Academic literature on the topic 'Robust force control'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Robust force control.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Robust force control"

1

Plummer, A. R. "Robust electrohydraulic force control." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 221, no. 4 (2007): 717–31. http://dx.doi.org/10.1243/09596518jsce370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

HUANG, HAN-PANG, and MARLON LIN. "Robust force control for robotic manipulators." International Journal of Control 56, no. 3 (1992): 631–53. http://dx.doi.org/10.1080/00207179208934332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Damaren, Christopher J., and Lan Le-Ngoc. "Robust Active Vibration Control of a Bandsaw Blade." Journal of Vibration and Acoustics 122, no. 1 (1999): 69–76. http://dx.doi.org/10.1115/1.568437.

Full text
Abstract:
An analytical study of a vibrating bandsaw blade is presented. The blade is modeled as a plate translating over simply-supporting guides. Gyroscopic effects due to the blade’s axial motion as well as in-plane forces resulting from tensioning and the influence of the cutting force are included in the model. The latter is modeled as a nonconservative follower force on the cutting edge of the blade and shown to be destabilizing. A state-space model is developed which includes the effects of time-varying cutting forces and exogenous disturbances. Feedback control via a collocated force actuator/ra
APA, Harvard, Vancouver, ISO, and other styles
4

Calanca, Andrea, Luca Capisani, and Paolo Fiorini. "Robust Force Control of Series Elastic Actuators." Actuators 3, no. 3 (2014): 182–204. http://dx.doi.org/10.3390/act3030182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

El Rifai, Osamah M., and Kamal Youcef-Toumi. "Robust Adaptive Control of Atomic Force Microscopes." IFAC Proceedings Volumes 37, no. 14 (2004): 669–74. http://dx.doi.org/10.1016/s1474-6670(17)31180-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sato, Susumu, Shigenori Sano, Kentaro Takagi, Naoki Uchiyama, and Shoji Takagi. "359 Robust force control using IPMC actuator." Proceedings of Conference of Tokai Branch 2009.58 (2009): 203–4. http://dx.doi.org/10.1299/jsmetokai.2009.58.203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Sung I., Robert G. Landers, and A. Galip Ulsoy. "Robust Machining Force Control With Process Compensation." Journal of Manufacturing Science and Engineering 125, no. 3 (2003): 423–30. http://dx.doi.org/10.1115/1.1580849.

Full text
Abstract:
Force control is an effective means of improving the quality and productivity of machining operations. Metal cutting force models are difficult to accurately generate and, thus, there is large uncertainty in the model parameters. This has lead to investigations into robust force control techniques; however, the approaches reported in the literature include known process changes (e.g., a change in the depth-of-cut) in the model parameters variations. These changes create substantial variations in the model parameters; thus, only loose performance bounds may be achieved. A novel robust force con
APA, Harvard, Vancouver, ISO, and other styles
8

Dawson, D. M., F. L. Lewis, and J. F. Dorsey. "Robust Force Control of a Robot Manipulator." International Journal of Robotics Research 11, no. 4 (1992): 312–19. http://dx.doi.org/10.1177/027836499201100404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Komada, Satoshi, Muneaki Ishida, Kouhei Ohnishi, and Takamasa Hori. "Hybrid Position/Force Control of Robot Manipulators Based on Second Derivatives of Position and Force." Journal of Robotics and Mechatronics 8, no. 3 (1996): 243–51. http://dx.doi.org/10.20965/jrm.1996.p0243.

Full text
Abstract:
This paper proposes a new robust hybrid position/force control of robot manipulators. The proposed method controls the second derivatives of control variables, such as position and force in a task coordinate system, in order to realize robust and high response control. To this end, the disturbances are estimated by a position-based disturbance observer and a force-based distrubance observer in the task coordinate system, and are compensated by feeding back the estimated distrubances. The proposed method requires less computational effort and is robust against the disturbance and parameter vari
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Nengmou, and Hojjat Adeli. "ROBUST VIBRATION CONTROL OF WIND-EXCITED HIGHRISE BUILDING STRUCTURES." Journal of Civil Engineering and Management 21, no. 8 (2015): 967–76. http://dx.doi.org/10.3846/13923730.2015.1068843.

Full text
Abstract:
A robust filtered sliding mode control (SMC) approach is presented for vibration control of wind-excited highrise building structures. Rather than using a Lyapunov-function based control design, an alternative way is provided to find the control force based on the equivalent control force principle to obtain the control force. A low pass filter is properly selected to remove the high-frequency components of the control force while retaining the structural stability. The performance of the proposed filtered SMC is evaluated by application to a wind-excited 76-story building benchmark problem eq
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Robust force control"

1

Marley, Mathias Huuse. "Modelling and Robust Control of Production Force of a Wave Energy Converter." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for marin teknikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-26357.

Full text
Abstract:
Lifesaver is a point-absorber wave energy converter developed by Fred. Olsen. She is currently deployed off the coast of England for pre-commercial testing. Lifesaver consists of a toroidal floater supporting three Power-Take Off (PTO) units moored separately to the seabed. The mooring lines are kept taut by electrical generators.Large force oscillations have been encountered in the mooring lines during testing. The source of force oscillations is identified as velocity fluctuations in the PTO drive train due to sudden saturation of generator torque. The unfavorable transient response is a res
APA, Harvard, Vancouver, ISO, and other styles
2

Osthus, Vegar. "Robust Adaptive Control of a Surface Vessel in Managed Ice Using Hybrid Position- and Force Control." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-25755.

Full text
Abstract:
Studies done in recent years have shown a signicant decline in the coverage of arctic sea ice. This trend has made the Arctic more accessible and has resulted in expanded naval activity in this region. Furthermore, an increasing desire among international petroleum operators to extend their operations towards the Arctic have resulted in vast investments in the development of these areas.The increasing development of the oil and gas industry in the Arctic region makes riseto several challenges concerning navigation and control of the vessels operating in these waters. Although the trend shows a
APA, Harvard, Vancouver, ISO, and other styles
3

Dugenske, Andrew Donald. "An experimental investigation of a robust force control algorithm in the presence of a compliant environment." Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/21509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Oliveira, Matheus Senna de. "Resonant gain scheduling controller for spiral scanning patterns in atomic force microscopy." Pontifícia Universidade Católica do Rio Grande do Sul, 2018. http://hdl.handle.net/10923/11738.

Full text
Abstract:
Made available in DSpace on 2018-06-16T12:04:23Z (GMT). No. of bitstreams: 1 000488854-Texto+Completo-0.pdf: 2367932 bytes, checksum: 927039b4746ebdc5d7da25318435b24a (MD5) Previous issue date: 2018<br>This document presents a dissertation work regarding the study of control strategies for the efficient tracking of spiral patterns. Such patterns arise in many areas, as for example the Atomic Force Microscopy, where fast and smooth reference signals are required. In order to successfully track the above mentioned references, which are composed of amplitude and frequency-varying sinusoidal sig
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Ke. "Modélisation d'un robot manipulateur en vue de la commande robuste en force utilisé en soudage FSW." Thesis, Paris, ENSAM, 2016. http://www.theses.fr/2016ENAM0003/document.

Full text
Abstract:
Le travail présenté dans cette thèse concerne la modélisation et la commande robuste en force de robots manipulateurs industriels à articulations flexibles utilisés pour le procédé FSW. Afin de réduire les temps de calcul et l'occupation de la mémoire, une approche basée sur la méthode par intervalle est proposée en vue de la simplification des modèles dynamiques des robots industriels, et contribue à identifier les paramètres d'inertie qui sont négligeables. Des études de cas sur trois types de trajectoires de test et l’analyse des couples moteurs ont démontré l'efficacité et les bonnes perfo
APA, Harvard, Vancouver, ISO, and other styles
6

Steven, Andrew. "Hybrid force and position control in robotic surface processing." Thesis, University of Newcastle Upon Tyne, 1989. http://hdl.handle.net/10443/657.

Full text
Abstract:
This programme of research was supported by NEI Parsons Ltd. who sought a robotic means of polishing mechanical components. A study of the problems associated with robot controlled surface processing is presented. From this evolved an approach consistent with the formalisation of the demands of workpiece manipulation which included the adoption of the Hybrid robot control scheme capable of simultaneous force and position control. A unique 3 axis planar experimental manipulator was designed which utilized combined parallel and serial drives. A force sensing wrist was used to measure contact for
APA, Harvard, Vancouver, ISO, and other styles
7

Kotzev, Shmuel. "Hierarchical task decomposition and execution for robot manipulation task using a wrist force sensor." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29627.

Full text
Abstract:
The research developed force-motion strategies and subsequent force and position control algorithms, using a PUMA 560 robot arm and its original controller. A task decomposition methodology has been developed that enables a mechanical assembly task to be subdivided into a series of executable subtasks. By applying this methodology to the assembly of a hydraulic gear pump, a library of special purpose, task oriented, subtask programs were created. Most of these programs, though derived for a pump assembly task, are applicable (when used with appropriate parameters) to other assembly tasks. Mo
APA, Harvard, Vancouver, ISO, and other styles
8

Racioppo, Peter Charles. "Design and Control of a Cable-Driven Articulated Modular Snake Robot." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/91983.

Full text
Abstract:
This thesis presents the design and control of a cable-actuated mobile snake robot. The goal of this research is to reduce the size of snake robots and improve their locomotive efficiency by simultaneously actuating groups of links to fit optimized curvature profiles. The basic functional unit of the snake is a four-link, single degree of freedom module that bends using an antagonistic cable-routing scheme. Elastic elements in series with the cables and the coupled nature of the mechanism allow each module to detect and automatically respond to obstacles. The mechanical and electrical designs
APA, Harvard, Vancouver, ISO, and other styles
9

Mosesson, Maria, and Pär Aronssson. "Robot-Assisterad Gradningscell med Force Control." Thesis, KTH, Tillämpad maskinteknik (KTH Södertälje), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Qin, Jinna. "Commande hybride position/force robuste d’un robot manipulateur utilisé en usinageet/ou en soudage." Thesis, Paris, ENSAM, 2013. http://www.theses.fr/2013ENAM0058/document.

Full text
Abstract:
La problématique traitée dans cette thèse concerne la commande de robots manipulateurs industriels légèrement flexibles utilisés pour la robotisation de procédés d'usinage et de soudage FSW. Le premier objectif est la modélisation des robots et des procédés. Les modèles développés concernant la cinématique et la dynamique de robots 6 axes à architecture série et à flexibilité localisées aux articulations. Les paramètres du modèle dynamique et les raideurs sont identifiés avec la méthode à erreur de sortie qui donne une bonne précision d'estimation. La norme relative du résidu du modèle après i
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Robust force control"

1

Derventzis, Christos. Robust motion/force control of cooperative multiple-arm systems. National Library of Canada = Bibliothèque nationale du Canada, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhen, Robert Ruo Yu. Robust position and force control of manipulators based on sliding mode. National Library of Canada, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Siciliano, Bruno. Robot Force Control. Springer US, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1966-, Villani Luigi, ed. Robot force control. Kluwer Academic, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Siciliano, Bruno, and Luigi Villani. Robot Force Control. Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4431-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gorinevskiĭ, D. M. Force control of robotics systems. CRC press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mueller, Taylor C., and Melissa E. Bynes. Robotic autonomy and control: Army research. Nova Science Publisher's, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Antonelli, Gianluca. Underwater robots: Motion and force control of vehicle-manipulator systems. Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Antonelli, Gianluca. Underwater robots: Motion and force control of vehicle-manipulator systems. Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Robot warriors: Why the Western investment into military robots might backfire. Peace Research Institute Frankfurt, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Robust force control"

1

Güvenç, Bilin Aksun, Serkan Neci̇poğlu, Burak Demi̇rel, and Levent Güvenç. "Robust Control of Atomic Force Microscopy." In Mechatronics. John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118614549.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Tong Heng, Wenyu Liang, Clarence W. de Silva, and Kok Kiong Tan. "Optimal and Robust Contact Force Control on Soft Membrane." In Force and Position Control of Mechatronic Systems. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52693-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Tong Heng, Wenyu Liang, Clarence W. de Silva, and Kok Kiong Tan. "Robust Impedance Control of Constrained Piezoelectric Actuator-Based End-Effector." In Force and Position Control of Mechatronic Systems. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52693-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Reichert, Christopher, Katharina Müller, and Tobias Bruckmann. "Robust Internal Force-Based Impedance Control for Cable-Driven Parallel Robots." In Mechanisms and Machine Science. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09489-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Guotao, Hailin Huang, and Bing Li. "Robust Adaptive Force Tracking Impedance Control for Robotic Capturing of Unknown Objects." In Intelligent Robotics and Applications. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27535-8_60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Baigeng, Shurong Li, and Zhe Liu. "Robust Adaptive Position/Force Control for Flexible-Link with Flexible-Joint Manipulator." In Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019). Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0474-7_114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Siciliano, Bruno, and Luigi Villani. "Motion Control." In Robot Force Control. Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4431-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Siciliano, Bruno, and Luigi Villani. "Indirect Force Control." In Robot Force Control. Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4431-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Siciliano, Bruno, and Luigi Villani. "Direct Force Control." In Robot Force Control. Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4431-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Siciliano, Bruno, and Luigi Villani. "Introduction." In Robot Force Control. Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4431-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Robust force control"

1

Dawson, D. M., and F. L. Lewis. "Robust Force Control of a Robot Manipulator." In 1990 American Control Conference. IEEE, 1990. http://dx.doi.org/10.23919/acc.1990.4791233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Chan, and Sehoon Oh. "Robust assistive force control of leg rehabilitation robot." In 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2017. http://dx.doi.org/10.1109/aim.2017.8014088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sariyildiz, Emre, and Kouhei Ohnishi. "Robust force control via disturbance observer." In IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2013. http://dx.doi.org/10.1109/iecon.2013.6700215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"ROBUST AND STABLE ROBOTIC FORCE CONTROL." In 4th International Conference on Informatics in Control, Automation and Robotics. SciTePress - Science and and Technology Publications, 2007. http://dx.doi.org/10.5220/0001618302560261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Dongsheng, Xuesong Mei, Xiaohong Hao, and Aifen Tian. "Modeling Dynamic Magnetic Force and Robust Control." In 2007 IEEE 22nd International Symposium on Intelligent Control. IEEE, 2007. http://dx.doi.org/10.1109/isic.2007.4359658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Dongsheng, Xuesong Mei, Xiaohong Hao, and Aifen Tian. "Modeling Dynamic Magnetic Force and Robust Control." In 2007 IEEE International Conference on Control Applications. IEEE, 2007. http://dx.doi.org/10.1109/cca.2007.4389255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sano, Shigenori, Kentaro Takagi, Susumu Sato, Suguru Hirayama, Naoki Uchiyama, and Kinji Asaka. "Robust PID force control of IPMC actuators." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Yoseph Bar-Cohen. SPIE, 2010. http://dx.doi.org/10.1117/12.847842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Melchior, Pierre, Brahim Metoui, Slaheddine Najar, Mohamed Naceur Abdelkrim, and Alain Oustaloup. "Robust path planning for mobile robot based on fractional attractive force." In 2009 American Control Conference. IEEE, 2009. http://dx.doi.org/10.1109/acc.2009.5160599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nakakuki, Takashi, Makoto Ogawa, and Chiharu Ishii. "Nonlinear robust stage control of atomic force microscope." In 2012 IEEE International Conference on Control Applications (CCA). IEEE, 2012. http://dx.doi.org/10.1109/cca.2012.6402658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Payandeh, Shahram. "Loop Gain Definition in A Robust Force Control Problem." In 1993 American Control Conference. IEEE, 1993. http://dx.doi.org/10.23919/acc.1993.4793340.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Robust force control"

1

Falco, Joe, Jeremy Marvel, Rick Norcross, and Karl Van Wyk. Benchmarking Robot Force Control Capabilities: Experimental Results. National Institute of Standards and Technology, 2016. http://dx.doi.org/10.6028/nist.ir.8097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!