Academic literature on the topic 'Robust LPV Control'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Robust LPV Control.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Robust LPV Control"

1

Eichler, Annika, Christian Hoffmann, and Herbert Werner. "Robust control of decomposable LPV systems." Automatica 50, no. 12 (2014): 3239–45. http://dx.doi.org/10.1016/j.automatica.2014.10.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shen, Bin, Lingfei Xiao, and Zhifeng Ye. "A Full Envelope Robust Linear Parameter-Varying Control Method for Aircraft Engines." Aerospace 10, no. 9 (2023): 769. http://dx.doi.org/10.3390/aerospace10090769.

Full text
Abstract:
In order to solve the problem of full flight envelope control for aircraft engines, the design of a linear parameter-varying (LPV) controller is described in this paper. First, according to the nonlinear aerodynamic model of the aircraft engine, the LPV engine model for the controller design is obtained through the Jacobian linearization and fitting technique. Then, the flight envelope is divided into several sub-regions, and the intersection of adjacent sub-regions is not empty. The sub-region LPV controller is designed using the parameter-dependent Lyapunov function (PDLF)-based LPV synthesi
APA, Harvard, Vancouver, ISO, and other styles
3

Ma, Song Hui, Peng Yuan Shao, and Cheng Fu Wu. "LPV Based Robust Gain – Scheduling Control for Transient Mode of Morphing UAV." Advanced Materials Research 622-623 (December 2012): 1368–72. http://dx.doi.org/10.4028/www.scientific.net/amr.622-623.1368.

Full text
Abstract:
Robust Gain-Scheduling control based on Linear Parameter-Varying (LPV) system is researched in theory and applied to transient mode control of a morphing wing UAV (MUAV). H∞ output feedback control method is extended to the LPV system via parameterized LMIs. In application, LPV model of MUAV is established using the Jacobian linearization method, based on which an LPV controller is designed using the proposed method to control the attitudes of transient mode in morphing process, the problem of high frequency dynamics is found and solved by a robust pole constraint method. Monte-Carlo simulatio
APA, Harvard, Vancouver, ISO, and other styles
4

Hasseni, Seif-El-Islam, and Latifa Abdou. "Robust LPV Control for Attitude Stabilization of a Quadrotor Helicopter under Input Saturations." Advances in Technology Innovation 5, no. 2 (2020): 98–111. http://dx.doi.org/10.46604/aiti.2020.3953.

Full text
Abstract:
This article investigates the robust stabilization of the rotational subsystem of a quadrotor against external inputs (disturbances, noises, and parametric uncertainties) by the LFT-based LPV technique. By establishing the LPV attitude model, the LPV robust controller is designed for the system. The weighting functions are computed by Cuckoo Search, a meta-heuristic optimization algorithm. Besides, the input saturations are also taken into account through the Anti-Windup compensation technique. Simulation results show the robustness of the closed-loop system against disturbances, measurement n
APA, Harvard, Vancouver, ISO, and other styles
5

Szabó, Z., Zs Biró, and J. Bokor. "All controllers for an LPV robust control problem." IFAC Proceedings Volumes 45, no. 13 (2012): 343–48. http://dx.doi.org/10.3182/20120620-3-dk-2025.00058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Guang Rui, Shi Qian Liu, Yuan Jun Sang, Xu Dong Wang, Xiao Peng Jia, and Er Zhuo Niu. "LPV robust servo control of aircraft active side-sticks." Aircraft Engineering and Aerospace Technology 92, no. 4 (2020): 599–609. http://dx.doi.org/10.1108/aeat-08-2019-0155.

Full text
Abstract:
Purpose This paper aims to focus on the variable stick force-displacement (SFD) gradience in the active side stick (ASS) servo system for the civil aircraft. Design/methodology/approach The problem of variable SFD gradience was introduced first, followed by the analysis of its impact on the ASS servo system. To solve this problem, a linear-parameter-varying (LPV) control approach was suggested to process the variable gradience of the SFD. A H∞ robust control method was proposed to deal with the external disturbance. Findings To validate the algorithm performance, a linear time-variant system w
APA, Harvard, Vancouver, ISO, and other styles
7

Cao, Guoyan, Karolos M. Grigoriadis, and Yaw D. Nyanteh. "LPV Control for the Full Region Operation of a Wind Turbine Integrated with Synchronous Generator." Scientific World Journal 2015 (2015): 1–15. http://dx.doi.org/10.1155/2015/638120.

Full text
Abstract:
Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions,
APA, Harvard, Vancouver, ISO, and other styles
8

He, Xing, Wei Jiang, and Caisheng Jiang. "Robust Controller Designing for an Air-Breathing Hypersonic Vehicle with an HOSVD-Based LPV Model." International Journal of Aerospace Engineering 2021 (December 3, 2021): 1–12. http://dx.doi.org/10.1155/2021/7570059.

Full text
Abstract:
This paper focuses on the linear parameter varying (LPV) modeling and controller design for a flexible air-breathing hypersonic vehicle (AHV). Firstly, by selecting the measurable altitude and velocity as gain-scheduled variables, the original longitudinal nonlinear model for AHV is transformed into the LPV model via average gridding division, vertex trimming, Jacobian linearization, and multiple linear regression within the entire flight envelope. Secondly, using the tensor product model transformation method, the obtained LPV model is converted into the polytopic LPV model via high-order sin
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Jianchi, Dawei Gu, Ian Postlethwaite, and Kannan Natesan. "Robust LPV Control of UAV with Parameter Dependent Performance." IFAC Proceedings Volumes 41, no. 2 (2008): 15070–75. http://dx.doi.org/10.3182/20080706-5-kr-1001.02550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xie, W. "Robust control system design for polytopic stable LPV systems." IMA Journal of Mathematical Control and Information 20, no. 2 (2003): 201–16. http://dx.doi.org/10.1093/imamci/20.2.201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Robust LPV Control"

1

Abouselima, Eslam. "Fault tolerant control and path planning for quasi-LPV systems : application to quadrotor." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPAST085.

Full text
Abstract:
Récemment, les systèmes autonomes deviennent de plus en plus populaires et sont largement déployés dans plusieurs applications de notre vie quotidienne. C'est pourquoi une grande préoccupation a été consacrée au problème du contrôle tolérant aux fautes (FTC) des systèmes autonomes. De toute évidence, les drones sont parmi les systèmes qui ont besoin de tels algorithmes de FTC, car tout dysfonctionnement du système peut causer de graves dommages non seulement pour le véhicule lui-même, mais aussi pour l'environnement. Ce travail étudie donc le problème de la conception d'un algorithme FTC pour
APA, Harvard, Vancouver, ISO, and other styles
2

Sereni, Bruno. "Static output feedback control for LPV and uncertain LTI systems /." Ilha Solteira, 2019. http://hdl.handle.net/11449/180732.

Full text
Abstract:
Orientador: Edvaldo Assunção<br>Resumo: Este trabalho aborda o controle via realimentação estática de saída aplicado à sistemas lineares com parâmetro variante (LPV) e lineares incertos invariantes no tempo (LIT). O projeto de ganhos de realimentação estática de saída apresentado neste trabalho é baseado no método dos dois estágios, o qual consiste em primeiramente obter um ganho de realimentação de estados, e então, utilizar esta informação no segundo estágio para obter-se o ganho de realimentação estática de saída desejado. As soluções para os problemas investigados são apresentadas na forma
APA, Harvard, Vancouver, ISO, and other styles
3

Pita, Guillermo. "Application de techniques de commande avancées dans le domaine automobile." Thesis, Supélec, 2011. http://www.theses.fr/2011SUPL0002/document.

Full text
Abstract:
Les travaux effectués lors de cette thèse se sont focalisés sur les applications des méthodes et techniques d’Automatique avancée à des problématiques actuelles de l’automobile. Les sujets abordés ont porté sur trois axes fondamentaux en s’appuyant sur des techniques telles que la synthèse H infini LTI et q-LPV, la linéarisation par bouclage dynamique, la retouche de correcteurs de type PI en particulier et l’optimisation des pondérations des filtres nécessaires aux synthèses H infini :• Contrôle de la trajectoire d’un véhicule automobile. Nous avons proposé une structure de commande reprenant
APA, Harvard, Vancouver, ISO, and other styles
4

Fergani, Soheib. "Commande robuste LPV/H infini multivariable pour la dynamique véhicule." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENT053/document.

Full text
Abstract:
L'objectif principale de cette thèse est de développer contrôleurs innovants MIMO pour la dynamique véhicule tout en préservant la stabilité du véhicule dans les situations de conduite critiques. Des stratégies de commandes innovatrices ont été introduites pour résoudre cette problématiques. En effet, ces travaux se base sur travaux l'utilisation de la commande LPV/Hinf pour contrôler simultanément les actionneurs de freinage, braquage et de suspensions pour réaliser les objectives du contrôle.Aussi de stratégies d'estimation du profil de route très intéressant et qui peuvent apporter une solu
APA, Harvard, Vancouver, ISO, and other styles
5

Guthrie, Kyle Thomas. "Linear Parameter Varying Path Following Control of a Small Fixed Wing Unmanned Aerial Vehicle." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23740.

Full text
Abstract:
A mathematical model of a small fixed-wing aircraft was developed through application of parameter estimation techniques to simulated flight test data. Multiple controllers were devised based on this model for path following, including a self-scheduled linear parameter-varying (LPV) controller with path curvature as a scheduling parameter. The robustness and performance of these controllers were tested in a rigorous MATLAB simulation environment that included steady winds and gusts, measurement noise, delays, and model uncertainties. The linear controllers designed within were found to be robu
APA, Harvard, Vancouver, ISO, and other styles
6

Roche, Emilie. "Commande à échantillonnage variable pour les systèmes LPV : application à un sous-marin autonome." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00721970.

Full text
Abstract:
L'utilisation de correcteur discret à période d'échantillonnage variable peut être intéressante dans plusieurs cas, par exemple lorsque la mesure, bien qu'envoyée de façon périodique, est reçue à intervalle variable. C'est le cas en milieu marin lorsque la mesure d'altitude est effectuée avec un capteur à ultrason (la durée du trajet du signal dans l'eau dépend de la distance par rapport au fond). Le délai variable entre deux réceptions de mesures, peut être vu comme une variation de période d'échantillonnage pour le contrôleur. La synthèse de lois de commande discrète à période d'échantillonn
APA, Harvard, Vancouver, ISO, and other styles
7

Bui-Tuan, Viet Long. "Stability and stabilization of linear parameter-varying and time-varying delay systems with actuators saturation." Electronic Thesis or Diss., Amiens, 2022. http://www.theses.fr/2022AMIE0082.

Full text
Abstract:
La thèse est consacrée au développement d'une méthodologie de stabilité et de stabilisation pour les systèmes linéaires paramètres-dépendants et à retard soumis à la saturation de la commande. Dans le processus industriel, l'amplitude du signal de commande est généralement limitée par les contraintes de sécurité, les limites du cycle physique, etc. Pour cette raison, un outil de synthèse et d'analyse approprié est nécessaire pour décrire avec précision les caractéristiques des systèmes saturés à paramètres linéaires variables. Dans la première partie, une forme dépendante des paramètres de la
APA, Harvard, Vancouver, ISO, and other styles
8

Sigthorsson, David O. "Control-Oriented Modeling and Output Feedback Control of Hypersonic Air-Breathing Vehicles." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1228230786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pernin, Cécile. "Commande robuste pour un capteur inertiel résonant MEMS auto-oscillant et paramètres variants." Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2025. http://www.theses.fr/2025ECDL0010.

Full text
Abstract:
Les gyromètres CVG (en anglais Coriolis Vibratory Gyroscope) MEMS (en anglais Micro Electro Mechanical Systems) sont des capteurs micro-électroniques conçus pour mesurer une vitesse de rotation en utilisant l'effet Coriolis. Par rapport à d'autres types de gyromètres ils sont plus petits et moins chers, mais aussi moins performants. Un enjeu industriel important est de parvenir à améliorer leurs performances. Cela nécessite l'utilisation de deux lois de commande par rétroaction. La première doit permettre de faire osciller un système LTI (Linéaire Temps Invariant) du second ordre à sa pulsatio
APA, Harvard, Vancouver, ISO, and other styles
10

Hernandez, Torres David. "Commande robuste de générateurs électrochimiques hybrides." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENT075/document.

Full text
Abstract:
L'objectif de cette thèse est la conception, dans un premier temps, des différentes stratégies de commande pour un générateur hybride composé par une pile à combustible et une source auxiliaire de stockage d'énergie. L'outil des Inégalités Linéaires Matricielles (LMI) est utilisé dans la thèse pour la solution du problème de la commande robuste et multi-variables. Dans un premier temps la commande se consacre à la gestion de la partie électrique de la pile. Des stratégies de commande sont proposées pour les convertisseurs élévateurs du bus continu mais aussi pour le contrôle d'un onduleur de t
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Robust LPV Control"

1

Zhang, Hui, Rongrong Wang, and Junmin Wang. Robust Gain-Scheduled Estimation and Control of Electrified Vehicles via LPV Technique. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8509-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Junmin, Rongrong Wang, and Hui Zhang. Robust Gain-Scheduled Estimation and Control of Electrified Vehicles Via LPV Technique. Springer, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Robust LPV Control"

1

Gáspár, Péter, Zoltán Szabó, József Bokor, and Balázs Németh. "Robust Control of LPV Systems." In Robust Control Design for Active Driver Assistance Systems. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46126-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gáspár, Péter, Zoltán Szabó, József Bokor, and Balázs Németh. "Modeling of LPV Systems." In Robust Control Design for Active Driver Assistance Systems. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46126-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lovera, Marco, Marco Bergamasco, and Francesco Casella. "LPV Modelling and Identification: An Overview." In Robust Control and Linear Parameter Varying Approaches. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36110-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Henrion, Didier. "Positive Polynomial Matrices for LPV Controller Synthesis." In Robust Control and Linear Parameter Varying Approaches. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36110-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Halimi, Meriem, Gilles Millerioux, and Jamal Daafouz. "Polytopic Observers for LPV Discrete-Time Systems." In Robust Control and Linear Parameter Varying Approaches. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36110-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Németh, Balázs, and Péter Gáspár. "Guaranteeing Performance Requirements for Suspensions via Robust LPV Framework." In Advances in Industrial Control. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30537-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rotondo, Damiano. "Robust State-Feedback Control of Uncertain LPV Systems." In Advances in Gain-Scheduling and Fault Tolerant Control Techniques. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62902-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Formentin, Simone, Giulio Panzani, and Sergio M. Savaresi. "VRFT for LPV Systems: Theory and Braking Control Application." In Robust Control and Linear Parameter Varying Approaches. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36110-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Henry, David. "Design of Norm Based Fault Detection and Isolation LPV Filters." In Robust Control and Linear Parameter Varying Approaches. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36110-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rotondo, Damiano. "Fault Tolerant Control of LPV Systems Using Robust State-Feedback Control." In Advances in Gain-Scheduling and Fault Tolerant Control Techniques. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62902-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Robust LPV Control"

1

Chen, Runqi, Jing Chang, Xiaoping Li, and Weimin Bao. "LPV based Robust gain-schduled control for a Hypersonic morphing vehicle." In 2025 Joint International Conference on Automation-Intelligence-Safety (ICAIS) & International Symposium on Autonomous Systems (ISAS). IEEE, 2025. https://doi.org/10.1109/icaisisas64483.2025.11051669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Weixin, Juntao Pan, Yanzhen Song, Xueyuan Zhang, Xiangyuan Bian, and Xulang Gao. "Robust Fault- Tolerant Control Algorithm for Intelligent Vehicles Based on LPV Model." In 2024 8th CAA International Conference on Vehicular Control and Intelligence (CVCI). IEEE, 2024. https://doi.org/10.1109/cvci63518.2024.10830199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Téczely, Zoltán, and Bálint Kiss. "Subdivision of Nonlinear Systems into LPV and Uncertain Linear Subsystems for Robust Control." In 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT). IEEE, 2024. http://dx.doi.org/10.1109/codit62066.2024.10708288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Evangelisti, Luca, and Manuel Pusch. "Probabilistic Robust LPV Control." In 2021 American Control Conference (ACC). IEEE, 2021. http://dx.doi.org/10.23919/acc50511.2021.9483239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shi, Fengming, and Ron J. Patton. "A robust LPV fault detection approach using parametric eigenstructure assignment." In 2012 UKACC International Conference on Control (CONTROL). IEEE, 2012. http://dx.doi.org/10.1109/control.2012.6334675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Jin, and Donald J. Chmielewski. "Robust and LPV Economic Linear Optimal Control." In 2019 American Control Conference (ACC). IEEE, 2019. http://dx.doi.org/10.23919/acc.2019.8814984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bennani, S., D. Willemsen, C. Scherer, C. Scherer, S. Bennani, and D. Willemsen. "Robust LPV control with bounded parameter rates." In Guidance, Navigation, and Control Conference. American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-3641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Blesa, Joaquim, Yolanda Bolea, and Vicenc Puig. "Robust fault detection using interval LPV models." In European Control Conference 2007 (ECC). IEEE, 2007. http://dx.doi.org/10.23919/ecc.2007.7068814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wei, Xiukun, L. Del Re, and Jindong Tan. "Robust adaptive control of quasi-LPV systems." In 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE, 2005. http://dx.doi.org/10.1109/aim.2005.1511243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lejun Chen, R. J. Patton, and S. Klinkhieo. "Robust LPV Estimator Approach to Friction Diagnosis." In UKACC International Conference on CONTROL 2010. Institution of Engineering and Technology, 2010. http://dx.doi.org/10.1049/ic.2010.0279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!