Academic literature on the topic 'Rocket engine nozzle'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rocket engine nozzle.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rocket engine nozzle"

1

Strelnikov, G. A., A. D. Yhnatev, N. S. Pryadko, and S. S. Vasyliv. "Gas flow control in rocket engines." Technical mechanics 2021, no. 2 (2021): 60–77. http://dx.doi.org/10.15407/itm2021.02.060.

Full text
Abstract:
In the new conditions of application of launch vehicle boosters, space tugs, etc., modern rocket engines often do not satisfy the current stringent requirements. This calls for fundamental research into processes in rocket engines for improving their efficiency. In this regard, for the past 5 years, the Department of Thermogas Dynamics of Power Plants of the Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine has conducted research on gas flow control in rocket engines to improve their efficiency and functionality. Mechanisms of flow perturbation in the nozzle of a rocket engine by liquid injection and a solid obstacle were investigated. A mathematical model of supersonic flow perturbation by local liquid injection was refined, and new solutions for increasing the energy release rate of the liquid were developed. A numerical simulation of a gas flow perturbed by a solid obstacle in the nozzle of a rocket engine made it possible to verify the known (mostly experimental) results and to reveal new perturbation features. In particular, a significant increase in the efficiency of flow perturbation by an obstacle in the transonic region was shown up, and some dependences involving the distribution of the perturbed pressure on the nozzle wall, which had been considered universal, were refined. The possibility of increasing the efficiency of use of the generator gas picked downstream of the turbine of a liquid-propellant rocket engine was investigated, and the advantages of a new scheme of gas injection into the supersonic part of the nozzle, which provides both nozzle wall cooling by the generator gas and the production of lateral control forces, were substantiated. A new concept of rocket engine thrust vector control was developed: a combination of a mechanical and a gas-dynamic system. It was shown that such a thrust vector control system allows one to increase the efficiency and reliability of the space rocket stage flight control system. A new liquid-propellant rocket engine scheme was developed to control both the thrust amount and the thrust vector direction in all planes of rocket stage flight stabilization. New approaches to the process organization in auxiliary elements of rocket engines on the basis of detonation propellant combustion were developed to increase the rocket engine performance.
APA, Harvard, Vancouver, ISO, and other styles
2

Jéger, Csaba, and Árpád Veress. "Novell Application of CFD for Rocket Engine Nozzle Optimization." Periodica Polytechnica Transportation Engineering 47, no. 2 (2018): 131–35. http://dx.doi.org/10.3311/pptr.11490.

Full text
Abstract:
Numerical analyses, validation and geometric optimization of a converging-diverging nozzle flows has been established in the present work. The optimal nozzle contour for a given nozzle pressure ratio and length yields the largest obtainable thrust for the conditions and thus minimises the losses. Application of such methods reduces the entry cost to the market, promote innovation and accelerate the development processes. A parametric geometry, numerical mesh and simulation model is constructed first to solve the problem. The simulation model is then validated by using experimental and computational data. The optimizations are completed for conical and bell shaped nozzles also to find the suitable nozzle geometries for the given conditions. Results are in good agreement with existing nozzle flow fields. The optimization loop described and implemented here can be used in the all similar situations and can be the basis of an improved nozzle geometry optimization procedure by means of using a multiphysics system to generate the final model with reduced number sampling phases.
APA, Harvard, Vancouver, ISO, and other styles
3

Guram, Sejal, Vidhanshu Jadhav, Prasad Sawant, and Ankit Kumar Mishra. "Review Study on Thermal Characteristics of Bell Nozzle used in Supersonic Engine." 1 2, no. 1 (2023): 4–14. http://dx.doi.org/10.46632/jame/2/1/2.

Full text
Abstract:
The nozzle is an important component of the rocket motor system, and a rocket’s overall performance is highly reliant on its aerodynamic design. The nozzle contour can be meticulously shaped to improve performance significantly. The design and shape of rocket nozzles have evolved over the last several decades as a result of extensive research. The nozzle design is composed of two components, an integrated throat, an entry and an exit cone, and a thermal protection system. The Bell Nozzle is designed to provide clearance space for placing the ITE and exit cone, with a cone inflection angle of 16 and a thermal protection system. This paper intends to review and summarize all such developments. Small-scale engine testing allows for the analysis of rocket nozzle materials, but the history of nozzle surface temperature and thermal stress may be adversely affected by side effects. The review focuses primarily on the nozzle shape which has the largest radiative flux past the neck, but the nozzle shape has the highest heat flux in the throat due to the mass-flow rate per unit area. The distribution of nozzle wall pressure is strongly influenced by the Mach number of the injected secondary flow, leading to undesirable side loads. Finally, future development possibilities are suggested.
APA, Harvard, Vancouver, ISO, and other styles
4

ZAGANESCU, Nicolae-Florin, Rodica ZAGANESCU, and Constantin-Marcian GHEORGHE. "Wernher Von Braun’s Pioneering Work in Modelling and Testing Liquid-Propellant Rockets." INCAS BULLETIN 14, no. 2 (2022): 153–61. http://dx.doi.org/10.13111/2066-8201.2022.14.2.13.

Full text
Abstract:
This paper presents a view on how Dr. Wernher Von Braun laid the basis for realistic modelling and testing liquid-propellants rockets, by his PhD Thesis – a secret document in 1934, which remained classified until 1960. Understanding that better mathematical modelling is needed if these rockets are to become spaceflight vehicles, he clarified in his thesis essential issues like: maximum achievable rocket speed; Laval nozzle thrust gain; polytropic processes in the combustion chamber and nozzle; influence of equilibrium and dissociation reactions; original measurement systems for rockets test stand; engineering solutions adequate for series production of the combustion chamber – reactive nozzle assembly. The thesis provided a theoretical and experimental basis for a new concept of the rocket, having a lightweight structure; low tanks pressure; high-pressure pumps and injectors; low start speed; rocket stabilization by gyroscopic means or by active jet controls; longer engine burning time; higher jet speed. Numerous tests made even with a fully assembled rocket (the “Aggregate-I”), improved mathematical model accuracy (e.g., the maximum achievable altitude predicted for the “Aggregate-II” rocket was confirmed later in-flight tests).
APA, Harvard, Vancouver, ISO, and other styles
5

Bogoi, Alina, Radu D. Rugescu, Valentin Ionut Misirliu, Florin Radu Bacaran, and Mihai Predoiu. "Inviscid Nozzle for Aerospike Rocket Engine Application." Applied Mechanics and Materials 811 (November 2015): 152–56. http://dx.doi.org/10.4028/www.scientific.net/amm.811.152.

Full text
Abstract:
A computational method for the steady 2-D flow in axially symmetrical rocket nozzles with a given profile is developed, in order to determine the Maximum thrust contour of rocket engine nozzles with large expansion ratio. The optimized nozzles proved a more than 10% increase in the integral specific impulse recorded during the variable altitude atmospheric flight of rocket vehicles. The method is well suited for application in the design of the optimum contour for axially-symmetric nozzles for atmospheric rocket ascent, specifically for aerospike type nozzles, as for other similar industrial applications in gas and steam turbine technology.
APA, Harvard, Vancouver, ISO, and other styles
6

Sultanov, T. S., та G. A. Glebov. "Numerical Computation of Specific Impulse and Internal Flow Parameters in Solid Fuel Rocket Motors with Two-Phase Сombustion Products". Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, № 3 (138) (вересень 2021): 98–107. http://dx.doi.org/10.18698/0236-3941-2021-3-98-107.

Full text
Abstract:
Eulerian --- Lagrangian method was used in the Fluent computational fluid dynamics system to calculate motion of the two-phase combustion products in the solid fuel rocket motor combustion chamber and nozzle. Condensed phase is assumed to consist of spherical particles with the same diameter, which dimensions are not changing along the motion trajectory. Flows with particle diameters of 3, 5, 7, 9, and 11 μm were investigated. Four versions of the engine combustion chamber configuration were examined: with slotted and smooth cylindrical charge channels, each with external and submerged nozzles. Gas flow and particle trajectories were calculated starting from the solid fuel surface and to the nozzle exit. Volumetric fields of particle concentrations, condensed phase velocities and temperatures, as well as turbulence degree in the solid propellant rocket engine flow duct were obtained. Values of particles velocity and temperature lag from the gas phase along the nozzle length were received. Influence of the charge channel shape, degree of the nozzle submersion and of the condensate particles size on the solid propellant rocket engine specific impulse were determined, and losses were estimated in comparison with the case of ideal flow
APA, Harvard, Vancouver, ISO, and other styles
7

Bruce Ralphin Rose, J., and J. Veni Grace. "Performance analysis of lobed nozzle ejectors for high altitude simulation of rocket engines." International Journal of Modeling, Simulation, and Scientific Computing 05, no. 04 (2014): 1450019. http://dx.doi.org/10.1142/s1793962314500196.

Full text
Abstract:
Ejectors are used in high altitude testing of rocket engines to create vacuum for simulating the engine test in vacuum conditions. The performance of an ejector plays a vital role in creating vacuum at the exit of the engine nozzle and the nozzle design exit pressure at the time of ignition. Consequently, the performance of ejectors has to be improved to reduce the consumption of active fluid. In this investigation, the performance of an ejector has been improved by changing the exit shear plane of the nozzle. Conventionally, conical nozzles are used for creating the required momentum. Lobes of 4 no's, 6 no's and 8 numbers for an equivalent area ratio = 5.88 are used to increase the shear area. The influence of shear plane variation in the suction pressure is studied by a detailed CFD analysis.
APA, Harvard, Vancouver, ISO, and other styles
8

Shustov, S. A., I. E. Ivanov, and I. A. Kryukov. "Numerical study of the separation of a turbulent boundary in rocket engine nozzles with an optimized supersonic part." Journal of Physics: Conference Series 2308, no. 1 (2022): 012015. http://dx.doi.org/10.1088/1742-6596/2308/1/012015.

Full text
Abstract:
Abstract At present, propulsion systems are being developed for flights of aerospace vehicles both in the Earth’s atmosphere and beyond. At the stage of the propulsion system design, it is necessary to be able to reliably determine the energy and thrust characteristics of rocket engines in regimes with flow separation in the nozzle for a wide range of nozzle pressure ratio (NPR) (1 ≤ m ≤ 30, m = ph /pa , p—pressure, indices h and a refer, respectively, to the parameters of the external environment and at the nozzle exit) characterizing the flow in nozzles and jets. In this case, the nozzle, as a rule, has a thrust optimized contour (TOC) supersonic part. In this regard, we present some results of a numerical study of flows with separation of the turbulent boundary layer in the TOC nozzles of main rocket engines in the above range of the NPR based on the Reynolds Averaged Navier–Stokes (RANS) system of equations.
APA, Harvard, Vancouver, ISO, and other styles
9

Vasyliv, S. S., and H. O. Strelnykov. "Rocket engine thrust vector control by detonation product injection into the supersonic portion of the nozzle." Technical mechanics 2020, no. 4 (2020): 29–34. http://dx.doi.org/10.15407/itm2020.04.029.

Full text
Abstract:
For solving non-traditional problems of rocket flight control, in particular, for the conditions of impact of a nuclear explosion, non-traditional approaches to the organization of the thrust vector control of a rocket engine are required. Various schemes of gas-dynamic thrust vector control systems that counteract impact actions on the rocket were studied. It was found that the dynamic characteristics of traditional gas-dynamic thrust vector control systems do not allow one to solve the problem of counteracting impact actions on the rocket. Appropriate dynamic characteristics can provide a perturbation of the supersonic flow by injecting into the nozzle the detonation products with the main shock wave propagating in the supersonic flow. This way to perturb the supersonic flow in a rocket engine nozzle is investigated in this paper. In order to identify the principles of producing control forces and provide a perturbation of the supersonic flow by injecting into the nozzle the detonation products with the main shock wave propagating in the supersonic flow, a computer simulation of the nozzle flow was performed. The nozzle of the 11D25 engine developed by Yuzhnoye State Design Office and used in the third stage of the Cyclone-3 launch vehicle was taken as a basis. The thrust vector control scheme relies on the use of the main fuel component detonation. The evolution of the detonation wave in the supersonic flow of the combustion chamber nozzle was simulated numerically. According to the nature of the perturbation propagation in the nozzle, the lateral force from the perturbation has an alternating character with the perturbation stabilization in sign and magnitude when approaching the critical nozzle section. The value of the relative lateral force is sufficient for counteracting large disturbing moments of short duration. Thus, the force factors that can be used to control the rocket engine thrust vector are identified. Further research should focus on finding the optimal location of the detonation product injection in order to prevent mutual compensation of force factors.
APA, Harvard, Vancouver, ISO, and other styles
10

Kumar, S. Senthil, and M. Arularasu. "Advanced Computational Flow Analysis - Rocket Engine Nozzle." Asian Journal of Research in Social Sciences and Humanities 6, no. 11 (2016): 1219. http://dx.doi.org/10.5958/2249-7315.2016.01265.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography