Academic literature on the topic 'Rock physics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rock physics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Rock physics"
Li, Yongyi, Lev Vernik, Mark Chapman, and Joel Sarout. "Introduction to this special section: Rock physics." Leading Edge 38, no. 5 (May 2019): 332. http://dx.doi.org/10.1190/tle38050332.1.
Full textAmato del Monte, Alessandro. "Seismic rock physics." Leading Edge 36, no. 6 (June 2017): 523–25. http://dx.doi.org/10.1190/tle36060523.1.
Full textDas, Agnibha, and Madhumita Sengupta. "Introduction to this special section: Rock physics." Leading Edge 40, no. 9 (September 2021): 644. http://dx.doi.org/10.1190/tle40090644.1.
Full textSaenger, Erik H., Stephanie Vialle, Maxim Lebedev, David Uribe, Maria Osorno, Mandy Duda, and Holger Steeb. "Digital carbonate rock physics." Solid Earth 7, no. 4 (August 4, 2016): 1185–97. http://dx.doi.org/10.5194/se-7-1185-2016.
Full textHunter, Sander, Ronny Hofmann, and Irene Espejo. "Integrating grain-scale geology in digital rock physics." Leading Edge 37, no. 6 (June 2018): 428–34. http://dx.doi.org/10.1190/tle37060428.1.
Full textYale, David P. "Recent advances in rock physics." GEOPHYSICS 50, no. 12 (December 1985): 2480–91. http://dx.doi.org/10.1190/1.1441879.
Full textBall, Vaughn, J. P. Blangy, Christian Schiott, and Alvaro Chaveste. "Relative rock physics." Leading Edge 33, no. 3 (March 2014): 276–86. http://dx.doi.org/10.1190/tle33030276.1.
Full textHandoyo, Handoyo, Fatkhan Fatkhan, Fourier D. E. Latief, and Harnanti Y. Putri. "Estimation of Rock Physical Parameters Based on Digital Rock Physics Image, Case Study: Blok Cepu Oil Field, Central Java, Indonesia." Jurnal Geofisika 16, no. 1 (March 22, 2018): 21. http://dx.doi.org/10.36435/jgf.v16i1.53.
Full textAvseth, Per, Tor Arne Johansen, Aiman Bakhorji, and Husam M. Mustafa. "Rock-physics modeling guided by depositional and burial history in low-to-intermediate-porosity sandstones." GEOPHYSICS 79, no. 2 (March 1, 2014): D115—D121. http://dx.doi.org/10.1190/geo2013-0226.1.
Full textDræge, Anders. "Geo-consistent depth trends: Honoring geology in siliciclastic rock-physics depth trends." Leading Edge 38, no. 5 (May 2019): 379–84. http://dx.doi.org/10.1190/tle38050379.1.
Full textDissertations / Theses on the topic "Rock physics"
Ahmed, Zubair. "Rock Physics Characterization using Physical Methods on Powders." Thesis, Curtin University, 2018. http://hdl.handle.net/20.500.11937/75690.
Full textZhang, John Jianlin. "Time-lapse seismic surveys, rock physics basis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ65147.pdf.
Full textDIAS, JONATAN DE OLIVEIRA. "ROCK PHYSICS MODELING EVALUATION FOR CARBONATE RESERVOIRS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36561@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
PROGRAMA DE EXCELENCIA ACADEMICA
Desde a década de 80, abordagens data-driven têm sido utilizadas para identificação de fluidos e caracterização de reservatórios carbonáticos e siliciclásticos principalmente em relação à análise das amplitudes sísmicas. No entanto, técnicas aplicadas com sucesso para rochas siliciclásticas, como por exemplo: Análise AVO, inversões sísmicas e IDH (Indicadores Diretos de Hidrocarbonetos) revelaram não obter o mesmo êxito para reservatórios carbonáticos heterogêneos. Em contrapartida, diversos artigos mostram que fluxos de caracterização de reservatórios com modelos de física de rochas incorporados têm alcançado grande sucesso para obtenção de propriedades petrofísicas e atributos elásticos de ambas as rochas, utilizando sísmicas e well logs, em uma abordagem model-driven, focada nas características microestruturais do reservatório. Dessa forma, levando em consideração a importância de se utilizar modelos de física de rochas no escopo da caracterização de reservatórios, dois modelos de física de rochas - Xu e Payne e T-Matrix - foram aplicados, comparados e seus parâmetros foram estocasticamente avaliados e otimizados em um arcabouço Bayesiano. Através dessa abordagem, foi possível estimar, de uma forma confiável, os atributos elásticos de um reservatório carbonático (coquinas) levando em consideração diversos tipos de incertezas. Além disso, após a calibração e validação de ambos os modelos de física de rochas para diferentes poços, análises de sensibilidade foram realizadas para compreensão de forma quantitativa do comportamento dos atributos elásticos das coquinas em relação às alterações do conteúdo mineralógico, tipos de poro e fluidos desse reservatório.
Since the 80 s, data-driven approaches have been used for fluids identification and reservoir characterization of siliciclastic and carbonate rocks mainly regarding seismic amplitudes analyses. However, techniques successfully applied for siliciclastic rocks, such as: AVO analysis, seismic inversions and DHI (Direct Hydrocarbon Indicators) ranking revealed not have achieved the same outstanding and reliable results for heterogeneous carbonate rocks. On the other hand, several articles demonstrate that reservoir characterization workflows with rock physics models embedded have been reaching a robust success in order to obtain petrophysical properties and elastic attributes of both rocks, from the seismic and well logs, in a model-driven approach focused on the reservoirs microstructural information. In this way, taking into account the importance of applying rock physics models in the scope of reservoir characterization, two rock physics models - Xu and Payne and T-Matrix - were applied, compared and their parameters were stochastically evaluated and optimized in a Bayesian framework. Through this approach, it was possible to estimate, in a reliable manner, the elastic attributes of a carbonate reservoir (coquinas) taking into consideration different kinds of uncertainties. Furthermore, after the calibration in the well location and validation of both rock physics models for other wells, sensitivity analyses were conducted in order to quantitatively understand how the coquinas elastic attributes behave regarding the variations in the reservoir mineralogical content, pore shapes and fluids.
Hoang, Phuong. "Rock physics depth trend analysis using seismic stacking velocity." Thesis, Norwegian University of Science and Technology, Department of Petroleum Engineering and Applied Geophysics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1631.
Full textQuantitative seismic interpretation is becoming more and more important in exploration and characterization of petroleum reservoirs. In this technology, rock physic analysis combined with seismic attributes has become a key strategy.
Nature creates inhomogeneous anisotropic rocks where the rock physics properties vary at different positions and directions. It is important to analyze and quantify the property changes as a function of depositional and burial trends in order to improve our detectability of petroleum reservoirs from seismic data.
In this thesis, we have presented a new methodology to obtain rock physics properties as a function of burial depth, i.e., rock physics depth trends (RPDTs), from well log and seismic data. To obtain RPDTs, several authors have suggested using rock physics models calibrated to well log data or constrained by diagenetic models. We present an alternative way to extract these from seismic stacking velocities. This is the main focus of the thesis.
We apply our methodology to extract RPDTs from seismic stacking velocities in the Njord Field area, located in the Norwegian Sea. We find that the seismic interval velocity trend matches nicely to the sonic velocity at the well location, especially above Base Cretaceous. By combining empirical RPDTs with seismic RPDTs, we are able to interpret and quantify the rock properties of different rock physics events that have occurred in Njord Field at well location and in the areas without well log information.
In this thesis we have successfully demonstrated how stacking velocities can be used to improve our understanding about normal mechanical compaction trends, tectonic activity and diagenetic events. This information is important for improved overburden and reservoir characterization, especially in areas with sparse or no well log data.
Beloborodov, Roman. "Compaction Trends of Shales: Rock Physics and Petrophysical Properties." Thesis, Curtin University, 2017. http://hdl.handle.net/20.500.11937/68259.
Full textRimstad, Kjartan. "Bayesian Seismic Lithology/Fluid Inversion Constrained by Rock Physics Depth Trends." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9772.
Full textIn this study we consider 2D seismic lithology/fluid inversion constrained by rock physics depth trends and a prior lithology/fluid Markov random field. A stochastic relation from porosity and lithology/fluid to seismic observations is established. The inversion is done in a Bayesian framework with an approximate posterior distribution. Block Gibbs samplers are used to estimate the approximate posterior distribution. Two different inversion algorithms are established, one with the support of well observations and one without. Both inversion algorithms are tested on a synthetic reservoir and the algorithm with well observations is also tested on a data set from the North Sea. The classification results with both algorithms are good. Without the support of well observations it is problematic to estimate the level of the porosity trends, however the classification results are approximately translation invariant with respect to porosity trends.
Spikes, Kyle Thomas. "Probabilistic seismic inversion based on rock-physics models for reservoir characterization /." May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textWisman, Putri Sari. "Rock physics changes due to CO2 injection : the CO2CRC Otway Project." Thesis, Curtin University, 2012. http://hdl.handle.net/20.500.11937/737.
Full textCauchefert, Matthieu. "Rock Physics Properties of Artificial Shales: Effect of Organic Matter Characteristics." Thesis, Curtin University, 2019. http://hdl.handle.net/20.500.11937/81045.
Full textTomlinson, Simon Michael. "Computer simulation studies of rock-salt structured binary transition metal oxides." Thesis, University College London (University of London), 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264941.
Full textBooks on the topic "Rock physics"
Korvin, Gabor. Statistical Rock Physics. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-46700-4.
Full textSingh, Kumar Hemant, and Ritesh Mohan Joshi, eds. Petro-physics and Rock Physics of Carbonate Reservoirs. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-1211-3.
Full textAhrens, Thomas J., ed. Rock Physics & Phase Relations. Washington, D. C.: American Geophysical Union, 1995. http://dx.doi.org/10.1029/rf003.
Full textVinciguerra, Sergio, and Yves Bernabé, eds. Rock Physics and Natural Hazards. Basel: Birkhäuser Basel, 2009. http://dx.doi.org/10.1007/978-3-0346-0122-1.
Full textVinciguerra, Sergio. Rock physics and natural hazards. Basel, Switzerland: Birkhauser Verlag AG, 2009.
Find full text1936-, Ahrens T. J., ed. Rock physics & phase relations: A handbook of physical constants. Washington, DC: American Geophysical Union, 1995.
Find full text1938-, Kozák Jan, Waniek Ludvik 1930-, Československá akademie věd. Geofysikální ústav., and Symposium on Physics of Fracturing and Seismic Energy Release (1985 : Liblice Manor), eds. Physics of fracturing and seismic energy release. Basel: Birkhauser Verlag, 1987.
Find full textStavrogin, A. N. Experimental physics and rock mechanics: Results of laboratory studies. Lisse: A.A. Balkema, 2001.
Find full textLiebermann, Robert C., and Carl H. Sondergeld, eds. Experimental Techniques in Mineral and Rock Physics. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-5108-4.
Full textMorrow, C. A. High-pressure rock-physics laboratories investigate earthquake processes. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, 2004.
Find full textBook chapters on the topic "Rock physics"
Korvin, Gabor. "Statistical Rock Physics." In Encyclopedia of Mathematical Geosciences, 1–17. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26050-7_33-1.
Full textKorvin, Gabor. "Statistical Rock Physics." In Encyclopedia of Mathematical Geosciences, 1456–71. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-85040-1_33.
Full textKorvin, Gabor. "Entropy and Rock Physics." In Statistical Rock Physics, 265–96. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-46700-4_8.
Full textKorvin, Gabor. "The Internal Topology of Rocks." In Statistical Rock Physics, 83–145. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-46700-4_3.
Full textKorvin, Gabor. "Coordination Number of Grains." In Statistical Rock Physics, 207–27. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-46700-4_6.
Full textKorvin, Gabor. "Effective Properties of Rocks." In Statistical Rock Physics, 297–337. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-46700-4_9.
Full textKorvin, Gabor. "The Shape of Pebbles, Grains and Pores." In Statistical Rock Physics, 229–63. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-46700-4_7.
Full textKorvin, Gabor. "Models of Tortuosity." In Statistical Rock Physics, 51–81. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-46700-4_2.
Full textKorvin, Gabor. "Thermodynamic Algorithms." In Statistical Rock Physics, 381–472. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-46700-4_11.
Full textKorvin, Gabor. "Random Network Models." In Statistical Rock Physics, 147–77. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-46700-4_4.
Full textConference papers on the topic "Rock physics"
Takahashi, Toru, and Soichi Tanaka. "Rock physics modeling of soft sedimentary rocks." In SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists, 2009. http://dx.doi.org/10.1190/1.3255249.
Full textSun, H., G. Tao, S. Vega, E. Saenger, and X. Jing. "Carbonate Rocks: A case Study to Evaluate Rock Properties Using Digital Rock Physics." In Fourth EAGE Workshop on Rock Physics. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201702450.
Full textDvorkin, J., A. Tutuncu, M. Tutuncu, A. Nur, and A. Mese. "Rock Property Determination Using Digital Rock Physics." In Geophysics of the 21st Century - The Leap into the Future. European Association of Geoscientists & Engineers, 2003. http://dx.doi.org/10.3997/2214-4609-pdb.38.f054.
Full textDvorkin, Jack, Joel Walls, Azra Tutuncu, Manika Prasad, Amos Nur, and Ali Mese. "Rock property determination using digital rock physics." In SEG Technical Program Expanded Abstracts 2003. Society of Exploration Geophysicists, 2003. http://dx.doi.org/10.1190/1.1817624.
Full textHossain, Zakir. "Rock Physics Modeling of CO2 Bearing Reservoir Rocks." In SPE Europec/EAGE Annual Conference. Society of Petroleum Engineers, 2012. http://dx.doi.org/10.2118/154490-ms.
Full textCobos, Carlos Manuel, and John P. Castagna. "Stochastic Rock Physics Inversion." In International Petroleum Technology Conference. International Petroleum Technology Conference, 2014. http://dx.doi.org/10.2523/18040-ms.
Full textLiu, Enru, Michael A. Payne, Shiyu Xu, Gregor Baechle, and Christopher E. Harris. "Carbonate Rock Physics Issues." In International Petroleum Technology Conference. International Petroleum Technology Conference, 2009. http://dx.doi.org/10.2523/iptc-13850-ms.
Full textCobos, Carlos Manuel, and John P. Castagna. "Stochastic Rock Physics Inversion." In International Petroleum Technology Conference. International Petroleum Technology Conference, 2014. http://dx.doi.org/10.2523/iptc-18040-ms.
Full text"Rock Physics Complete Session." In SEG Technical Program Expanded Abstracts 2016. Society of Exploration Geophysicists, 2016. http://dx.doi.org/10.1190/segam2016-rp.
Full textSaenger*, Erik H., Claudio Madonna, Maria Osorno, David Uribe, and Holger Steeb. "Digital carbonate rock physics." In SEG Technical Program Expanded Abstracts 2014. Society of Exploration Geophysicists, 2014. http://dx.doi.org/10.1190/segam2014-0479.1.
Full textReports on the topic "Rock physics"
Drury, M. Rock physics studies at the Earth Physics Branch. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1985. http://dx.doi.org/10.4095/315272.
Full textDvorkin, Jack, and Gary Mavko. Rock Physics of Geologic Carbon Sequestration/Storage. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1097614.
Full textAmos Nur. Seismic-Scale Rock Physics of Methane Hydrate. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/945215.
Full textMcConnell, Daniel. Advanced Gas Hydrate Reservoir Modeling Using Rock Physics. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1435441.
Full textGary Mavko. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/834112.
Full textGary Mavko. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES. Office of Scientific and Technical Information (OSTI), October 2003. http://dx.doi.org/10.2172/822709.
Full textGary Mavko. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/822710.
Full textGary Mavko. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES. Office of Scientific and Technical Information (OSTI), May 2002. http://dx.doi.org/10.2172/822711.
Full textGary Mavko. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/822712.
Full textGary Mavko. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/822713.
Full text