithms are designed to accumulate and improve knowledge in a curriculum of learning-experiences without forgetting.In this thesis, we propose to explore continual algorithms with replay processes.Replay processes gather together rehearsal methods and generative replay methods.Generative Replay consists of regenerating past learning experiences with a generative model to remember them. Rehearsal consists of saving a core-set of samples from past learning experiences to rehearse them later. The replay processes make possible a compromise between optimizing the current learning objective and the past ones enabling learning without forgetting in sequences of tasks settings.We show that they are very promising methods for continual learning. Notably, they enable the re-evaluation of past data with new knowledge and the confrontation of data from different learning-experiences. We demonstrate their ability to learn continually through unsupervised learning, supervised learning and reinforcement learning tasks
APA, Harvard, Vancouver, ISO, and other styles
40

Bredèche, Nicolas. "Ancrage de lexique et perceptions : changements de représentation et apprentissage dans le contexte d'un agent situé et mobile." Paris 11, 2002. http://www.theses.fr/2002PA112225.

Full text
Abstract:
En intelligence artificielle, le problème de l'ancrage de symboles dans le monde est un élément primordial du point de vue du sens des connaissances que peut manipuler un agent artificiel. Les travaux que nous présentons abordent le problème de l'ancrage pour un robot situé et mobile qui évolue dans le monde. Le problème que nous nous posons est de donner la capacité à un tel agent d'ancrer un lexique constitué de mots connus par des interlocuteurs humains et se référant à des objets physiques présents dans l'environnement. Ancrer un tel lexique est rendu difficile par un environnement dynamique, complexe et fortement bruité. De plus, pour un objet particulier à ancrer, un nom donné par un interlocuteur humain peut se référer à un grand nombre de formes observables alors que l'agent n'observe généralement que peu d'exemples de vues de chaque objet. Il n'est pas non plus possible d'utiliser de modèle ad hoc du fait de la grande diversité des objets à ancrer. Par conséquent la question se pose de savoir comment construire l'ancrage d'un symbole quelconque. Dans le cadre de cette thèse, nous reformulons le problème de l'ancrage de symboles comme un problème d'apprentissage automatique supervisé. Nous proposons ensuite une approche qui repose sur la mise en oeuvre d'opérateurs d'abstraction exploitant les informations de granularités et de structures contenues dam les perceptions de l'agent Pour chaque symbole, la définition de ces opérateurs est fixée à l'aide de changements de représentation successifs et rend ainsi possible la construction d'un ancrage efficace et adapté. Finalement, nous avons développé les outils PLIC et WMplic qui mettent en oeuvre avec succès notre approche pour construire et maintenir un ancrage à long terme dans le cadre d'un robot mobile autonome Pioneer2DX évoluant dans les couloirs du Laboratoire d'informatique de Paris 6
In Artificial Intelligence, the symbol grounding problem is considered as an important issue regarding the meaning of symbols used by an artificial agent. Our work is concerned with the grounding of symbols for a situated mobile robot that navigates through a real world environment. In this setting, the main problem the robot encounters is to ground symbols given by a human teacher that refers to physical entities (e. G. A door, a human, etc. ). Grounding such a lexicon is a difficult task because of the intrinsic nature of the environment: it is dynamic, complex and noisy. Moreover, one specific symbol (e. G. "door") may refer to different physical objects in size, shape or colour while the robot may acquire only a small number of examples for each symbol. Also, it is not possible to rely on ad-hoc physical models of symbols due to the great number of symbols that may be grounded. Thus, the problem is to define how to build a grounded representation in such a context. In order to address this problem, we have reformulated the symbol grounding problem as a supervised learning problem. We present an approach that relies on the use of abstraction operators. Thanks to these operators, information on granularity and structural configuration is extracted from the perceptions in order to case the building of an anchor. For each symbol, the appropriate definition for these operators is found out thanks to successive changes of representation that provide an efficient and adapted anchor. In order to implement our approach, we have developed PLIC and WMplic which are successfully used for long term symbol grounding by a PIONEER2 DX mobile robot in the corridors of the Computer Sciences Lab of the University of Paris 6
APA, Harvard, Vancouver, ISO, and other styles
41

Duminy, Nicolas. "Découverte et exploitation de la hiérarchie des tâches pour apprendre des séquences de politiques motrices par un robot stratégique et interactif." Thesis, Lorient, 2018. http://www.theses.fr/2018LORIS513/document.

Full text
Abstract:
Il y a actuellement des efforts pour faire opérer des robots dans des environnements complexes, non bornés, évoluant en permanence, au milieu ou même en coopération avec des humains. Leurs tâches peuvent être de types variés, hiérarchiques, et peuvent subir des changements radicaux ou même être créées après le déploiement du robot. Ainsi, ces robots doivent être capable d'apprendre en continu de nouvelles compétences, dans un espace non-borné, stochastique et à haute dimensionnalité. Ce type d'environnement ne peut pas être exploré en totalité, le robot va devoir organiser son exploration et décider ce qui est le plus important à apprendre ainsi que la méthode d'apprentissage. Ceci devient encore plus difficile lorsque le robot est face à des tâches à complexités variables, demandant soit une action simple ou une séquence d'actions pour être réalisées. Nous avons développé une infrastructure algorithmique d'apprentissage stratégique intrinsèquement motivé, appelée Socially Guided Intrinsic Motivation for Sequences of Actions through Hierarchical Tasks (SGIM-SAHT), apprenant la relation entre ses actions et leurs conséquences sur l'environnement. Elle organise son apprentissage, en décidant activement sur quelle tâche se concentrer, et quelle stratégie employer entre autonomes et interactives. Afin d'apprendre des tâches hiérarchiques, une architecture algorithmique appelée procédures fut développée pour découvrir et exploiter la hiérarchie des tâches, afin de combiner des compétences en fonction des tâches. L'utilisation de séquences d'actions a permis à cette architecture d'apprentissage d'adapter la complexité de ses actions à celle de la tâche étudiée
Efforts are made to make robots operate more and more in complex unbounded ever-changing environments, alongside or even in cooperation with humans. Their tasks can be of various kinds, can be hierarchically organized, and can also change dramatically or be created, after the robot deployment. Therefore, those robots must be able to continuously learn new skills, in an unbounded, stochastic and high-dimensional space. Such environment is impossible to be completely explored during the robot's lifetime, therefore it must be able to organize its exploration and decide what is more important to learn and how to learn it, using metrics such as intrinsic motivation guiding it towards the most interesting tasks and strategies. This becomes an even bigger challenge, when the robot is faced with tasks of various complexity, some requiring a simple action to be achieved, other needing a sequence of actions to be performed. We developed a strategic intrinsically motivated learning architecture, called Socially Guided Intrinsic Motivation for Sequences of Actions through Hierarchical Tasks (SGIM-SAHT), able to learn the mapping between its actions and their outcomes on the environment. This architecture, is capable to organize its learning process, by deciding which outcome to focus on, and which strategy to use among autonomous and interactive ones. For learning hierarchical set of tasks, the architecture was provided with a framework, called procedure framework, to discover and exploit the task hierarchy and combine skills together in a task-oriented way. The use of sequences of actions enabled such a learner to adapt the complexity of its actions to that of the task at hand
APA, Harvard, Vancouver, ISO, and other styles
42

Ghorpade, Vijaya Kumar. "3D Semantic SLAM of Indoor Environment with Single Depth Sensor." Thesis, Université Clermont Auvergne‎ (2017-2020), 2017. http://www.theses.fr/2017CLFAC085/document.

Full text
Abstract:
Pour agir de manière autonome et intelligente dans un environnement, un robot mobile doit disposer de cartes. Une carte contient les informations spatiales sur l’environnement. La géométrie 3D ainsi connue par le robot est utilisée non seulement pour éviter la collision avec des obstacles, mais aussi pour se localiser et pour planifier des déplacements. Les robots de prochaine génération ont besoin de davantage de capacités que de simples cartographies et d’une localisation pour coexister avec nous. La quintessence du robot humanoïde de service devra disposer de la capacité de voir comme les humains, de reconnaître, classer, interpréter la scène et exécuter les tâches de manière quasi-anthropomorphique. Par conséquent, augmenter les caractéristiques des cartes du robot à l’aide d’attributs sémiologiques à la façon des humains, afin de préciser les types de pièces, d’objets et leur aménagement spatial, est considéré comme un plus pour la robotique d’industrie et de services à venir. Une carte sémantique enrichit une carte générale avec les informations sur les entités, les fonctionnalités ou les événements qui sont situés dans l’espace. Quelques approches ont été proposées pour résoudre le problème de la cartographie sémantique en exploitant des scanners lasers ou des capteurs de temps de vol RGB-D, mais ce sujet est encore dans sa phase naissante. Dans cette thèse, une tentative de reconstruction sémantisée d’environnement d’intérieur en utilisant une caméra temps de vol qui ne délivre que des informations de profondeur est proposée. Les caméras temps de vol ont modifié le domaine de l’imagerie tridimensionnelle discrète. Elles ont dépassé les scanners traditionnels en termes de rapidité d’acquisition des données, de simplicité fonctionnement et de prix. Ces capteurs de profondeur sont destinés à occuper plus d’importance dans les futures applications robotiques. Après un bref aperçu des approches les plus récentes pour résoudre le sujet de la cartographie sémantique, en particulier en environnement intérieur. Ensuite, la calibration de la caméra a été étudiée ainsi que la nature de ses bruits. La suppression du bruit dans les données issues du capteur est menée. L’acquisition d’une collection d’images de points 3D en environnement intérieur a été réalisée. La séquence d’images ainsi acquise a alimenté un algorithme de SLAM pour reconstruire l’environnement visité. La performance du système SLAM est évaluée à partir des poses estimées en utilisant une nouvelle métrique qui est basée sur la prise en compte du contexte. L’extraction des surfaces planes est réalisée sur la carte reconstruite à partir des nuages de points en utilisant la transformation de Hough. Une interprétation sémantique de l’environnement reconstruit est réalisée. L’annotation de la scène avec informations sémantiques se déroule sur deux niveaux : l’un effectue la détection de grandes surfaces planes et procède ensuite en les classant en tant que porte, mur ou plafond; l’autre niveau de sémantisation opère au niveau des objets et traite de la reconnaissance des objets dans une scène donnée. A partir de l’élaboration d’une signature de forme invariante à la pose et en passant par une phase d’apprentissage exploitant cette signature, une interprétation de la scène contenant des objets connus et inconnus, en présence ou non d’occultations, est obtenue. Les jeux de données ont été mis à la disposition du public de la recherche universitaire
Intelligent autonomous actions in an ordinary environment by a mobile robot require maps. A map holds the spatial information about the environment and gives the 3D geometry of the surrounding of the robot to not only avoid collision with complex obstacles, but also selflocalization and for task planning. However, in the future, service and personal robots will prevail and need arises for the robot to interact with the environment in addition to localize and navigate. This interaction demands the next generation robots to understand, interpret its environment and perform tasks in human-centric form. A simple map of the environment is far from being sufficient for the robots to co-exist and assist humans in the future. Human beings effortlessly make map and interact with environment, and it is trivial task for them. However, for robots these frivolous tasks are complex conundrums. Layering the semantic information on regular geometric maps is the leap that helps an ordinary mobile robot to be a more intelligent autonomous system. A semantic map augments a general map with the information about entities, i.e., objects, functionalities, or events, that are located in the space. The inclusion of semantics in the map enhances the robot’s spatial knowledge representation and improves its performance in managing complex tasks and human interaction. Many approaches have been proposed to address the semantic SLAM problem with laser scanners and RGB-D time-of-flight sensors, but it is still in its nascent phase. In this thesis, an endeavour to solve semantic SLAM using one of the time-of-flight sensors which gives only depth information is proposed. Time-of-flight cameras have dramatically changed the field of range imaging, and surpassed the traditional scanners in terms of rapid acquisition of data, simplicity and price. And it is believed that these depth sensors will be ubiquitous in future robotic applications. In this thesis, an endeavour to solve semantic SLAM using one of the time-of-flight sensors which gives only depth information is proposed. Starting with a brief motivation in the first chapter for semantic stance in normal maps, the state-of-the-art methods are discussed in the second chapter. Before using the camera for data acquisition, the noise characteristics of it has been studied meticulously, and properly calibrated. The novel noise filtering algorithm developed in the process, helps to get clean data for better scan matching and SLAM. The quality of the SLAM process is evaluated using a context-based similarity score metric, which has been specifically designed for the type of acquisition parameters and the data which have been used. Abstracting semantic layer on the reconstructed point cloud from SLAM has been done in two stages. In large-scale higher-level semantic interpretation, the prominent surfaces in the indoor environment are extracted and recognized, they include surfaces like walls, door, ceiling, clutter. However, in indoor single scene object-level semantic interpretation, a single 2.5D scene from the camera is parsed and the objects, surfaces are recognized. The object recognition is achieved using a novel shape signature based on probability distribution of 3D keypoints that are most stable and repeatable. The classification of prominent surfaces and single scene semantic interpretation is done using supervised machine learning and deep learning systems. To this end, the object dataset and SLAM data are also made publicly available for academic research
APA, Harvard, Vancouver, ISO, and other styles
43

Massé, Benoît. "Etude de la direction du regard dans le cadre d'interactions sociales incluant un robot." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM055/document.

Full text
Abstract:
Les robots sont de plus en plus utilisés dans un cadre social. Il ne suffit plusde partager l’espace avec des humains, mais aussi d’interagir avec eux. Dansce cadre, il est attendu du robot qu’il comprenne un certain nombre de signauxambiguës, verbaux et visuels, nécessaires à une interaction humaine. En particulier, on peut extraire beaucoup d’information, à la fois sur l’état d’esprit despersonnes et sur la dynamique de groupe à l’œuvre, en connaissant qui ou quoichaque personne regarde. On parle de la Cible d’attention visuelle, désignéepar l’acronyme anglais VFOA. Dans cette thèse, nous nous intéressons auxdonnées perçues par un robot humanoı̈de qui participe activement à une in-teraction sociale, et à leur utilisation pour deviner ce que chaque personneregarde.D’une part, le robot doit “regarder les gens”, à savoir orienter sa tête(et donc la caméra) pour obtenir des images des personnes présentes. Nousprésentons une méthode originale d’apprentissage par renforcement pourcontrôler la direction du regard d’un robot. Cette méthode utilise des réseauxde neurones récurrents. Le robot s’entraı̂ne en autonomie à déplacer sa tête enfonction des données visuelles et auditives. Il atteint une stratégie efficace, quilui permet de cibler des groupes de personnes dans un environnement évolutif.D’autre part, les images du robot peuvent être utilisée pour estimer lesVFOAs au cours du temps. Pour chaque visage visible, nous calculons laposture 3D de la tête (position et orientation dans l’espace) car très fortementcorrélée avec la direction du regard. Nous l’utilisons dans deux applications.Premièrement, nous remarquons que les gens peuvent regarder des objets quine sont pas visible depuis le point de vue du robot. Sous l’hypothèse quelesdits objets soient regardés au moins une partie du temps, nous souhaitonsestimer leurs positions exclusivement à partir de la direction du regard despersonnes visibles. Nous utilisons une représentation sous forme de carte dechaleur. Nous avons élaboré et entraı̂né plusieurs réseaux de convolutions afinde d’estimer la régression entre une séquence de postures des têtes, et les posi-tions des objets. Dans un second temps, les positions des objets d’intérêt, pou-vant être ciblés, sont supposées connues. Nous présentons alors un modèleprobabiliste, suggéré par des résultats en psychophysique, afin de modéliserla relation entre les postures des têtes, les positions des objets, la directiondu regard et les VFOAs. La formulation utilise un modèle markovien à dy-namiques multiples. En appliquant une approches bayésienne, nous obtenonsun algorithme pour calculer les VFOAs au fur et à mesure, et une méthodepour estimer les paramètres du modèle.Nos contributions reposent sur la possibilité d’utiliser des données, afind’exploiter des approches d’apprentissage automatique. Toutes nos méthodessont validées sur des jeu de données disponibles publiquement. De plus, lagénération de scénarios synthétiques permet d’agrandir à volonté la quantitéde données disponibles; les méthodes pour simuler ces données sont explicite-ment détaillée
Robots are more and more used in a social context. They are required notonly to share physical space with humans but also to interact with them. Inthis context, the robot is expected to understand some verbal and non-verbalambiguous cues, constantly used in a natural human interaction. In particular,knowing who or what people are looking at is a very valuable information tounderstand each individual mental state as well as the interaction dynamics. Itis called Visual Focus of Attention or VFOA. In this thesis, we are interestedin using the inputs from an active humanoid robot – participating in a socialinteraction – to estimate who is looking at whom or what.On the one hand, we want the robot to look at people, so it can extractmeaningful visual information from its video camera. We propose a novelreinforcement learning method for robotic gaze control. The model is basedon a recurrent neural network architecture. The robot autonomously learns astrategy for moving its head (and camera) using audio-visual inputs. It is ableto focus on groups of people in a changing environment.On the other hand, information from the video camera images are used toinfer the VFOAs of people along time. We estimate the 3D head poses (lo-cation and orientation) for each face, as it is highly correlated with the gazedirection. We use it in two tasks. First, we note that objects may be lookedat while not being visible from the robot point of view. Under the assump-tion that objects of interest are being looked at, we propose to estimate theirlocations relying solely on the gaze direction of visible people. We formulatean ad hoc spatial representation based on probability heat-maps. We designseveral convolutional neural network models and train them to perform a re-gression from the space of head poses to the space of object locations. Thisprovide a set of object locations from a sequence of head poses. Second, wesuppose that the location of objects of interest are known. In this context, weintroduce a Bayesian probabilistic model, inspired from psychophysics, thatdescribes the dependency between head poses, object locations, eye-gaze di-rections, and VFOAs, along time. The formulation is based on a switchingstate-space Markov model. A specific filtering procedure is detailed to inferthe VFOAs, as well as an adapted training algorithm.The proposed contributions use data-driven approaches, and are addressedwithin the context of machine learning. All methods have been tested on pub-licly available datasets. Some training procedures additionally require to sim-ulate synthetic scenarios; the generation process is then explicitly detailed
APA, Harvard, Vancouver, ISO, and other styles
44

Hasson, Cyril. "Modélisation des mécanismes émotionnels pour un robot autonome : perspective développementale et sociale." Phd thesis, Université de Cergy Pontoise, 2011. http://tel.archives-ouvertes.fr/tel-00904481.

Full text
Abstract:
L'objectif de cette thèse est de s'inspirer de la neurobiologie pour modéliser les mécanismes émotionnels de bas niveau sur un robot évoluant en environnement réel. Ce travail présente un modèle des émotions cohérent avec les données expérimentales décrivant le fonctionnement des structures cérébrales principales impliquées dans les mécanismes émotionnels. Les émotions jouent un rôle capital aussi bien pour la régulation du comportement des êtres humains que des animaux. En accord avec la vision darwinienne, les émotions sont vues comme des mécanismes adaptatifs favorisant la survie. Cependant, leur organisation autours de signaux essentiellement positifs et négatifs leur donne un caractère dimensionnel. Notre modèle considère les émotions comme le résultat de la dynamique d'interactions entre deux systèmes permettant l'évaluation des interactions avec l'environnement physique d'une part et l'environnement social d'autre part. Cette approche bioinspirée des émotions permet de donner aux robots une mécanique de base pour construire leur autonomie comportementale et leurs capacités de communication. Dans cette thèse, nous montrons qu'elles permettent autant de s'adapter aux caractéristiques de l'environnement que de servir de support à une communication non verbale. L'approche biomimétique de notre travail se traduit en termes méthodologiques par l'utilisation de réseaux de neurones formels pour les architectures de contrôle du robot mais aussi en termes fonctionnels par l'organisation de ces réseaux comme modèles de différentes structures du cerveau et de leurs interactions (amygdale, accumbens, hippocampe et cortex préfrontal). Suivant le courant animat, le robot est vu comme un animal aux besoins vitaux satisfaits par les ressources de son environnement. Les expérimentations seront illustrées sur des comportements de navigation reposant sur les apprentissages de conditionnements visuo-moteurs (stratégie visuelle) et sur l'intégration de chemin (stratégie propioceptive). Les conditionnements associant les signaux nocicepteurs et hédoniques aux autres informations sensorielles ou aux actions du robot sont à la base des régulations émotionnelles. Les prédictions que forme le robot lui permettent d'apprendre des comportements aversifs ou appétitifs en réponse à ses anticipations de "douleur" ou de "plaisir". Il peut aussi monitorer ses prédictions afin d'évaluer l'efficacité de ses comportements. C'est ce qui lui permet de réguler ses motivations et de sélectionner ses stratégies (navigation visuelle ou proprioceptive) et ses buts (ressources de l'environnement) de façon à satisfaire au mieux son équilibre interne en fonction de son environnement. Cette utilisation de signaux bas niveau positifs et négatifs permet de construire un modèle émotionnel minimal assurant au robot une autonomie comportementale. Dans un deuxième temps, nous utilisons l'expressivité émotionnelle comme base à une communication avec le robot. Une tête mécanique permet au robot d'exprimer ses émotions grâce à ses expressions faciales. Cette communication consiste à donner au robot des signaux de récompense et de punition. Nous avons développé un modèle permettant de construire de manière autonome ces signaux d'interaction en leur donnant leur valeur émotionnelle. Cet échange d'informations avec le robot lui permet d'apprendre à valuer son environnement ou son comportement et ainsi d'apprendre interactivement à résoudre ses problèmes de navigation. La modélisation des mécanismes émotionnels présentées dans cette thèse permet d'aborder aussi bien les questions de robotique autonome que d'interactions Homme-Machine. Plus largement, cette approche illustre l'intérêt de placer la robotique au coeur des sciences cognitives grâce à l'éclairage que permet l'analyse des comportements rendus possibles par des architectures neuronales relativement simples.
APA, Harvard, Vancouver, ISO, and other styles
45

Dubois, Mathieu. "Méthodes probabilistes basées sur les mots visuels pour la reconnaissance de lieux sémantiques par un robot mobile." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00679650.

Full text
Abstract:
Les êtres humains définissent naturellement leur espace quotidien en unités discrètes. Par exemple, nous sommes capables d'identifier le lieu où nous sommes (e.g. le bureau 205) et sa catégorie (i.e. un bureau), sur la base de leur seule apparence visuelle. Les travaux récents en reconnaissance de lieux sémantiques, visent à doter les robots de capacités similaires. Ces unités, appelées "lieux sémantiques", sont caractérisées par une extension spatiale et une unité fonctionnelle, ce qui distingue ce domaine des travaux habituels en cartographie. Nous présentons nos travaux dans le domaine de la reconnaissance de lieux sémantiques. Ces derniers ont plusieurs originalités par rapport à l'état de l'art. Premièrement, ils combinent la caractérisation globale d'une image, intéressante car elle permet de s'affranchir des variations locales de l'apparence des lieux, et les méthodes basées sur les mots visuels, qui reposent sur la classification non-supervisée de descripteurs locaux. Deuxièmement, et de manière intimement reliée, ils tirent parti du flux d'images fourni par le robot en utilisant des méthodes bayésiennes d'intégration temporelle. Dans un premier modèle, nous ne tenons pas compte de l'ordre des images. Le mécanisme d'intégration est donc particulièrement simple mais montre des difficultés à repérer les changements de lieux. Nous élaborons donc plusieurs mécanismes de détection des transitions entre lieux qui ne nécessitent pas d'apprentissage supplémentaire. Une deuxième version enrichit le formalisme classique du filtrage bayésien en utilisant l'ordre local d'apparition des images. Nous comparons nos méthodes à l'état de l'art sur des tâches de reconnaissance d'instances et de catégorisation, en utilisant plusieurs bases de données. Nous étudions l'influence des paramètres sur les performances et comparons les différents types de codage employés sur une même base.Ces expériences montrent que nos méthodes sont supérieures à l'état de l'art, en particulier sur les tâches de catégorisation.
APA, Harvard, Vancouver, ISO, and other styles
46

Petit, Maxime. "Raisonnement et planification développementale d'un robot via une interaction enactive avec un humain." Phd thesis, Université Claude Bernard - Lyon I, 2014. http://tel.archives-ouvertes.fr/tel-01015288.

Full text
Abstract:
Que cela soit par des automates puis par des robots, l'Homme a été fasciné par des machines pouvant exécuter des tâches pour lui, dans de nombreux domaines, comme l'industrie ou les services : c'est ce dernier domaine qui nous sert de contexte. Ainsi, nous avons utilisé une approche développementale, où le robot se doit d'apprendre de nouvelles tâches au cours de sa vie. Inspiré par des théories sur le développement de l'enfant, nous avons extrait les concepts intéressants pour les implémenter sur une plateforme robotique humanoïde : l'iCub. L'acquisition du langage est une première étape, où la capacité à classifier les mots, de classes ouvertes et de classes fermées permet d'obtenir une syntaxe qui aide l'enfant à construire le lien entre une phrase et son sens. Cette méthode a été implémentée grâce à un réseau de neurones récurrents, utilisant une base de données fournit par l'humain en interagissant avec le robot. La maîtrise du langage permet à l'enfant de participer à des actions plus complexes, en particulier des tâches collaboratives où la parole est requise de négocier le mode d'apprentissage sur plusieurs modalités. Implémenté sur l'iCub et le Nao, cela permet un apprentissage en temps réel et de réaliser un plan partagé. Enfin, nous avons étudié le fonctionnement de la mémoire autobiographique, cruciale pour se remémorer des épisodes passés de sa vie, d'en tirer des prédictions et de les appliquer dans le futur. En recréant cette mémoire en SQL et formatant les données en PDDL, l'iCub est alors capable de raisonner en fonction de sa propre expérience, lui permettant ainsi de résoudre le problème des Tours d'Hanoi sans jamais l'avoir visualisé avant
APA, Harvard, Vancouver, ISO, and other styles
47

Arsicault, Marc. "Suivi de trajectoires planes par auto-apprentissage en vue d'une application de soudage robotise de toles ondees sur longerons de renfort." Poitiers, 1989. http://www.theses.fr/1989POIT2264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Picardat, Jean-François. "Controle d'execution, comprehension et apprentissage de plans d'actions : developpement de la methode de la table triangulaire." Toulouse 3, 1987. http://www.theses.fr/1987TOU30122.

Full text
Abstract:
Synthese de l'etat de l'art en planification et en controle d'execution. Construction de la table triangulaire et etude de l'algorithme utilise en controle d'execution. Il est ensuite propose d'utiliser la table pour produire des explications sur un plan d'actions. Ce qui est ensuite generalise a une sequence de regles. Developpement d'un cadre formel pour l'emploi de cette table. Implantation dans un logiciel concu comme un environnement de programmation regroupant les primitives de traitemnt et de manipulation de tables
APA, Harvard, Vancouver, ISO, and other styles
49

Lathuiliere, Stéphane. "Modèles profonds de régression et applications à la vision par ordinateur pour l'interaction homme-robot." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM026/document.

Full text
Abstract:
Dans le but d’interagir avec des êtres humains, les robots doivent effectuer destâches de perception basique telles que la détection de visage, l’estimation dela pose des personnes ou la reconnaissance de la parole. Cependant, pour interagir naturellement, avec les hommes, le robot doit modéliser des conceptsde haut niveau tels que les tours de paroles dans un dialogue, le centre d’intérêtd’une conversion, ou les interactions entre les participants. Dans ce manuscrit,nous suivons une approche ascendante (dite “top-down”). D’une part, nousprésentons deux méthodes de haut niveau qui modélisent les comportementscollectifs. Ainsi, nous proposons un modèle capable de reconnatre les activitésqui sont effectuées par différents des groupes de personnes conjointement, telsque faire la queue, discuter. Notre approche gère le cas général où plusieursactivités peuvent se dérouler simultanément et en séquence. D’autre part,nous introduisons une nouvelle approche d’apprentissage par renforcement deréseau de neurones pour le contrôle de la direction du regard du robot. Notreapproche permet à un robot d’apprendre et d’adapter sa stratégie de contrôledu regard dans le contexte de l’interaction homme-robot. Le robot est ainsicapable d’apprendre à concentrer son attention sur des groupes de personnesen utilisant seulement ses propres expériences (sans supervision extérieur).Dans un deuxième temps, nous étudions en détail les approchesd’apprentissage profond pour les problèmes de régression. Les problèmesde régression sont cruciaux dans le contexte de l’interaction homme-robotafin d’obtenir des informations fiables sur les poses de la tête et du corpsdes personnes faisant face au robot. Par conséquent, ces contributions sontvraiment générales et peuvent être appliquées dans de nombreux contextesdifférents. Dans un premier temps, nous proposons de coupler un mélangegaussien de régressions inverses linéaires avec un réseau de neurones convolutionnels. Deuxièmement, nous introduisons un modèle de mélange gaussien-uniforme afin de rendre l’algorithme d’apprentissage plus robuste aux annotations bruitées. Enfin, nous effectuons une étude à grande échelle pour mesurerl’impact de plusieurs choix d’architecture et extraire des recommandationspratiques lors de l’utilisation d’approches d’apprentissage profond dans destâches de régression. Pour chacune de ces contributions, une intense validation expérimentale a été effectuée avec des expériences en temps réel sur lerobot NAO ou sur de larges et divers ensembles de données
In order to interact with humans, robots need to perform basic perception taskssuch as face detection, human pose estimation or speech recognition. However, in order have a natural interaction with humans, the robot needs to modelhigh level concepts such as speech turns, focus of attention or interactions between participants in a conversation. In this manuscript, we follow a top-downapproach. On the one hand, we present two high-level methods that model collective human behaviors. We propose a model able to recognize activities thatare performed by different groups of people jointly, such as queueing, talking.Our approach handles the general case where several group activities can occur simultaneously and in sequence. On the other hand, we introduce a novelneural network-based reinforcement learning approach for robot gaze control.Our approach enables a robot to learn and adapt its gaze control strategy inthe context of human-robot interaction. The robot is able to learn to focus itsattention on groups of people from its own audio-visual experiences.Second, we study in detail deep learning approaches for regression prob-lems. Regression problems are crucial in the context of human-robot interaction in order to obtain reliable information about head and body poses or theage of the persons facing the robot. Consequently, these contributions are really general and can be applied in many different contexts. First, we proposeto couple a Gaussian mixture of linear inverse regressions with a convolutionalneural network. Second, we introduce a Gaussian-uniform mixture model inorder to make the training algorithm more robust to noisy annotations. Finally,we perform a large-scale study to measure the impact of several architecturechoices and extract practical recommendations when using deep learning approaches in regression tasks. For each of these contributions, a strong experimental validation has been performed with real-time experiments on the NAOrobot or on large and diverse data-sets
APA, Harvard, Vancouver, ISO, and other styles
50

Tanguy, Roger. "Un reseau mobiles autonomes pour l'apprentissage de la communication." Paris 6, 1987. http://www.theses.fr/1987PA066640.

Full text
Abstract:
Presentation de la realisation materielle et logicielle d'un reseau de mobiles autonomes et programmables destine a l'apprentissage d'actions elementaires et de concepts tels que la communication et la coordination
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography