Journal articles on the topic 'Rolling mode'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Rolling mode.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Li, Xue Jun, and Bai Hui Yao. "The Modal Analysis of Rotor-Rolling Bearing-Base System." Advanced Engineering Forum 2-3 (December 2011): 972–77. http://dx.doi.org/10.4028/www.scientific.net/aef.2-3.972.
Full textMarynych, Ivan, and Olga Serdiuk. "MODELING OF A SYSTEM FOR AUTOMATIC REGULATION OF THE TENSION MODE IN THE ROUGHING GROUP OF STANDS OF A CONTINUOUS SECTION MIL." Bulletin of National Technical University "KhPI". Series: System Analysis, Control and Information Technologies, no. 1 (5) (July 12, 2021): 67–73. http://dx.doi.org/10.20998/2079-0023.2021.01.11.
Full textMa, Wei Jin, Yun Bo Wei, Feng Lan Li, Jun Yuan Wang, and Xiao Yan Xiong. "Theoretical Computation and Experimental Analysis of Natural Frequencies of Hot Rolling-Mill Housing." Applied Mechanics and Materials 278-280 (January 2013): 169–73. http://dx.doi.org/10.4028/www.scientific.net/amm.278-280.169.
Full textAoh, Jong Ning, Han Kai Hsu, Wei Ting Dai, Chun Yen Lin, and Yen Liang Yeh. "Numerical Simulation on Correcting Camber and Wedge of Steel Slabs in Hot Rolling Mill." Key Engineering Materials 626 (August 2014): 570–75. http://dx.doi.org/10.4028/www.scientific.net/kem.626.570.
Full textWu, Guofang, Yong Zhong, and Haiqing Ren. "Effects of Grain Pattern on the Rolling Shear Properties of Wood in Cross-Laminated Timber." Forests 12, no. 6 (2021): 668. http://dx.doi.org/10.3390/f12060668.
Full textWang, Zhaotian, Yezhuo Li, and Yan-An Yao. "Motion and path planning of a novel multi-mode mobile parallel robot based on chessboard-shaped grid division." Industrial Robot: An International Journal 45, no. 3 (2018): 390–400. http://dx.doi.org/10.1108/ir-01-2018-0001.
Full textJia, Xingdou, Shen Wang, Xiaoqiang Yan, Lidong Wang, and Haipeng Wang. "Research on Dynamic Response of Cold Rolling Mill with Dynamic Stiffness Compensation." Electronics 12, no. 3 (2023): 599. http://dx.doi.org/10.3390/electronics12030599.
Full textLi, Tangwei, Hulun Guo, Zhenyu Cheng, Rixiu Men, Jun Li, and Yushu Chen. "Nonlinear Vibration Analysis of Turbocharger Rotor Supported on Rolling Bearing by Modified Incremental Harmonic Balance Method." Machines 13, no. 5 (2025): 360. https://doi.org/10.3390/machines13050360.
Full textZhao, Peng, Yawei Li, Baoming Han, Ruixia Yang, and Zhiping Liu. "Integrated Optimization of Rolling Stock Scheduling and Flexible Train Formation Based on Passenger Demand for an Intercity High-Speed Railway." Sustainability 14, no. 9 (2022): 5650. http://dx.doi.org/10.3390/su14095650.
Full textViktor, Gutarevich, and Ignatkina Evgenia. "Study of the braking regime of rolling stock mining suspended monorail taking into account clearances in the coupling." Izvestiya vysshikh uchebnykh zavedenii Gornyi zhurnal, no. 5 (August 6, 2020): 108–15. http://dx.doi.org/10.21440/0536-1028-2020-5-108-115.
Full textGuo, Yuanjing, Youdong Yang, Shaofei Jiang, Xiaohang Jin, and Yanding Wei. "Rolling Bearing Fault Diagnosis Based on Successive Variational Mode Decomposition and the EP Index." Sensors 22, no. 10 (2022): 3889. http://dx.doi.org/10.3390/s22103889.
Full textHu, Ke, Xiao Kai Wang, Jian Lan Luo, and Xi Jun Wu. "The Ring’s Axial Deformation Control Method of Vertical Hot Ring Rolling Process." Advanced Materials Research 941-944 (June 2014): 1865–70. http://dx.doi.org/10.4028/www.scientific.net/amr.941-944.1865.
Full textZhang, Qianqian, Yezhuo Li, Yan-An Yao, and Ruiming Li. "Design and locomotivity analysis of a novel deformable two-wheel-like mobile mechanism." Industrial Robot: the international journal of robotics research and application 47, no. 3 (2020): 369–80. http://dx.doi.org/10.1108/ir-09-2019-0183.
Full textHu, P.-H., and K. F. Ehmann. "Fifth octave mode chatter in rolling." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 215, no. 6 (2001): 797–809. http://dx.doi.org/10.1243/0954405011518737.
Full textKozhevnikov, A. V., D. L. Shalaevskii, I. A. Kozhevnikova, A. S. Smirnov, and K. P. Korepina. "Algorithm for designing asymmetrical rolling mode." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 80, no. 6 (2024): 72–81. http://dx.doi.org/10.32339/0135-5910-2024-6-72-81.
Full textWang, Jieyu, Yanan Yao, and Xianwen Kong. "A rolling mechanism with two modes of planar and spherical linkages." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 230, no. 12 (2015): 2110–23. http://dx.doi.org/10.1177/0954406215590188.
Full textKarpenko, Volodymyr, and Eduard Neskreba. "Refined assessment of tire rolling resistance in the starting mode." Automobile transport, no. 51 (December 29, 2022): 5–13. http://dx.doi.org/10.30977/at.2219-8342.2022.51.0.01.
Full textYegorov, O. P., M. O. Rybalchenko, and I. O. Manachyn. "Adaptive control system of free rolling speed mode with fuzzy controller." Fundamental and applied problems of ferrous metallurgy 37 (2023): 340–48. http://dx.doi.org/10.52150/2522-9117-2023-37-340-348.
Full textTa, Yuntian, and Tiantian Wang. "A rolling bearing state evaluation method based on deep learning combined with Wiener process." PHM Society European Conference 8, no. 1 (2024): 8. http://dx.doi.org/10.36001/phme.2024.v8i1.4095.
Full textHuang, Haibo, and Xi-Yun Lu. "An ellipsoidal particle in tube Poiseuille flow." Journal of Fluid Mechanics 822 (June 7, 2017): 664–88. http://dx.doi.org/10.1017/jfm.2017.298.
Full textIevlev, M. G. "Automatic control of the rolling mode “at an angle” on a reversing hot rolling mill." Mathematical machines and systems 2 (2020): 99–104. http://dx.doi.org/10.34121/1028-9763-2020-2-99-104.
Full textHe, Youliang, and Erik J. Hilinski. "Textures of Non-Oriented Electrical Steel Sheets Produced by Skew Cold Rolling and Annealing." Metals 12, no. 1 (2021): 17. http://dx.doi.org/10.3390/met12010017.
Full textGordienko, A. I., I. V. Vlasov, and Yu I. Pochivalov. "Effect of accelerated cooling after cross-helical rolling on formation of structure and low-temperature fracture toughness of low-carbon steel." Izvestiya. Ferrous Metallurgy 66, no. 3 (2023): 311–19. http://dx.doi.org/10.17073/0368-0797-2023-3-311-319.
Full textWang, Heng-di, Si-er Deng, Jian-xi Yang, and Hui Liao. "A fault diagnosis method for rolling element bearing (REB) based on reducing REB foundation vibration and noise-assisted vibration signal analysis." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 7 (2018): 2574–87. http://dx.doi.org/10.1177/0954406218791209.
Full textLi, Yezhuo, Yan-An Yao, Junlin Cheng, Yaobin Tian, and Ran Liu. "An agile assistant robot integrating operation and rolling locomotion." Industrial Robot: An International Journal 44, no. 1 (2017): 114–26. http://dx.doi.org/10.1108/ir-05-2016-0147.
Full textSverdlik, Mikhail, Alexander Pesin, D. O. Pustovoytov, and Alexander Perekhozhikh. "Numerical Research of Shear Strain in an Extreme Case of Asymmetric Rolling." Advanced Materials Research 742 (August 2013): 476–81. http://dx.doi.org/10.4028/www.scientific.net/amr.742.476.
Full textYao, Ganzhou, Bishuang Fan, Wen Wang, and Haihang Ma. "A Novel Median-Point Mode Decomposition Algorithm for Motor Rolling Bearing Fault Recognition." Mathematical Problems in Engineering 2020 (November 12, 2020): 1–10. http://dx.doi.org/10.1155/2020/9406479.
Full textDruzhinin, Valery Mikhailovich, Alexey Anatolievich Kalinin, and Galina Alexandrovna Sivyakova. "Rolling stand electric drive model regarding influence of power supply network parameters." Rolling stand electric drive model regarding influence of power supply network parameters 29, no. 3 (2023): 1213–23. https://doi.org/10.11591/ijeecs.v29.i3.pp1213-1223.
Full textUmanskii, A. A., and A. B. Yur'ev. "Improving the technology of rolling rail steels by a comprehensive optimization parameter." Izvestiya. Ferrous Metallurgy 64, no. 11 (2021): 802–14. http://dx.doi.org/10.17073/0368-0797-2021-11-802-814.
Full textLI, R., Y. J. SHI, and H. L. XU. "INTEGRATED PID CONTROLLER DESIGN FOR AN UNMANNED AERIAL VEHICLE WITH STATIC STABILITY." ANZIAM Journal 54, no. 3 (2013): 200–215. http://dx.doi.org/10.1017/s1446181113000199.
Full textDing, Jiakai, Liangpei Huang, Dongming Xiao, and Xuejun Li. "GMPSO-VMD Algorithm and Its Application to Rolling Bearing Fault Feature Extraction." Sensors 20, no. 7 (2020): 1946. http://dx.doi.org/10.3390/s20071946.
Full textXiao, Maohua, Kai Wen, Cunyi Zhang, Xiao Zhao, Weihua Wei, and Dan Wu. "Research on Fault Feature Extraction Method of Rolling Bearing Based on NMD and Wavelet Threshold Denoising." Shock and Vibration 2018 (August 19, 2018): 1–11. http://dx.doi.org/10.1155/2018/9495265.
Full textKozhevnikov, A. V. "Effect of gripping conditions and strip oscillations on vibrations originating at cold rolling." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 76, no. 1 (2020): 54–58. http://dx.doi.org/10.32339/0135-5910-2020-1-54-58.
Full textSun, Yan Ping, and De Chen Zhang. "Research on the Vibration of Rolling Mill." Advanced Engineering Forum 2-3 (December 2011): 843–47. http://dx.doi.org/10.4028/www.scientific.net/aef.2-3.843.
Full textZhao, Liye, Wei Yu, and Ruqiang Yan. "Rolling Bearing Fault Diagnosis Based on CEEMD and Time Series Modeling." Mathematical Problems in Engineering 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/101867.
Full textChoi, Won Hong, and J. Stuart Bolton. "Modeling of Sound Radiation from a Loaded Rolling Tire." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 268, no. 5 (2023): 3391–401. http://dx.doi.org/10.3397/in_2023_0488.
Full textManjunatha, G., and H. C. Chittappa. "Bearing Fault Classification using Empirical Mode Decomposition and Machine Learning Approach." Journal of Mines, Metals and Fuels 70, no. 4 (2022): 214. http://dx.doi.org/10.18311/jmmf/2022/30060.
Full textUmanskii, A. A., A. B. Yur’ev, A. S. Simachev, and L. V. Dumova. "Influence of deformation parameters on quality of billets and grinding balls during their production from rejects of rail steels." Izvestiya. Ferrous Metallurgy 65, no. 8 (2022): 596–603. http://dx.doi.org/10.17073/0368-0797-2022-8-596-603.
Full textQiu, Chaoxin, Rui Xu, Xin Xu, and Shengcan Ma. "Finite Element Simulation of Multi-Pass Rolling of a Pure Aluminum Target under Different Rolling Routes and Methods." Metals 14, no. 8 (2024): 845. http://dx.doi.org/10.3390/met14080845.
Full textYegorov, О. P., M. V. Mykhailovskyi, and M. O. Rybalchenko. "SYSTEMATIC ANALYSIS OF INVARIANCE OF SEPARATE CONTROL CIRCUITS OF HIGH-SPEED ROLLING WITH A LOOP ON CONTINUOUS SMALL SECTION MILL." Modern Problems of Metalurgy, no. 28 (June 30, 2025): 152–61. https://doi.org/10.34185/1991-7848.2025.01.09.
Full textWang, Fengtao, Gang Deng, Chenxi Liu, Wensheng Su, Qingkai Han, and Hongkun Li. "A deep feature extraction method for bearing fault diagnosis based on empirical mode decomposition and kernel function." Advances in Mechanical Engineering 10, no. 9 (2018): 168781401879825. http://dx.doi.org/10.1177/1687814018798251.
Full textSalehizadeh, H., and N. Saka. "Crack Propagation in Rolling Line Contacts." Journal of Tribology 114, no. 4 (1992): 690–97. http://dx.doi.org/10.1115/1.2920937.
Full textLoktev, V. M., and Yu G. Pogorelov. "Boundary friction on molecular lubricants: rolling mode?" Low Temperature Physics 30, no. 4 (2004): 317–20. http://dx.doi.org/10.1063/1.1705439.
Full textKuhn, E., L. Uhlig, M. Wachs, U. T. Schwarz, and A. Thränhardt. "Mode rolling effects in nitride laser diodes." Engineering Research Express 2, no. 3 (2020): 035036. http://dx.doi.org/10.1088/2631-8695/abb6c8.
Full textJi, Houxin, Ke Huang, and Chaoquan Mo. "Research on the Application of Variational Mode Decomposition Optimized by Snake Optimization Algorithm in Rolling Bearing Fault Diagnosis." Shock and Vibration 2024 (April 5, 2024): 1–21. http://dx.doi.org/10.1155/2024/5549976.
Full textQin, Jian, Taiyong Fei, Zhiguo Qu, Yinan Zhang, and Xinyi Yu. "Fault Diagnosis of Rolling Bearing Based on ICEEMDAN and SSA-RVM." Journal of Physics: Conference Series 2419, no. 1 (2023): 012077. http://dx.doi.org/10.1088/1742-6596/2419/1/012077.
Full textMa, Fang, Liwei Zhan, Chengwei Li, Zhenghui Li, and Tingjian Wang. "Self-Adaptive Fault Feature Extraction of Rolling Bearings Based on Enhancing Mode Characteristic of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise." Symmetry 11, no. 4 (2019): 513. http://dx.doi.org/10.3390/sym11040513.
Full textHu, Ai Jun, Yu Zhu, and Xue Wang. "Analysis of Fault Diagnosis for Rolling Bearing Based on EMD and Local Smoothness Index." Advanced Materials Research 490-495 (March 2012): 2007–11. http://dx.doi.org/10.4028/www.scientific.net/amr.490-495.2007.
Full textWei, Xing Chun, Yu Lin Tang, and Tao Chen. "Research of Rolling Bearing Fault Feature Extraction Based on EMD and Choi-Williams." Advanced Materials Research 694-697 (May 2013): 1377–81. http://dx.doi.org/10.4028/www.scientific.net/amr.694-697.1377.
Full textZheng, Xiaoxia, Guowang Zhou, Dongdong Li, and Haohan Ren. "Application of Variational Mode Decomposition and Permutation Entropy for Rolling Bearing Fault Diagnosis." June 2019 24, no. 2 (2019): 303–11. http://dx.doi.org/10.20855/ijav.2019.24.21325.
Full text