Dissertations / Theses on the topic 'Roches – Fracturation – Simulation par ordinateur'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 32 dissertations / theses for your research on the topic 'Roches – Fracturation – Simulation par ordinateur.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Blessent, Daniela. "Integration of 3D geological and numerical models based on tetrahedral meshes for hydrogeological simulations in fractured porous media." Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26468/26468.pdf.
Full textZhang, Yulong. "Contribution à l'étude de déformation et de rupture des roches par une approche discrète." Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1I045/document.
Full textIn this work, a new bond model with nonlinear shear failure criterion is first proposed and implemented in PFC for describing mechanical behavior of isotropic cohesive granular materials such as sandstone. A large number of compression tests have been performed on 3D samples. The results show that the effect of confining pressure on compressive strength and failure pattern is well described by the proposed bond model. Effects of loading path and the intermediate principal stress on deformation and failure have been also investigated. After further extending parameters on elastic and strength, two bond models: the proposed bond model and the improved smooth joint model, are coupled to character the anisotropy of strength and deformation in anisotropic cohesive materials such as sedimentary rocks. A series of conventional triaxial compression tests with different loading paths have been performed and numerical results are in good agreement with experimental data, especially for elastic response and strength properties. The failure mode transformation between weakness layer and rock matrix under different confining pressures has been well described. Furthermore, the proposed bond model has been extended to study hydraulic fracturing process in cohesive materials. A representative hydraulic fracture propagation process has been presented. Influences of different factors, such as confining pressure, fluid viscosity and fluid injection rate, on hydraulic fracture extension have been investigated. Finally, we have developed a dimensional reconstruction method of block shape irregularity and studied its effects on block impacts using an energy based approach
Semlali, Bouchaib. "Caractérisation et modélisation spatiale de la broyabilité des massifs rocheux : cas de la mine Troilus." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24481/24481.pdf.
Full textFouial, Karim. "Nouvelle méthode d'interprétation des mesures des contraintes par surcarottage adaptée aux roches à comportement non linéaire ou fracturées." Vandoeuvre-les-Nancy, INPL, 1997. http://www.theses.fr/1997INPL109N.
Full textMustapha, Hussein. "Simulation numérique de l'écoulement dans des milieux fracturés tridimensionnels." Rennes 1, 2005. http://www.theses.fr/2005REN1S166.
Full textHoxha, Dashnor. "Modélisation de l'endommagement des massifs rocheux." Vandoeuvre-les-Nancy, INPL, 1998. http://www.theses.fr/1998INPL087N.
Full textAbdallah, Mirvat. "Etude et renforcement des massifs rocheux sous chargement sismique : application à l’analyse de la vulnérabilité des massifs rocheux au Liban." Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10091.
Full textLebanon is characterized by high-urbanized mountains, which could be subjected to severe earthquakes, because of the presence of a major fault and some secondary faults. Lebanon was previously subjected to several destructive earthquakes, particularly in 551, 1202, 1759 and 1837 and more recently in the years 1956 and 2008. Experts predict a major seismic event in the future. Prevention constitutes an efficient way to minimize the earthquake consequences (casualties and property damage). This thesis aims to develop a methodological approach for the seismic stability of fractured rocks and to apply this methodology to the analysis of real case in Lebanon. The work is based on an advanced numerical modeling using the UDEC software to analyze the behavior of massive fractured rocks under seismic loading, taking into account the presence of water in the fractures. Due to lack of field data, significant work has also been devoted to the collection of data collection related to mechanical properties of the materials and joints. The first part of the thesis presents a literature review of the characterization of the rock discontinuities and methods used for the analysis of the stability of fractured rock masses. The second part presents seismic analysis of a real case in South Lebanon (Jezzine). Numerical calculations were carried on different configurations: rock mass without fractures, rock mass with horizontal fractures and rock mass with both horizontal and vertical fractures. Analysis was also conducted on the use of anchors for the rock mass stabilization. The last part presents a study of the influence of the presence of water on the seismic behavior of fractured rock masses
Savard, Catherine. "Modélisation numérique 3D de l'écoulement et des échanges isotopiques dans des réseaux de fractures." Thesis, Université Laval, 2006. http://www.theses.ulaval.ca/2006/23838/23838.pdf.
Full textLefort, Vincent. "Un modèle lattice pour simuler la propagation de fissures sous l’effet d’une injection de fluide dans un milieu hétérogène quasi-fragile." Thesis, Pau, 2016. http://www.theses.fr/2016PAUU3011/document.
Full textThis research study aims at developing a lattice-type numerical model allowing the simulation of crack propagation under fluid injection in a quasi-brittle heterogeneous medium. This numerical tool will be used to get a better understanding of initiation and propagation conditions of cracks in rock materials presenting natural joints where the coupling between mechanical damage and fluid transfer properties are at stake. If the final goal of the study does concern natural rocks, the model has been validated by different comparisons with experimental results obtained on cementitious materials mimicking natural rocks in term of mechanical and transport behaviours but presenting heterogeneities which are better controlled. The first part of the manuscript presents a general state of the art. The second part of the manuscript is dedicated to the study of crack propagation in quasi-brittle materials where a significant fracture process zone is evolving upon failure. Only the solid phase is studied here and a statistical tool based on Ripley’s functions is adapted in order to extract a characteristic length representative of the correlations appearing between a set of point undergoing mechanical damage. This tool is then used in the context of numerical and experimental fracture tests on 3 point bending concrete beams. The results show that the lattice-type numerical model is able to capture the global fracture process – in term of force vs. crack opening mouth displacement – but also the local fracture process – in term of dissipated energy and correlation length evolution between damage points. Moreover, this statistical tool shows how the solicitation mode may influence the development of damage within a structure. The third part presents a new elasto-plastic damage constitutive law for joint modelling. The originality of the model lies in the coupling between mechanical damage under normal strain and plasticity under tangential strain. This new constitutive law is able to reproduce indirect shear experimental tests performed on mortar specimens presenting a plaster joint where a classical Mohr-Coulomb criterion fails. The fourth part is dedicated to the representation of the full hydro-mechanical coupling within the lattice-type numerical model. The hydro-mechanical coupling is introduced through a poromechanical framework based on the intrinsic and dual hydro-mechanical description of the lattice model, which is based on a "hydraulic" Voronoï tessellation and a "mechanical" Delaunay triangulation. The total stress links the mechanical stress and the pore pressure through the Biot coefficient of the medium whereas the local permeability, which drives the hydraulic pressure gradient, depends on the local crack openings. The numerical results are compared with analytical solutions from the literature for "bi-wings" shape cracks and it is shown that both approaches present similar results for a perfect straight crack. Once the lattice-model has been successfully validated within the former parts of the manuscript, its fifth and last part is dedicated to the numerical simulation of the fully hydro-mechanical coupling problem of a free crack propagation due to fluid injection and its interaction with a natural joint in an heterogeneous rock medium. Different crack paths, which are not pre-meshed a priori, and different pressure profiles are obtained and compared for different joint inclinations. Finally, our statistical tool, which has been primarily developed for the analysis of the failure behaviour of the solid phase, is used to characterise the evolution of correlation lengths between points undergoing damage upon the crack propagation and its interaction with a natural joint. It is shown that the hydro-mechanical lattice model is able to represent different mechanism of crack stop and restart from a joint depending on its inclination
Paul, Bertrand. "Modélisation de la propagation de fractures hydrauliques par la méthode des éléments finis étendue." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0182/document.
Full textThe permeability of rocks is widely affected by the presence of fractures as it establishes prevailing paths for the fluid flow. Natural cracks are then a critical factor for a reservoir productiveness. For low permeability rocks, stimulation techniques such as hydrofracturing have been experienced to enhance the permeability, so that the reservoir becomes profitable. In the opposite, when it comes to geological storage, the presence of cracks constitutes a major issue since it encourages the leak and migration of the material spread in the rock. In the case of CO2 storage, the scenario of leakage across the reservoir seal through cracks or revived faults is a matter of great concern. And as for nuclear waste storage, the fluid circulation in a fracture network around the storage cavity can obviously lead to the migration of toxic materials. It is then crucial to predict the effects of the presence of cracks in a reservoir. The main purpose of this work is the design of a numerical tool to simulate a crack network and its evolution under hydromechanical loading. To achieve this goal we chose the eXtended Finite Element Method (XFEM) for its convenience, and a cohesive zone model to handle the crack tip area. The XFEM is a meshfree method that allows us to introduce cracks in the model without necessarily remeshing in case of crack propagation. The fluid flow in the crack as well as the exchanges between the porous rock and the crack are accounted for through an hydro-mechanical coupling. The model is validated with an analytical asymptotic solution for the propagation of a plane hydraulic fracture in a poroelastic media, in 2D as well as in 3D. Then we study the propagation of hydraulic fractures on non predefined paths. The cracks are initially introduced as large potential crack surfaces so that the cohesive law will naturally separate adherent and debonding zones. The potential crack surfaces are then updated based on a directional criterion appealing to cohesive integrals only. Several examples of crack reorientation and competition between nearby cracks are presented. Finally, we extend our model to account for the presence of fracture junctions
Dautriat, Jérémie. "Comportement hydromécanique de roches réservoir sous contraintes : relations entre évolution de perméabilité et échelles des mécanismes d'endommagement." Palaiseau, Ecole polytechnique, 2009. http://tel.archives-ouvertes.fr/docs/00/38/57/77/PDF/Manuscrit_These_Dautriat.pdf.
Full textThe Understanding and the prevention of damage mechanisms, which have an impact on the kinetics of production and the rate of recovery, remain an outstanding issue in reservoir engineering. The aim of this study, based on the characterization of the hydromechanical behaviour of sandstone and carbonate rocks in 'reservoir conditions', is the identification of the local mechanisms responsible for changes in permeability measured macroscopically. The experimental work was performed with an original triaxial set-up, which allows measurements of the stress-induced permeability evolutions in the principal directions of the stress tensor. A first experimental campaign, consisting in hydrostatic and uniaxial compression tests, has been performed on Fontainebleau and Bentheim sandstones. In one hand, we showed that experimental end-effects might affect significantly the ‘classical' axial permeability measurements, and in the other hand, we have determined the impact of brittle failure on directional permeabilities. Compression experiments, following different stress-paths, were also carried out on a carbonate, the Estaillades limestone. In elastic deformation regime, the reduction of permeability was modelized by pore network simulations, based on 3D reconstructions of μ-tomography RX and a simplified representation of the pore space. While brittle fracture of carbonate samples induced slight permeability evolutions, at higher effective pressure, permeability drops can reach 90% to the initial values and are associated with mechanisms of pore collapse. The post-mortem analysis of deformed samples, coupled with digital image correlation methods, using both SEM and Optical acquisition devices, provide a better understanding of the role of the heterogeneities, identified at different scales, in the strain localization and their potential impacts on permeability changes at the sample scale
Descantes, Yannick. "Etude expérimentale et théorique des mécanismes gouvernant l'initiation et la propagation contrôlées de fractures dans le granite de Vire par injection quasi-statique d'eau." Lyon, INSA, 1998. http://www.theses.fr/1998ISAL0047.
Full textRock fracture controlled growth is fundamental for several industries, among which dimension stone, civil engineering and oil industries. Unfortunately, controlled fracture growth is not fully achieved yet and still requires some investigation. Controlled fracture growth is related to fracturing techniques; mainly mining and hydraulic fracturing that can be considered as techniques of crack initiation and propagation from a borehole using fluid pressure loading. Consequently, a theoretical and experimental analysis of the mechanisms of crack initiation and propagation from a fluid pressurized borehole has been achieved. The analysis involved a review of previous work, conception and completion of a laboratory hydraulic fracturing testing program on granite blocks with specific instrumentation and a theoretical study of crack curvature involving anisotropy. The main experimental results are that cracks initiation and propagation around a borehole tend to be more symmetric with low injection rate, but also less simultaneous along the borehole's length. Cracks orientation seems to slightly deviate from expected plane of symmetry. With constant injection rate, cracks propagation occurs at constant or slightly increasing pressure. Crack speed control can be achieved using fine injection rate control. For a 12 mm borehole diameter with 4 mm grooves, the critical pressure lies between 7, 3 and 9,9 MPa. Maximum crack opening displacement measured during each test in several points, including points located inside the block, is in the order of a few tens of micrometers. From a theoretical standpoint, fracture curvature calculus doesn't exactly lead to the observed deviations, which are indeed very small. Nevertheless, anisotropic calculi show some sensibility to the variations of orthotropic model parameters, in the order of the observed deviations. Therefore the difference between anisotropic calculi results and observed deviations may not be significant
Kharroubi, Adel. "Influence de la dépressurisation sur la perméabilité des roches réservoir : Application à un gisement HP-HT." ENSMP, 1997. http://www.theses.fr/1997ENMP0740.
Full textDuring the depletion of petroleum, pore pressure decline and effective stresses increase. This supplementary loading induces a compaction of reservoir rock and, consequently, a reduction of permeability. Compaction of the reservoir alsO leads to a lowering of the ground level called subsidence. The first objective of this work is to quantify, using laboratory tests, the effect of depletion on reservoir rock permeability. A number of lab tests simulating real depletion are done (loading in done by decreasing pore pressure). Two rock-types (sandstones) are tested. Poro-elastic properties and absolute permeability are measured under a uniaxial compaction mode. Then the experimental results are used to derive two empirical laws relating permeability evolution to porosity decrease. The first law, based on Kozeny-Carmann relation, gives a good fit between measured and predicted peremability values but it can only estimate the permeability reduction associated to final state of stresses (abandoning pressure). The second relation is a "power" model which links permeability reduction to porosity. This model gives a very good fit and enables the estimation of the intermediates states. As a conclusion, this study demonstrates that the permeability variation can be linked to porosity variation (or deformation). Numerical simulations are carried out to calculate the compaction and subsidence of a HP-HT reservoir (high pressure and high temperature reservoir). In a second time, hydromechanical coupled simulation shows the effect of permeability reduction on the reservoir pressure decline. So, this study proves that permeability reduction must be taken into account wen simulating reservoir production
Bohatier, Claude. "Etude des grandes déformations de solides viscoplastiques, contacts dissipatifs et évolutifs, extension au comportement élasto-viscoplastique." Nice, 1986. http://www.theses.fr/1986NICE4015.
Full textMimoun, Abdelghani. "Modélisation du soutenement par boulonnage dans les ouvrages souterrains profonds : cas de la mine de charbon H.B.C.M. France." Vandoeuvre-les-Nancy, INPL, 2000. http://www.theses.fr/2000INPL112N.
Full textUrgelli, Denise. "Prise en compte des hétérogénéités par prise de moyenne des transmissivités sur maillages adaptés en simulation de réservoir." Aix-Marseille 1, 1998. http://www.theses.fr/1998AIX11039.
Full textZhou, Bo. "Étude de la migration secondaire du pétrole : expérience de laboratoire, analyse théorique et applications actuelles." Montpellier 2, 2005. http://www.theses.fr/2005MON20156.
Full textNguyen, Anh Tuan. "Influence des incertitudes géométriques et de la méthode de modélisation dans l'analyse de stabilité des talus rocheux : application aux mines à ciel ouvert." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0296/document.
Full textThe stability of open-cast operations (mines or quarries), excavated in rock mass depends on their geometry, the geometrical characteristics of the rock mass fractures (orientation and spacing) and the mechanical characteristics of the rock mass and the discontinuities. The assessment of the rock instability risk depends on the quantity and quality of the available information on the rock mass and the analysis methods used for the evaluation of the mechanical behavior of the rock block collection. Different sites of natural rock slopes, of road cuts, and of open-cast mines and quarries, described in the present document, show that the known information can vary a lot from one site to the other. The steps of data gathering and analysis, then the modelling step used to analyze the stability of the rock slope, lead to uncertainties. The present work deals in particular with the influence of the geometrical uncertainties, and the different clustering methods, to define families of fractures, are examined. The combination of works suggested by several authors leads to a new method called PSMY. This method, together with the spectral method, was coded in the Mathematica platform, and the obtained results are compared with "hand-made" clusters, done with the DIPS software. The clustering methods are presented according to the ratio of classified orientations. The orientation and spacing of fracture families are fitted by statistical law. The statistical parameters are compared according to the clustering method used. These parameters have an influence on the construction of the rock mass geometrical model, called DFN (Discrete Fracture Network). The influence of the clusters on the stability analysis is studied from the stochastic models based on the limit equilibrium analysis, in the SWEDGE and RESOBLOK software. These programs do not take into account the same uncertainties, and as a result, they give different stability indicators. A sensitivity analysis of these indicators (number of unstable blocks, average volume of unstable blocks, and total volume of unstable blocks) versus the clustering methods used, and the orientation of the slopes, is carried out. A variance analysis allows an evaluation of the influence of these factors. The assessment of the global stability condition of the rock mass, depending on the cohesion and the friction angle, is proposed. The influence of the modeling method is analyzed by comparing 3D calculations using the limit equilibrium calculations, and 2D and 3D models using discrete rigid and deformable blocks. A coupling between RESOBLOK (limit equilibrium) and LMGC90 (discrete elements) allows the comparison of results on the same original geometry. For the case of Ax-les-Thermes road-cut, and for various unstable geometries, the influence of the model parameters is tested. Several cases are compared. The 3D simulation of an excavation, at different steps, is performed, and the mobilization index is studied, in order to compare several types of contacts, within the LMGC model, in relation to the possible sliding of blocks, at those different steps
Chavez-Garcia, Francisco J. "Diffraction et amplification des ondes sismiques dans le bassin de Mexico." Grenoble 1, 1991. http://www.theses.fr/1991GRE10077.
Full textBaudel, Sophie. "Contribution à l'analyse et à la modélisation des phénomènes physico-chimiques liés à l'hydrothermalisme océanique." Toulouse, INPT, 1989. http://www.theses.fr/1989INPT004G.
Full textJia, Yun. "Contribution à la modélisation thermo-hydro-mécanique des roches partiellement saturées : application au stockage des déchets radioactifs." Lille 1, 2006. https://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/bf9141e8-50b7-4681-a346-3bfb1c214d7c.
Full textDurinck, Julien. "Modélisation de la plasticité de la forsterite par calculs à l'échelle atomique et par dynamique des dislocations." Lille 1, 2005. https://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/9fd43a9a-26ef-450b-93e3-5ad8c43033b0.
Full textNechnech, Ammar. "Modélisation numérique du problème du surcarottage : influence de la loi de comportement de la roche." Vandoeuvre-les-Nancy, INPL, 1998. http://docnum.univ-lorraine.fr/public/INPL_T_1998_NECHNECH_A.pdf.
Full textKraych, Antoine. "Modélisation à l’échelle atomique du rôle des dislocations dans la déformation de la bridgmanite." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10091/document.
Full textHeat transfer through the mantle is carried by convection, which involves plastic flow of the mantle constituents. In this study, we model the mobility of dislocations, and their role in the plastic deformation of bridgmanite, the most abundant constituent of the lower mantle. The dislocation structures at the atomic scale control their mobility, and hence their influence on the material’s deformation. We determine the structure of dislocations at pressure relevant for the lower mantle, by modeling these defects at the atomic scale with molecular static calculations. The thermally-activated mechanism of dislocation glide in bridgmanite, the kink-pair nucleation, is assessed by coupling a continuous model to the fundamental properties of dislocations. These results allow to estimate the glide velocity of dislocations, as a function of pressure and temperature. The model is able to reproduce the yield stress measured in laboratory deformation experiments. The model is also able to estimate the stress level needed to deform bridgmanite by dislocation glide at mantle conditions, and allows us to discuss their role in the deformation of the Earth’s lower mantle
Kalo, Kassem. "Caractérisation microstructurale et modélisation micromécanique de roches poreuses oolithiques." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0203/document.
Full textThe aim of this work is to study the influence of the microstructure of heterogeneous porous rocks on the behavior at the macroscopic scale. Thus, we characterized the microstructure and micromechanical properties (thanks to nano-indentation tests) of two porous oolitic rocks (Lavoux limestone and iron ore) to calculate their effective mechanical and thermal properties. Oolitic rocks are constituted by an assemblage of porous grains (oolites), pores and inter-granular crystals. Scanning electron microscopy and X-ray 3D Computed Tomography were used to identify the different components of these rocks. Particular attention was given to X-Ray computed tomography since this analytical method allows the characterization of the porous network (size, spatial distribution, and volume fraction), and the shapes of oolites and inter-oolitic crystals. The novelty of this work lies in taking into account the 3D real shape of pores. Hence, we approximated porous oolites by spheres and irregularly shaped pores by ellipsoids. This approximation was performed thanks to the principal component analysis (PCA), which provides the geometrical properties such as length of semi-axes and orientation of resulting ellipsoids. The sphericity of the approximated oolites was calculated and the values close to 1 allowed us to consider oolites as spheres. To verify the approximation in the case of pores, we evaluated the contribution of these irregularly shaped three-dimensional pores to the overall elastic properties. Thus, compliance contribution tensors for 3D irregular pores and their ellipsoidal approximations were calculated using the finite element method (FEM). These tensors were compared and a relative error was estimated to evaluate the accuracy of the approximation. This error produces a maximum discrepancy of 4.5% between the two solutions for pores and ellipsoids which verifies the proposed approximation procedure based on PCA. The FEM numerical method was verified by comparing the numerical solution for compliance contribution tensors of ellipsoids to the analytical solution based on Eshelby’s theory. The difference between these two solutions does not exceed 3%. The same numerical method was used to calculate thermal resistivity contribution tensors. Calculated compliance and resistivity contribution tensors were used to evaluate effective elastic properties (bulk modulus and shear coefficient) and effective thermal conductivity by considering the two-step Maxwell homogenization scheme. The results showed an important influence of the porosity on effective properties. Finally, the results obtained for irregular pores were compared to those for ellipsoidal ones and they showed a good agreement with a maximum deviation of 4% which verifies once again the approximation of irregularly shaped pores by tri-axial ellipsoids
Soret, Mathieu. "Evolution pétrologique et déformation des semelles métamorphiques des ophiolites : mécanismes d'accrétion et couplage à l'interface des plaques lors de l'initiation de la subduction." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066605/document.
Full textMetamorphic soles are m to ~500 m thick tectonic slices welded beneath most large-scale ophiolites (usually ≤ 20 km thick). They typically show a steep inverted metamorphic structure where the pressure (P) and temperature (T) conditions of crystallization increase upward, from the base of the sole (500±100ºC at 0.5±0.2 GPa) to the contact with the overlying peridotite (800±100ºC at 1.0±0.2 GPa). Soles are interpreted as a result of heat transfer from the incipient mantle wedge toward the nascent slab during the first My of intra-oceanic subduction. Metamorphic soles are therefore direct witnesses of petrological processes during early subduction. Their mineralogical assemblage and deformation pattern provide major constraints on the evolution of the thermal structure, on the migration of fluids and on the effective rheology along the nascent slab interface. We present a detailed petrological, (micro-)structural and experimental study, with refined P–T estimates obtained with pseudosection modelling and EBSD measurements, on the garnet-bearing and garnet-free (natural and synthetized) amphibolite. We suggest a new tectonic–petrological model for the formation of metamorphic soles below ophiolites, which involves the stacking of several homogeneous slivers (without any T gradient) of oceanic crust to form the present-day structure of the sole. These successive thrusts are the result of rheological contrasts between the slab material and the peridotites of the upper plate as the plate interface progressively cools. This model outlines the thermal and mechanical complexity of the early subduction dynamics, and highlights the need for more refined numerical modelling studies
Bargui, Henda. "Modélisation des comportements mécaniques et hydrauliques de massifs rocheux simulés par des assemblages de blocs rigides : Introduction d'un couplage hydro-mécanique." Phd thesis, Ecole Nationale des Ponts et Chaussées, 1997. http://tel.archives-ouvertes.fr/tel-00529406.
Full textMohamad-Hussein, Assef. "Modélisation du comportement mécanique des géomatériaux semi-fragiles soumis à des sollicitations mécaniques et à la dégradation chimique." Lille 1, 2007. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2007/50376-2007-Mohamad_Hussein.pdf.
Full textKayad, Moussa Ahmed. "Influence de la température sur l'activité micro-sismique dans un réservoir fracturé lors d'injections de longue durée. Application aux données du site de Rosemanowes (UK). Première approche d'un site potentiel dans le rift d'Assal (Djibouti)." Thesis, Paris, ENMP, 2013. http://www.theses.fr/2013ENMP0084/document.
Full textThe general framework of our research deals with the development of geothermal energy for electricity production using the heat stored in geological formations at depths ranging in 3 to 5 km, Generally the environment is poorly permeable and fractured. Our main objective is to study the phenomenon of induced micro-earthquakes in relation to the cooling of the rock. The work is based on field experiences including long duration tests, conducted on the Rosemanowes site (Cornwall, UK). For this, we proceeded to the development of a calculation tool, FRACAS, able to simulate this phenomenon by introducing a dual thermal approach to better simulate the cooling of the reservoir due to long term fluid injections, which might be responsible for new failure mechanisms due to the induced tractions. In this context, we introduced a new algorithm to describe shear in stabilities, a mechanism of "stick-slip" type with the consideration of static/dynamic friction coefficients. The possibility of inducing micro-seismicity is then studied using the in situ data base, with two 3D models offering different geometric approaches, a deterministic model and a stochastic model whose geometrical and physical properties were obtained from observations and previous work on this Rosemanowes site. The Thermo-Hydro-Mechanical (THM) simulation using the deterministic model has allowed us to calibrate the transient heat transfer in the reservoir formed by the drilling system RH12/RH15 and to give an estimate of tensile stress of thermal origin. To better study the effect induced by the contraction of the rock during time, we use the stochastic 3D model whose main objective is to simulate a more realistic spatial migration of shear ruptures. With this model we found a delayed onset of shear activity and discuss the effect of pressure step tests. The results suggest a way to mitigate the potential impact of shear ruptures due to cooling
Ahmed, Samar. "Numerical modeling of stress redistribution to assess pillar rockburst proneness around longwall panels : Case study of the Provence coal mine, France." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0248/document.
Full textRockburst is a violent explosion of rock that can occur in underground mines. In the current research, the main objective is to demonstrate the causes that may influence the rockburst proneness by using the numerical modeling tool. However, firstly, the pre-mining stress state and the induced stresses due to surrounding excavations have to be studied precisely. The Provence coal mine, where a rockburst took place in its shaft station that is surrounded by many longwall caving panels, has been chosen as a case study. A large-scale 3D numerical model has been constructed to include the shaft station area with its small-scale pillars and galleries, and the large-scale longwall panels with their accompanying goaf area. Many problems appeared while developing such large-scale numerical model, the first problem was the initialization of stress state at a large-scale, where the measured vertical stresses are in disagreement with the overburden weight, and the in-situ stresses are highly anisotropic. The second problem was the simulation of the goaf area accompanying longwall panels. The third problem was the assessment of pillars instability in terms of its strength/average stress ratio, and its volume. The Fourth problem was the assessment of rockburst proneness in the shaft station based on different rockburst criteria. Five methods were developed to initialize the heterogeneous pre-mining stress in the large-scale numerical model. These methods are based on the Simplex Method, which is mainly based on optimizing the difference between the in-situ measured stress values and the numerical stress values to develop stress gradients able to express the stress heterogeneity and compatible with the in-situ measurements. The method that is based on initiating the stress state with 3D stress gradients was found to be more efficient than the traditional method that is based on the horizontal-to-vertical stress ratios. Regarding the goaf simulation, three models were developed and implemented in the numerical model to express the mechanical behavior within the goaf area above longwall panels. Two of these models are based on an elastic behavior, and the third one is based on the strain-hardening elasto-plastic behavior that takes the consolidation phenomenon into consideration. It was found that the goaf area above longwall panels could reach up to 32 times the seam thickness, and the elastic modulus of caved area (the first few meters in the goaf area) did not exceed 220 MPa to fulfill the roof-floor convergence. But, with advance of the exploitation, this soft material consolidated under the pressure of the overlying strata. In case of critical and super-critical width, the vertical stress in the goaf area exceeded the overburden weight, and it increased up to 4 times the overburden weight on the rib-sides. The vertical stress increased in the shaft station pillars as a result of exploiting the nearby longwall panels. It was found that the pillar volume plays an important role in its stability. And, the strength/stress ratio was found to be insufficient to quantify the rockburst proneness in underground mines. Many rockburst criteria were implemented in the numerical model to assess the rockburst proneness. It was found that the criteria that are based on stress and strain changes were able to assess the rockburst proneness
Thomas, Amélie. "Cartographie et évaluation de la dynamique à court terme d'instabilités gravitaires de grandes ampleurs : exemple du massif de la Cristallère en haute Vallée d'Aspe (Pyrénées-Atlantiques, Nouvelle-Aquitaine, France) : apports des mesures de positionnement satellitaire et des observations aériennes par drone." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0914/document.
Full textFor these last decades, few subjects of the geology of the engineer have drawn the attention of the scientific community as much as those dealing of the natural hazards and more particularly with large-scale gravitational instabilities known as DSGSD (Deep Seated Gravitational Slope Deformation) and DSL (Deep Seated Landslide). Based on few cases study on a natural scale (dating and recent monitoring), short term temporal dynamics remains one of their least studied aspects today. We made the choice of the Cristallère massif as an example. It is located in Upper Aspe Valley of the Pyrenees (Béarn region). The Cristallère DSL was recently identified and analyzed through two dating methods.On the basis of this work, our first approach consists in assessing short term temporal dynamics of these slopes movements on various scales and with various methods of satellites positioning (GPS and GLONASS constellations): multistation positioning RGP (Permanent Geodetic Network in France), statics geodetic with pivot and fast static with pivot. We insist in this work, given the original results obtained, on the interest of the differential GNSS (Global Navigation Satellite System) with a pivot which must be geographically close to the observations to be carried out in order to ensure sufficient accuracy (cm).Observations and exploitation of drone digital elevation models of the site from aerial surveys at different scales obtained with a “flying wing” are the second approach to this research work. They complete the mapping of the site and demonstrate the existence of a DSGSD based on a high resolution and high precision geomorphometric characterization (cm); they make it possible to refine the delimitation of the Cristallère DSL and its most active area (Pène du Thès) and the Peilhou DSL.In addition to these two complementary approaches, a geological and geophysical survey (structural geology measurements, electrical resistivity tomographies and electromagnetic profiles Very Low Frequency surveys) and an analysis of the available data on the structures present in the unstable slope, such as the large diameter underground water pipe for the hydroelectric plant of Baralet and the former railway tunnel of Peilhou. The combined use of these three approaches confirms that the deep movements of the Cristallère massif are still active with proven seismic forcing: awareness of the potential role taken by the DSGSD is then fundamental. Thus, all the existing structures in the massif or the projects on this site (new constructions or rehabilitation of old structures) have to consider the existence of a slow and gradual change of the entire massif (DSGSD). Moreover, the methodology developed in this work is intended to be general. It also makes possible to monitor and follow, in the short and medium term, all types of ground movement, in particular landslides or rockslides, deep or superficial, slow or fast
Nahhas, Tamar. "Materials and thermal storage systems by sensible heat for thermodynamic electro-solar plants." Thesis, Perpignan, 2017. http://www.theses.fr/2017PERP0027.
Full textCompare to fossil fuel energy resources, solar energy is known for its intermittent nature. This observation highlights the need for the use of a thermal energy storage system. The thermocline storage system is considered as a cost-effective storage system. This thesis aims to study the potential of basalt and silex rocks as candidate storage materials for concentrated solar power plants. Experimental studies of the thermo-physical and thermo-mechanical properties of these rocks at temperatures up to 1000°C show that these rocks offer good thermal properties compared with conventional storage materials. The analysis of the thermocline storage system of air rock-packed bed is carried out using a numerical approach. This research also aims to assess the environmental impact of this type of storage system by conducting a comparative analysis of its life cycle. Finally, a complementary study carried out with the aim of producing a relevance index map made it possible to identify the most suitable areas for the construction of solar power plants in Egypt. The originality of this alternative approach for thermal energy storage is that it combines the performance and availability of storage materials while reducing their environmental and financial impacts