Journal articles on the topic 'Rock Salt Cathode Materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Rock Salt Cathode Materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wang, Yihong, Ning Li, Duanyun Cao, Yuefeng Su, and Feng Wu. "Synthesis of High-capacity and High-rate Intergrown Cathodes for Lithium-ion Batteries." Journal of Physics: Conference Series 2563, no. 1 (August 1, 2023): 012014. http://dx.doi.org/10.1088/1742-6596/2563/1/012014.
Full textTan, T. Q., S. P. Soo, A. Rahmat, J. B. Shamsul, Rozana A. M. Osman, Z. Jamal, and M. S. Idris. "A Brief Review of Layered Rock Salt Cathode Materials for Lithium Ion Batteries." Advanced Materials Research 795 (September 2013): 245–50. http://dx.doi.org/10.4028/www.scientific.net/amr.795.245.
Full textMalovanyy, Sergiy. "CATHODE MATERIALS OF ROCK SALT DERIVATIVE STRUCTURES FOR SODIUM-ION SECONDARY POWER SOURCES." Ukrainian Chemistry Journal 85, no. 9 (October 16, 2019): 44–57. http://dx.doi.org/10.33609/0041-6045.85.9.2019.44-57.
Full textSi, Zheng, Baozhao Shi, Jin Huang, Ye Yu, You Han, Jinli Zhang, and Wei Li. "Titanium and fluorine synergetic modification improves the electrochemical performance of Li(Ni0.8Co0.1Mn0.1)O2." Journal of Materials Chemistry A 9, no. 14 (2021): 9354–63. http://dx.doi.org/10.1039/d1ta00124h.
Full textChen, Dongchang, and You Wang. "Revealing Hidden Structural Anisotropy in Cation-Disordered Rock Salts." ECS Meeting Abstracts MA2022-02, no. 3 (October 9, 2022): 255. http://dx.doi.org/10.1149/ma2022-023255mtgabs.
Full textNanda, Jagjit, and Ethan Self. "Cobalt and Nickel Free Disorder Rock Salt Cathodes – Recent Developments." ECS Meeting Abstracts MA2022-02, no. 2 (October 9, 2022): 107. http://dx.doi.org/10.1149/ma2022-022107mtgabs.
Full textSchweidler, Simon, Sören L. Dreyer, Ben Breitung, and Torsten Brezesinski. "Acoustic Emission Monitoring of High-Entropy Oxyfluoride Rock-Salt Cathodes during Battery Operation." Coatings 12, no. 3 (March 18, 2022): 402. http://dx.doi.org/10.3390/coatings12030402.
Full textLi, Zongchang, Zhihao Zhang, Baojun Huang, Huanwen Wang, Beibei He, Yansheng Gong, Jun Jin, and Rui Wang. "Improved Cycling Performance of Cation-Disordered Rock-Salt Li1.2Ti0.4Mn0.4O2 Cathode through Mo-Doping and Al2O3-Coating." Coatings 12, no. 11 (October 23, 2022): 1613. http://dx.doi.org/10.3390/coatings12111613.
Full textNanda, Jagjit. "Design Framework for Cobalt and Ni-Free High-Capacity Lithium-Ion Cathodes." ECS Meeting Abstracts MA2022-01, no. 2 (July 7, 2022): 361. http://dx.doi.org/10.1149/ma2022-012361mtgabs.
Full textBaur, Christian, Ida Källquist, Johann Chable, Jin Hyun Chang, Rune E. Johnsen, Francisco Ruiz-Zepeda, Jean-Marcel Ateba Mba, et al. "Improved cycling stability in high-capacity Li-rich vanadium containing disordered rock salt oxyfluoride cathodes." Journal of Materials Chemistry A 7, no. 37 (2019): 21244–53. http://dx.doi.org/10.1039/c9ta06291b.
Full textLee, Jinhyuk. "(Digital Presentation) Particle Size and Transition-Metal Chemistry Determine the Impact of Li-Excess on Disordered Rock-Salt Li-Ion Cathode Materials." ECS Meeting Abstracts MA2022-02, no. 7 (October 9, 2022): 2616. http://dx.doi.org/10.1149/ma2022-0272616mtgabs.
Full textHu, Y., V. Thoréton, C. Pirovano, E. Capoen, C. Bogicevic, N. Nuns, A. S. Mamede, G. Dezanneau, and R. N. Vannier. "Oxide diffusion in innovative SOFC cathode materials." Faraday Discuss. 176 (2014): 31–47. http://dx.doi.org/10.1039/c4fd00129j.
Full textAntipov, Evgeny V., Nellie R. Khasanova, and Stanislav S. Fedotov. "Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries." IUCrJ 2, no. 1 (January 1, 2015): 85–94. http://dx.doi.org/10.1107/s205225251402329x.
Full textTahmasebi, Mohammad H., and M. N. Obrovac. "Quantitative Measurement of Compositional Inhomogeneity in NMC Cathodes by X-ray Diffraction." Journal of The Electrochemical Society 170, no. 8 (August 1, 2023): 080519. http://dx.doi.org/10.1149/1945-7111/acefff.
Full textYu, Zhaozhe, Qilin Tong, Yan Cheng, Ping Yang, Guiquan Zhao, Huacheng Li, Weifeng An, Dongliang Yan, Xia Lu, and Bingbing Tian. "Enabling 4.6 V LiNi0.6Co0.2Mn0.2O2 cathodes with excellent structural stability: combining surface LiLaO2 self-assembly and subsurface La-pillar engineering." Energy Materials 2, no. 5 (2022): 37. http://dx.doi.org/10.20517/energymater.2022.42.
Full textShirazi Moghadam, Yasaman, Sirshendu Dinda, Abdel El Kharbachi, Georgian Melinte, Christian Kübel, and Maximilian Fichtner. "Structural and Electrochemical Insights from the Fluorination of Disordered Mn-Based Rock Salt Cathode Materials." Chemistry of Materials 34, no. 5 (February 17, 2022): 2268–81. http://dx.doi.org/10.1021/acs.chemmater.1c04059.
Full textSu, Yuefeng, Yongqing Yang, Lai Chen, Yun Lu, Liying Bao, Gang Chen, Zhiru Yang, et al. "Improving the cycling stability of Ni-rich cathode materials by fabricating surface rock salt phase." Electrochimica Acta 292 (December 2018): 217–26. http://dx.doi.org/10.1016/j.electacta.2018.09.158.
Full textKamel, M., M. Abdel-Hafiez, A. Hassan, M. Abdellah, T. A. Abdel-Baset, and A. Hassen. "Optical, magnetic, thermodynamic, and dielectric studies of the disordered rock salt Li1.3Nb0.3Fe0.4O2 cathode for Li-ion batteries." Journal of Applied Physics 131, no. 15 (April 21, 2022): 155103. http://dx.doi.org/10.1063/5.0084684.
Full textCheng, Tao, Zhongtao Ma, Run Gu, Riming Chen, Yingchun Lyu, Anmin Nie, and Bingkun Guo. "Cracks Formation in Lithium-Rich Cathode Materials for Lithium-Ion Batteries during the Electrochemical Process." Energies 11, no. 10 (October 11, 2018): 2712. http://dx.doi.org/10.3390/en11102712.
Full textFlannagin, Megan, Hernando Gonzalez Malabet, and George J. Nelson. "Characterization of Low Cobalt Cathode Degradation Using Distribution of Relaxation Times Analysis." ECS Meeting Abstracts MA2022-02, no. 3 (October 9, 2022): 256. http://dx.doi.org/10.1149/ma2022-023256mtgabs.
Full textZheng, Yu, and Perla B. Balbuena. "Electrolyte Deprotonation Stimulates Phase Transition of Ni-Rich Cathodes in Na-Ion Batteries." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 509. http://dx.doi.org/10.1149/ma2022-024509mtgabs.
Full textRocca, Riccardo, Mauro Francesco Sgroi, Bruno Camino, Maddalena D’Amore, and Anna Maria Ferrari. "Disordered Rock-Salt Type Li2TiS3 as Novel Cathode for LIBs: A Computational Point of View." Nanomaterials 12, no. 11 (May 27, 2022): 1832. http://dx.doi.org/10.3390/nano12111832.
Full textChen, Hao, Li Xiao, Pengcheng Liu, Han Chen, Zhimei Xia, Longgang Ye, and Yujie Hu. "Rock Salt-Type LiTiO2@LiNi0.5Co0.2Mn0.3O2 as Cathode Materials with High Capacity Retention Rate and Stable Structure." Industrial & Engineering Chemistry Research 58, no. 40 (August 28, 2019): 18498–507. http://dx.doi.org/10.1021/acs.iecr.9b03276.
Full textDoeff, Marca M. "(Invited) Thermal Properties of NMC Cathode Materials." ECS Meeting Abstracts MA2022-01, no. 2 (July 7, 2022): 378. http://dx.doi.org/10.1149/ma2022-012378mtgabs.
Full textCelasun, Yagmur, Jean-François Colin, Sébastien Martinet, Anass Benayad, and David Peralta. "Lithium-Rich Rock Salt Type Sulfides-Selenides (Li2TiSexS3−x): High Energy Cathode Materials for Lithium-Ion Batteries." Materials 15, no. 9 (April 22, 2022): 3037. http://dx.doi.org/10.3390/ma15093037.
Full textLlewellyn, Alice V., Andrew S. Leach, Isabella Mombrini, Alessia Matruglio, Jiecheng Diao, Chun Tan, Thomas M. M. Heenan, et al. "Understanding the Degradation Mechanisms of Lithium Ion Batteries Using in-Situ Multi-Scale Diffraction Techniques." ECS Meeting Abstracts MA2022-01, no. 2 (July 7, 2022): 177. http://dx.doi.org/10.1149/ma2022-012177mtgabs.
Full textLian, Fang, Yan Li, Yang Hu, Sheng Wen Zhong, Li Hua Xu, and Qing Guo Liu. "Rate Capability Fade of 18650 Li-Ion Cells." Key Engineering Materials 368-372 (February 2008): 290–92. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.290.
Full textFan, Xiaojian, Qianwan Qin, Dongming Liu, Aichun Dou, Mingru Su, Yunjian Liu, and Jun Pan. "Synthesis and electrochemical performance of Li3NbO4-based cation-disordered rock-salt cathode materials for Li-ion batteries." Journal of Alloys and Compounds 797 (August 2019): 961–69. http://dx.doi.org/10.1016/j.jallcom.2019.05.163.
Full textLee, Hayeon, Woosung Choi, Wontae Lee, Jae‐Hyun Shim, Young‐Min Kim, and Won‐Sub Yoon. "Rock Salt Cathodes: Impact of Local Separation on the Structural and Electrochemical Behaviors in Li 2 MoO 3 LiCrO 2 Disordered Rock‐Salt Cathode Material (Adv. Energy Mater. 3/2021)." Advanced Energy Materials 11, no. 3 (January 2021): 2170011. http://dx.doi.org/10.1002/aenm.202170011.
Full textSuzuki, Kosuke, Yuji Otsuka, Kazushi Hoshi, Hiroshi Sakurai, Naruki Tsuji, Kentaro Yamamoto, Naoaki Yabuuchi, et al. "Magnetic Compton Scattering Study of Li-Rich Battery Materials." Condensed Matter 7, no. 1 (December 28, 2021): 4. http://dx.doi.org/10.3390/condmat7010004.
Full textRoy, Indrani, and Jordi Cabana. "Investigation of the Redox Activity in Mn-Based Oxyfluorides." ECS Meeting Abstracts MA2022-01, no. 2 (July 7, 2022): 305. http://dx.doi.org/10.1149/ma2022-012305mtgabs.
Full textAntipov, Evgeny, and Nellie Khasanova. "Impact of Crystallography on Design of Cathode Materials for Li-ion Batteries." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C20. http://dx.doi.org/10.1107/s2053273314099793.
Full textWang, Han, Tong Zhou, Yong Wang, Wei Zhang, and Linsen Li. "Stabilizing Lattice Oxygen in Slightly Li-Enriched Nickel Oxide Cathodes Toward High-Energy Batteries." ECS Meeting Abstracts MA2022-02, no. 7 (October 9, 2022): 2559. http://dx.doi.org/10.1149/ma2022-0272559mtgabs.
Full textGeng, Fushan, Bei Hu, Chao Li, Chong Zhao, Olivier Lafon, Julien Trébosc, Jean-Paul Amoureux, Ming Shen, and Bingwen Hu. "Anionic redox reactions and structural degradation in a cation-disordered rock-salt Li1.2Ti0.4Mn0.4O2 cathode material revealed by solid-state NMR and EPR." Journal of Materials Chemistry A 8, no. 32 (2020): 16515–26. http://dx.doi.org/10.1039/d0ta03358h.
Full textFujiwara, Yoshiya, Yoshiyuki Morita, Hiroshi Ogasa, Fumika Fujisaki, and Akihiro Kushima. "Role of Ni, Mn and Co in Layered Rock Salt Cathode Materials for Li-Ion Battery: A DFT Study." ECS Meeting Abstracts MA2020-02, no. 1 (November 23, 2020): 61. http://dx.doi.org/10.1149/ma2020-02161mtgabs.
Full textIdris, Mohd Sobri. "The Existing of Oxygen Nonstoichiometry in Complex Lithium Oxides." Advanced Materials Research 795 (September 2013): 438–40. http://dx.doi.org/10.4028/www.scientific.net/amr.795.438.
Full textNakamura, Hitoshi. "(Digital Presentation) Synthesis and Properties of Llithium Iron Phosphate Cathode Materials without Carbon Coating with High-Rate Property." ECS Meeting Abstracts MA2022-01, no. 2 (July 7, 2022): 366. http://dx.doi.org/10.1149/ma2022-012366mtgabs.
Full textKällquist, Ida, Andrew J. Naylor, Christian Baur, Johann Chable, Jolla Kullgren, Maximilian Fichtner, Kristina Edström, Daniel Brandell, and Maria Hahlin. "Degradation Mechanisms in Li2VO2F Li-Rich Disordered Rock-Salt Cathodes." Chemistry of Materials 31, no. 16 (June 3, 2019): 6084–96. http://dx.doi.org/10.1021/acs.chemmater.9b00829.
Full textOu, Limin, Shengheng Nong, Ruoxi Yang, Yaoying Li, Jinrong Tao, Pan Zhang, Haifu Huang, et al. "Multi-Role Surface Modification of Single-Crystalline Nickel-Rich Lithium Nickel Cobalt Manganese Oxides Cathodes with WO3 to Improve Performance for Lithium-Ion Batteries." Nanomaterials 12, no. 8 (April 12, 2022): 1324. http://dx.doi.org/10.3390/nano12081324.
Full textMorimoto, Sayaka, Yuta Kanai, Masahiko Yoshiki, Mitsuhiro Oki, and Ryosuke Yagi. "(Digital Presentation) Accelerated Degradation Mechanism of Ni-Rich Ncm Cathode Materials at High and Low Voltage Range Combined Cycling for Li-Ion Batteries." ECS Meeting Abstracts MA2022-01, no. 2 (July 7, 2022): 382. http://dx.doi.org/10.1149/ma2022-012382mtgabs.
Full textChen, Dongchang, Wang Hay Kan, and Guoying Chen. "Understanding Performance Degradation in Cation‐Disordered Rock‐Salt Oxide Cathodes." Advanced Energy Materials 9, no. 31 (July 11, 2019): 1901255. http://dx.doi.org/10.1002/aenm.201901255.
Full textAhn, Juhyeon, and Guoying Chen. "(Invited) High-Energy Mn-Rich Disordered Rocksalt Cathodes." ECS Meeting Abstracts MA2022-02, no. 1 (October 9, 2022): 35. http://dx.doi.org/10.1149/ma2022-02135mtgabs.
Full textMishchenko, Kseniya V., Maria A. Kirsanova, Arseny B. Slobodyuk, Anna A. Krinitsyna, and Nina V. Kosova. "Effect of cooling rate on the structure and electrochemical properties of Mn-based oxyfluorides with cation-disordered rock-salt structure." Chimica Techno Acta 9, no. 3 (August 4, 2022): 20229310. http://dx.doi.org/10.15826/chimtech.2022.9.3.10.
Full textDiaz-Lopez, Maria, Philip A. Chater, Yves Joly, Olivier Proux, Jean-Louis Hazemann, Pierre Bordet, and Valerie Pralong. "Correction: Reversible densification in nano-Li2MnO3 cation disordered rock-salt Li-ion battery cathodes." Journal of Materials Chemistry A 8, no. 25 (2020): 12833. http://dx.doi.org/10.1039/d0ta90126a.
Full textIdris, M. Sobri, and A. R. West. "The Effect on Cathode Performance of Oxygen Non-Stoichiometry and Interlayer Mixing in Layered Rock Salt LiNi0.8Mn0.1Co0.1O2-δ." Journal of The Electrochemical Society 159, no. 4 (2012): A396—A401. http://dx.doi.org/10.1149/2.037204jes.
Full textMéndez-Román, J. Arnaldo. "Energy boost confirmed in Li-rich disordered rock-salt oxyfluoride cathodes." MRS Bulletin 46, no. 7 (July 2021): 561. http://dx.doi.org/10.1557/s43577-021-00146-9.
Full textSoo, S. P., M. S. Idris, Rozana A. M. Osman, and A. Rahmat. "The Effect of Synthesis Temperature on Interlayer Mixing in Layered Rock Salt Cathode Materials LiNi0.7Mn0.1Co0.2O2 for Li-Ion Batteries Application." Materials Science Forum 819 (June 2015): 155–60. http://dx.doi.org/10.4028/www.scientific.net/msf.819.155.
Full textQuintelier, Matthias, Tyché Perkisas, Romy Poppe, Maria Batuk, Mylene Hendrickx, and Joke Hadermann. "Determination of Spinel Content in Cycled Li1.2Ni0.13Mn0.54Co0.13O2 Using Three-Dimensional Electron Diffraction and Precession Electron Diffraction." Symmetry 13, no. 11 (October 20, 2021): 1989. http://dx.doi.org/10.3390/sym13111989.
Full textLi, Yang, Liubin Ben, Hailong Yu, Wenwu Zhao, Xinjiang Liu, and Xuejie Huang. "Stabilizing the (003) Facet of Micron-Sized LiNi0.6Co0.2Mn0.2O2 Cathode Material Using Tungsten Oxide as an Exemplar." Inorganics 10, no. 8 (August 3, 2022): 111. http://dx.doi.org/10.3390/inorganics10080111.
Full textZhang, Hanlei, Brian M. May, Jon Serrano-Sevillano, Montse Casas-Cabanas, Jordi Cabana, Chongmin Wang, and Guangwen Zhou. "Facet-Dependent Rock-Salt Reconstruction on the Surface of Layered Oxide Cathodes." Chemistry of Materials 30, no. 3 (January 18, 2018): 692–99. http://dx.doi.org/10.1021/acs.chemmater.7b03901.
Full text