Journal articles on the topic 'ROC1'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'ROC1.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Donaldson, Timothy D., Maher A. Noureddine, Patrick J. Reynolds, William Bradford, and Robert J. Duronio. "Targeted Disruption of Drosophila Roc1b Reveals Functional Differences in the Roc Subunit of Cullin-dependent E3 Ubiquitin Ligases." Molecular Biology of the Cell 15, no. 11 (November 2004): 4892–903. http://dx.doi.org/10.1091/mbc.e04-03-0180.
Full textWu, Kenneth, Serge Y. Fuchs, Angus Chen, Peilin Tan, Carlos Gomez, Ze'ev Ronai, and Zhen-Qiang Pan. "The SCFHOS/β-TRCP-ROC1 E3 Ubiquitin Ligase Utilizes Two Distinct Domains within CUL1 for Substrate Targeting and Ubiquitin Ligation." Molecular and Cellular Biology 20, no. 4 (February 15, 2000): 1382–93. http://dx.doi.org/10.1128/mcb.20.4.1382-1393.2000.
Full textMaeda, Ichiro, Tomohiko Ohta, Hirotaka Koizumi, and Mamoru Fukuda. "In vitro ubiquitination of cyclin D1 by ROC1-CUL1 and ROC1-CUL3." FEBS Letters 494, no. 3 (April 10, 2001): 181–85. http://dx.doi.org/10.1016/s0014-5793(01)02343-2.
Full textFukuchi, Minoru, Takeshi Imamura, Tomoki Chiba, Takanori Ebisawa, Masahiro Kawabata, Keiji Tanaka, and Kohei Miyazono. "Ligand-dependent Degradation of Smad3 by a Ubiquitin Ligase Complex of ROC1 and Associated Proteins." Molecular Biology of the Cell 12, no. 5 (May 2001): 1431–43. http://dx.doi.org/10.1091/mbc.12.5.1431.
Full textFurukawa, Manabu, Yanping Zhang, Joseph McCarville, Tomohiko Ohta, and Yue Xiong. "The CUL1 C-Terminal Sequence and ROC1 Are Required for Efficient Nuclear Accumulation, NEDD8 Modification, and Ubiquitin Ligase Activity of CUL1." Molecular and Cellular Biology 20, no. 21 (November 1, 2000): 8185–97. http://dx.doi.org/10.1128/mcb.20.21.8185-8197.2000.
Full textFurukawa, Manabu, and Yue Xiong. "BTB Protein Keap1 Targets Antioxidant Transcription Factor Nrf2 for Ubiquitination by the Cullin 3-Roc1 Ligase." Molecular and Cellular Biology 25, no. 1 (January 1, 2005): 162–71. http://dx.doi.org/10.1128/mcb.25.1.162-171.2005.
Full textTrupkin, Santiago A., Santiago Mora-García, and Jorge J. Casal. "The cyclophilin ROC1 links phytochrome and cryptochrome to brassinosteroid sensitivity." Plant Journal 71, no. 5 (July 6, 2012): 712–23. http://dx.doi.org/10.1111/j.1365-313x.2012.05013.x.
Full textFurukawa, Manabu, Yizhou Joseph He, Christoph Borchers, and Yue Xiong. "Targeting of protein ubiquitination by BTB–Cullin 3–Roc1 ubiquitin ligases." Nature Cell Biology 5, no. 11 (October 5, 2003): 1001–7. http://dx.doi.org/10.1038/ncb1056.
Full textChen, Angus, Kenneth Wu, Serge Y. Fuchs, Peilin Tan, Carlos Gomez, and Zhen-Qiang Pan. "The Conserved RING-H2 Finger of ROC1 Is Required for Ubiquitin Ligation." Journal of Biological Chemistry 275, no. 20 (March 13, 2000): 15432–39. http://dx.doi.org/10.1074/jbc.m907300199.
Full textHuang, J., and J. Chen. "VprBP targets Merlin to the Roc1-Cul4A-DDB1 E3 ligase complex for degradation." Oncogene 27, no. 29 (March 10, 2008): 4056–64. http://dx.doi.org/10.1038/onc.2008.44.
Full textHu, J., S. Zacharek, Y. J. He, H. Lee, S. Shumway, R. J. Duronio, and Y. Xiong. "WD40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1-CUL4-ROC1 ligase." Genes & Development 22, no. 7 (April 1, 2008): 866–71. http://dx.doi.org/10.1101/gad.1624008.
Full textPanasyuk, Ganna, Ivan Nemazanyy, Valeriy Filonenko, and Ivan Gout. "Ribosomal protein S6 kinase 1 interacts with and is ubiquitinated by ubiquitin ligase ROC1." Biochemical and Biophysical Research Communications 369, no. 2 (May 2008): 339–43. http://dx.doi.org/10.1016/j.bbrc.2008.02.016.
Full textZhang, Jingyang, Shuo Li, Zhaoyang Shang, Shan Lin, Peng Gao, Yi Zhang, Shuaiheng Hou, et al. "Targeting the overexpressed ROC1 induces G2 cell cycle arrest and apoptosis in esophageal cancer cells." Oncotarget 8, no. 17 (March 16, 2017): 29125–37. http://dx.doi.org/10.18632/oncotarget.16250.
Full textDou, Mingzhu, Shuai Cheng, Baotian Zhao, Yuanhu Xuan, and Minglong Shao. "The Indeterminate Domain Protein ROC1 Regulates Chilling Tolerance via Activation of DREB1B/CBF1 in Rice." International Journal of Molecular Sciences 17, no. 3 (February 25, 2016): 233. http://dx.doi.org/10.3390/ijms17030233.
Full textHiga, Leigh Ann A., Ivailo S. Mihaylov, Damon P. Banks, Jianyu Zheng, and Hui Zhang. "Radiation-mediated proteolysis of CDT1 by CUL4–ROC1 and CSN complexes constitutes a new checkpoint." Nature Cell Biology 5, no. 11 (October 26, 2003): 1008–15. http://dx.doi.org/10.1038/ncb1061.
Full textHu, Jian, Chad M. McCall, Tomohiko Ohta, and Yue Xiong. "Targeted ubiquitination of CDT1 by the DDB1–CUL4A–ROC1 ligase in response to DNA damage." Nature Cell Biology 6, no. 10 (September 26, 2004): 1003–9. http://dx.doi.org/10.1038/ncb1172.
Full textHe, Y. J., C. M. McCall, J. Hu, Y. Zeng, and Y. Xiong. "DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases." Genes & Development 20, no. 21 (November 1, 2006): 2949–54. http://dx.doi.org/10.1101/gad.1483206.
Full textJia, Lijun, and Yi Sun. "RBX1/ROC1-SCF E3 ubiquitin ligase is required for mouse embryogenesis and cancer cell survival." Cell Division 4, no. 1 (2009): 16. http://dx.doi.org/10.1186/1747-1028-4-16.
Full textNai, Gisele, and Mariângela Marques. "Role of ROC1 protein in the control of cyclin D1 protein expression in skin melanomas." Pathology - Research and Practice 207, no. 3 (March 2011): 174–81. http://dx.doi.org/10.1016/j.prp.2011.01.001.
Full textOzturk, N., S. J. VanVickle-Chavez, L. Akileswaran, R. N. Van Gelder, and A. Sancar. "Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila Cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex." Proceedings of the National Academy of Sciences 110, no. 13 (March 11, 2013): 4980–85. http://dx.doi.org/10.1073/pnas.1303234110.
Full textRuer, Ségolène, Silke Stender, Alain Filloux, and Sophie de Bentzmann. "Assembly of Fimbrial Structures in Pseudomonas aeruginosa: Functionality and Specificity of Chaperone-Usher Machineries." Journal of Bacteriology 189, no. 9 (February 9, 2007): 3547–55. http://dx.doi.org/10.1128/jb.00093-07.
Full textMorimoto, Mitsuru, Tamotsu Nishida, Yudai Nagayama, and Hideyo Yasuda. "Nedd8-modification of Cul1 is promoted by Roc1 as a Nedd8-E3 ligase and regulates its stability." Biochemical and Biophysical Research Communications 301, no. 2 (February 2003): 392–98. http://dx.doi.org/10.1016/s0006-291x(02)03051-6.
Full textTan, Peilin, Serge Y. Fuchs, Angus Chen, Kenneth Wu, Carlos Gomez, Ze’ev Ronai, and Zhen-Qiang Pan. "Recruitment of a ROC1–CUL1 Ubiquitin Ligase by Skp1 and HOS to Catalyze the Ubiquitination of IκBα." Molecular Cell 3, no. 4 (April 1999): 527–33. http://dx.doi.org/10.1016/s1097-2765(00)80481-5.
Full textOhta, Tomohiko, Jennifer J. Michel, Arndt J. Schottelius, and Yue Xiong. "ROC1, a Homolog of APC11, Represents a Family of Cullin Partners with an Associated Ubiquitin Ligase Activity." Molecular Cell 3, no. 4 (April 1999): 535–41. http://dx.doi.org/10.1016/s1097-2765(00)80482-7.
Full textWu, Kenneth, Angus Chen, and Zhen-Qiang Pan. "Conjugation of Nedd8 to CUL1 Enhances the Ability of the ROC1-CUL1 Complex to Promote Ubiquitin Polymerization." Journal of Biological Chemistry 275, no. 41 (July 31, 2000): 32317–24. http://dx.doi.org/10.1074/jbc.m004847200.
Full textKrönke, Jan, Anupama Narla, Slater N. Hurst, Namrata Udeshi, Monica Schenone, Marie McConkey, Peter Grauman, et al. "Inhibition of the CRBN-DDB1-CUL4-ROC1 E3 Ubiquitin Ligase Mediates the Anti-Proliferative and Immunomodulatory Properties of Lenalidomide." Blood 120, no. 21 (November 16, 2012): 919. http://dx.doi.org/10.1182/blood.v120.21.919.919.
Full textTakedachi, Arato, Masafumi Saijo, and Kiyoji Tanaka. "DDB2 Complex-Mediated Ubiquitylation around DNA Damage Is Oppositely Regulated by XPC and Ku and Contributes to the Recruitment of XPA." Molecular and Cellular Biology 30, no. 11 (April 5, 2010): 2708–23. http://dx.doi.org/10.1128/mcb.01460-09.
Full textHan, Xiao-Ran, Naoya Sasaki, Sarah C. Jackson, Pu Wang, Zhijun Li, Matthew D. Smith, Ling Xie, et al. "CRL4DCAF1/VprBP E3 ubiquitin ligase controls ribosome biogenesis, cell proliferation, and development." Science Advances 6, no. 51 (December 2020): eabd6078. http://dx.doi.org/10.1126/sciadv.abd6078.
Full textWang, Hengbin, Ling Zhai, Jun Xu, Heui-Yun Joo, Sarah Jackson, Hediye Erdjument-Bromage, Paul Tempst, Yue Xiong, and Yi Zhang. "Histone H3 and H4 Ubiquitylation by the CUL4-DDB-ROC1 Ubiquitin Ligase Facilitates Cellular Response to DNA Damage." Molecular Cell 22, no. 3 (May 2006): 383–94. http://dx.doi.org/10.1016/j.molcel.2006.03.035.
Full textWang, Yu, Mingjia Tan, Hua Li, Haomin Li, and Yi Sun. "Inactivation of SAG or ROC1 E3 Ligase Inhibits Growth and Survival of Renal Cell Carcinoma Cells: Effect of BIM." Translational Oncology 12, no. 6 (June 2019): 810–18. http://dx.doi.org/10.1016/j.tranon.2019.03.002.
Full textTan, M., S. W. Davis, T. L. Saunders, Y. Zhu, and Y. Sun. "RBX1/ROC1 disruption results in early embryonic lethality due to proliferation failure, partially rescued by simultaneous loss of p27." Proceedings of the National Academy of Sciences 106, no. 15 (March 26, 2009): 6203–8. http://dx.doi.org/10.1073/pnas.0812425106.
Full textShima, Yutaka, Takito Shima, Tomoki Chiba, Tatsuro Irimura, and Issay Kitabayashi. "PML Protects HIPK2 and p300 from SCF-Mediated Ubiquitin-Dependent Degradation To Activate Transcription." Blood 110, no. 11 (November 16, 2007): 2653. http://dx.doi.org/10.1182/blood.v110.11.2653.2653.
Full textHirose, Yuki, Tomohiro Kitazono, Maiko Sezaki, Manabu Abe, Kenji Sakimura, Hiromasa Funato, Hiroshi Handa, Kaspar E. Vogt, and Masashi Yanagisawa. "Hypnotic effect of thalidomide is independent of teratogenic ubiquitin/proteasome pathway." Proceedings of the National Academy of Sciences 117, no. 37 (August 26, 2020): 23106–12. http://dx.doi.org/10.1073/pnas.1917701117.
Full textWang, Wei, Zhihong Liu, Ping Qu, Zhengdong Zhou, Yigang Zeng, Jie Fan, Yong Liu, Yifeng Guo, and Jianxin Qiu. "Knockdown of Regulator of Cullins-1 (ROC1) Expression Induces Bladder Cancer Cell Cycle Arrest at the G2 Phase and Senescence." PLoS ONE 8, no. 5 (May 8, 2013): e62734. http://dx.doi.org/10.1371/journal.pone.0062734.
Full textYang, D., L. Li, H. Liu, L. Wu, Z. Luo, H. Li, S. Zheng, et al. "Induction of autophagy and senescence by knockdown of ROC1 E3 ubiquitin ligase to suppress the growth of liver cancer cells." Cell Death & Differentiation 20, no. 2 (August 31, 2012): 235–47. http://dx.doi.org/10.1038/cdd.2012.113.
Full textJia, Lijun, Maria S. Soengas, and Yi Sun. "ROC1/RBX1 E3 Ubiquitin Ligase Silencing Suppresses Tumor Cell Growth via Sequential Induction of G2-M Arrest, Apoptosis, and Senescence." Cancer Research 69, no. 12 (June 9, 2009): 4974–82. http://dx.doi.org/10.1158/0008-5472.can-08-4671.
Full textGoldenberg, Seth J., Thomas C. Cascio, Stuart D. Shumway, Kenneth C. Garbutt, Jidong Liu, Yue Xiong, and Ning Zheng. "Structure of the Cand1-Cul1-Roc1 Complex Reveals Regulatory Mechanisms for the Assembly of the Multisubunit Cullin-Dependent Ubiquitin Ligases." Cell 119, no. 4 (November 2004): 517–28. http://dx.doi.org/10.1016/j.cell.2004.10.019.
Full textWu, Kenneth, Angus Chen, Peilin Tan, and Zhen-Qiang Pan. "The Nedd8-conjugated ROC1-CUL1 Core Ubiquitin Ligase Utilizes Nedd8 Charged Surface Residues for Efficient Polyubiquitin Chain Assembly Catalyzed by Cdc34." Journal of Biological Chemistry 277, no. 1 (October 23, 2001): 516–27. http://dx.doi.org/10.1074/jbc.m108008200.
Full textFurukawa, Manabu, Tomohiko Ohta, and Yue Xiong. "Activation of UBC5 Ubiquitin-conjugating Enzyme by the RING Finger of ROC1 and Assembly of Active Ubiquitin Ligases by All Cullins." Journal of Biological Chemistry 277, no. 18 (February 22, 2002): 15758–65. http://dx.doi.org/10.1074/jbc.m108565200.
Full textFurukawa, Manabu, Yanping Zhang, Joseph McCarville, Tomohiko Ohta, and Yue Xiong. "The CUL1 C-Terminal Sequence and ROC1 Are Required for Efficient Nuclear Accumulation, NEDD8 Modification, and Ubiquitin Ligase Activity of CUL1." Molecular and Cellular Biology 20, no. 21 (2000): 8185–97. http://dx.doi.org/10.1128/.20.21.8185-8197.2000.
Full textIto, Momoyo, Naoki Sentoku, Asuka Nishimura, Soon-Kwan Hong, Yutaka Sato, and Makoto Matsuoka. "Position dependent expression of GL2-type homeobox gene, Roc1: significance for protoderm differentiation and radial pattern formation in early rice embryogenesis." Plant Journal 29, no. 4 (February 2002): 497–507. http://dx.doi.org/10.1046/j.1365-313x.2002.01234.x.
Full textRibar, Balazs, Louise Prakash, and Satya Prakash. "ELA1 and CUL3 Are Required Along with ELC1 for RNA Polymerase II Polyubiquitylation and Degradation in DNA-Damaged Yeast Cells." Molecular and Cellular Biology 27, no. 8 (February 12, 2007): 3211–16. http://dx.doi.org/10.1128/mcb.00091-07.
Full textLin, Hong, Xiaozhe Zhang, Li Liu, Qiuyu Fu, Chuanlong Zang, Yan Ding, Yang Su, et al. "Basis for metabolite-dependent Cullin-RING ligase deneddylation by the COP9 signalosome." Proceedings of the National Academy of Sciences 117, no. 8 (February 11, 2020): 4117–24. http://dx.doi.org/10.1073/pnas.1911998117.
Full textAppleman, Leonard J., Irene Chernova, Lequn Li, and Vassiliki Boussiotis. "CD28 Costimulation Induces Transcription of SKP2 and CKS1, the Substrate Recognition Components of the Skp1-Cullin-F-box Ubiquitin Ligase, SCFSkp2." Blood 108, no. 11 (November 16, 2006): 869. http://dx.doi.org/10.1182/blood.v108.11.869.869.
Full textKobayashi, Akira, Moon-Il Kang, Hiromi Okawa, Makiko Ohtsuji, Yukari Zenke, Tomoki Chiba, Kazuhiko Igarashi, and Masayuki Yamamoto. "Oxidative Stress Sensor Keap1 Functions as an Adaptor for Cul3-Based E3 Ligase To Regulate Proteasomal Degradation of Nrf2." Molecular and Cellular Biology 24, no. 16 (August 15, 2004): 7130–39. http://dx.doi.org/10.1128/mcb.24.16.7130-7139.2004.
Full textBoyer, Laurent, Sara Travaglione, Loredana Falzano, Nils C. Gauthier, Michel R. Popoff, Emmanuel Lemichez, Carla Fiorentini, and Alessia Fabbri. "Rac GTPase Instructs Nuclear Factor-κB Activation by Conveying the SCF Complex and IkBα to the Ruffling Membranes." Molecular Biology of the Cell 15, no. 3 (March 2004): 1124–33. http://dx.doi.org/10.1091/mbc.e03-05-0301.
Full textChen, Ping, Xiaoting Luo, Zhihui Che, Wenli Zhang, Fuchen Liu, Daisen Hou, Dongqin Yang, and Jie Liu. "Targeting of the C-Jun/BCL-XL/P21 Axis Accelerates the Switch from Senescence to Apoptosis Upon ROC1 Knockdown in Gastric Cancer Cells." Cellular Physiology and Biochemistry 48, no. 3 (2018): 1123–38. http://dx.doi.org/10.1159/000491979.
Full textCarrano, Andrea C., and Michele Pagano. "Role of the F-Box Protein Skp2 in Adhesion-Dependent Cell Cycle Progression." Journal of Cell Biology 153, no. 7 (June 18, 2001): 1381–90. http://dx.doi.org/10.1083/jcb.153.7.1381.
Full textMcCall, Chad M., Paula L. Miliani de Marval, Paul D. Chastain, Sarah C. Jackson, Yizhou J. He, Yojiro Kotake, Jeanette Gowen Cook, and Yue Xiong. "Human Immunodeficiency Virus Type 1 Vpr-Binding Protein VprBP, a WD40 Protein Associated with the DDB1-CUL4 E3 Ubiquitin Ligase, Is Essential for DNA Replication and Embryonic Development." Molecular and Cellular Biology 28, no. 18 (July 7, 2008): 5621–33. http://dx.doi.org/10.1128/mcb.00232-08.
Full textUlane, Christina M., Alex Kentsis, Cristian D. Cruz, Jean-Patrick Parisien, Kristi L. Schneider, and Curt M. Horvath. "Composition and Assembly of STAT-Targeting Ubiquitin Ligase Complexes: Paramyxovirus V Protein Carboxyl Terminus Is an Oligomerization Domain." Journal of Virology 79, no. 16 (August 15, 2005): 10180–89. http://dx.doi.org/10.1128/jvi.79.16.10180-10189.2005.
Full text