Journal articles on the topic 'Rolling Window Time Series Prediction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Rolling Window Time Series Prediction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Li, Xue Mei, Jia Shu Chen, and Li Xing Ding. "Weighted LS-SVM Method for Building Cooling Load Prediction." Advanced Materials Research 121-122 (June 2010): 606–12. http://dx.doi.org/10.4028/www.scientific.net/amr.121-122.606.
Full textWang, Zhihua, Yongbo Zhang, and Huimin Fu. "Autoregressive Prediction with Rolling Mechanism for Time Series Forecasting with Small Sample Size." Mathematical Problems in Engineering 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/572173.
Full textShin, Yuna, Taekgeun Kim, Seoksu Hong, Seulbi Lee, EunJi Lee, SeungWoo Hong, ChangSik Lee, et al. "Prediction of Chlorophyll-a Concentrations in the Nakdong River Using Machine Learning Methods." Water 12, no. 6 (June 25, 2020): 1822. http://dx.doi.org/10.3390/w12061822.
Full textWang, Yaping, Chaonan Yang, Di Xu, Jianghua Ge, and Wei Cui. "Evaluation and Prediction Method of Rolling Bearing Performance Degradation Based on Attention-LSTM." Shock and Vibration 2021 (May 20, 2021): 1–15. http://dx.doi.org/10.1155/2021/6615920.
Full textGu, Wentao, Yongwei Yang, and Zhenshan Liu. "Forecasting Stock Returns Based on a Time-Varying Factor Weighted Density Model." Journal of Advanced Computational Intelligence and Intelligent Informatics 22, no. 6 (October 20, 2018): 831–37. http://dx.doi.org/10.20965/jaciii.2018.p0831.
Full textJeon, Jun-Woo, Okan Duru, Ziaul Haque Munim, and Naima Saeed. "System Dynamics in the Predictive Analytics of Container Freight Rates." Transportation Science 55, no. 4 (July 2021): 946–67. http://dx.doi.org/10.1287/trsc.2021.1046.
Full textGonzález-Enrique, Javier, Juan Jesús Ruiz-Aguilar, José Antonio Moscoso-López, Daniel Urda, Lipika Deka, and Ignacio J. Turias. "Artificial Neural Networks, Sequence-to-Sequence LSTMs, and Exogenous Variables as Analytical Tools for NO2 (Air Pollution) Forecasting: A Case Study in the Bay of Algeciras (Spain)." Sensors 21, no. 5 (March 4, 2021): 1770. http://dx.doi.org/10.3390/s21051770.
Full textChen, Cathy W. S., and L. M. Chiu. "Ordinal Time Series Forecasting of the Air Quality Index." Entropy 23, no. 9 (September 4, 2021): 1167. http://dx.doi.org/10.3390/e23091167.
Full textGe, Xiaohui, Lu Shen, Chaoming Zheng, Peng Li, and Xiaobo Dou. "A Decoupling Rolling Multi-Period Power and Voltage Optimization Strategy in Active Distribution Networks." Energies 13, no. 21 (November 5, 2020): 5789. http://dx.doi.org/10.3390/en13215789.
Full textCsernai, Eszter, Gergely Horváth, Michele LeNoue-Newton, Kathleen Mittendorf, David Smith, Ben Ho Park, Jan Wolber, and Travis John Osterman. "Rolling window-based hepatitis toxicity prediction from routine bloodwork in patients undergoing immune checkpoint inhibitor therapy." Journal of Clinical Oncology 40, no. 16_suppl (June 1, 2022): e13565-e13565. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.e13565.
Full textShcherbinina, A. V., and A. V. Alzheev. "Comparative analysis of the forecasting quality of the classical statistical model and the machine learning model on the data of the Russian stock market." Scientific notes of the Russian academy of entrepreneurship 20, no. 3 (October 5, 2021): 52–63. http://dx.doi.org/10.24182/2073-6258-2021-20-3-52-63.
Full textKombo, Omar Haji, Santhi Kumaran, Yahya H. Sheikh, Alastair Bovim, and Kayalvizhi Jayavel. "Long-Term Groundwater Level Prediction Model Based on Hybrid KNN-RF Technique." Hydrology 7, no. 3 (August 18, 2020): 59. http://dx.doi.org/10.3390/hydrology7030059.
Full textHarris, Mallory J., Simon I. Hay, and John M. Drake. "Early warning signals of malaria resurgence in Kericho, Kenya." Biology Letters 16, no. 3 (March 2020): 20190713. http://dx.doi.org/10.1098/rsbl.2019.0713.
Full textVo, Nguyen, and Robert Ślepaczuk. "Applying Hybrid ARIMA-SGARCH in Algorithmic Investment Strategies on S&P500 Index." Entropy 24, no. 2 (January 20, 2022): 158. http://dx.doi.org/10.3390/e24020158.
Full textElgammal, Mohammed Mohammed, Fatma Ehab Ahmed, and David Gordon McMillan. "The predictive ability of stock market factors." Studies in Economics and Finance 39, no. 1 (October 21, 2021): 111–24. http://dx.doi.org/10.1108/sef-01-2021-0010.
Full textShen, Li, Zijin Wei, and Yangzhu Wang. "Determining the Rolling Window Size of Deep Neural Network Based Models on Time Series Forecasting." Journal of Physics: Conference Series 2078, no. 1 (November 1, 2021): 012011. http://dx.doi.org/10.1088/1742-6596/2078/1/012011.
Full textJiang, Gui Yan, and Cui Liu Kong. "Traffic Parameters Prediction Method Based on Rolling Time Series." Advanced Materials Research 671-674 (March 2013): 2946–50. http://dx.doi.org/10.4028/www.scientific.net/amr.671-674.2946.
Full textYu, Yufeng, Yuelong Zhu, Shijin Li, and Dingsheng Wan. "Time Series Outlier Detection Based on Sliding Window Prediction." Mathematical Problems in Engineering 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/879736.
Full textYang, Xiyang, Shiqing Zhang, Xinjun Zhang, and Fusheng Yu. "Polynomial Fuzzy Information Granule-Based Time Series Prediction." Mathematics 10, no. 23 (November 28, 2022): 4495. http://dx.doi.org/10.3390/math10234495.
Full textDimoudis, Dimitris, Thanasis Vafeiadis, Alexandros Nizamis, Dimosthenis Ioannidis, and Dimitrios Tzovaras. "Utilizing an adaptive window rolling median methodology for time series anomaly detection." Procedia Computer Science 217 (2023): 584–93. http://dx.doi.org/10.1016/j.procs.2022.12.254.
Full textNE, Gyamfi, Kyei KA, and Gill R. "African Stock Markets and Return Predictability." Journal of Economics and Behavioral Studies 8, no. 5(J) (October 30, 2016): 91–99. http://dx.doi.org/10.22610/jebs.v8i5(j).1434.
Full textFan, Jin, Yipan Huang, Ke Zhang, Sen Wang, Jinhua Chen, and Baiping Chen. "DWNet: Dual-Window Deep Neural Network for Time Series Prediction." Complexity 2021 (October 13, 2021): 1–10. http://dx.doi.org/10.1155/2021/1125630.
Full textIsiaka, Abdulaleem, Abdulqudus Isiaka, and Abdulqadir Isiaka. "Forecasting with ARMA models." International Journal of Research in Business and Social Science (2147- 4478) 10, no. 1 (February 11, 2021): 205–34. http://dx.doi.org/10.20525/ijrbs.v10i1.1005.
Full textWang, Yu Chao, Fan Ming Liu, and Hui Xuan Fu. "Ship Rolling Motion Prediction Based on Wavelet Neural Network." Applied Mechanics and Materials 190-191 (July 2012): 724–28. http://dx.doi.org/10.4028/www.scientific.net/amm.190-191.724.
Full textXia, Xin Tao, and Tao Mei Lv. "Chaos Prediction of Rolling Bearing Friction Torque." Applied Mechanics and Materials 26-28 (June 2010): 190–93. http://dx.doi.org/10.4028/www.scientific.net/amm.26-28.190.
Full textPang, Yi-Hui, Hong-Bo Wang, Jian-Jian Zhao, and De-Yong Shang. "Analysis and Prediction of Hydraulic Support Load Based on Time Series Data Modeling." Geofluids 2020 (October 22, 2020): 1–15. http://dx.doi.org/10.1155/2020/8851475.
Full textRaza, Syed Ali, Rashid Sbia, Muhammad Shahbaz, and Sahel Al Rousan. "Trade-growth nexus and the rolling window analysis in United Arab Emirates." Journal of Asia Business Studies 12, no. 4 (December 10, 2018): 469–88. http://dx.doi.org/10.1108/jabs-07-2016-0098.
Full textPolanco-Martínez, Josué M. "RolWinMulCor: An R package for estimating rolling window multiple correlation in ecological time series." Ecological Informatics 60 (November 2020): 101163. http://dx.doi.org/10.1016/j.ecoinf.2020.101163.
Full textZheng, Hao, Jian Yan Tian, Fang Wang, and Jin Li. "Short-Term Wind Speed Combination Prediction Model of Neural Network and Time Series." Advanced Materials Research 608-609 (December 2012): 764–69. http://dx.doi.org/10.4028/www.scientific.net/amr.608-609.764.
Full textTaroni, Matteo, Giorgio Vocalelli, and Andrea De Polis. "Gutenberg–Richter B-Value Time Series Forecasting: A Weighted Likelihood Approach." Forecasting 3, no. 3 (August 6, 2021): 561–69. http://dx.doi.org/10.3390/forecast3030035.
Full textLi, Hongcheng, Yuan Gao, Bing Wang, Yuewei Ming, and Zhongwei Zhao. "Network Anomaly Sequence Prediction Method Based on LSTM and Two-layer Window Features." Journal of Physics: Conference Series 2216, no. 1 (March 1, 2022): 012063. http://dx.doi.org/10.1088/1742-6596/2216/1/012063.
Full textAnagiannis, Ioannis, Nikolaos Nikolakis, and Kosmas Alexopoulos. "Energy-Based Prognosis of the Remaining Useful Life of the Coating Segments in Hot Rolling Mill." Applied Sciences 10, no. 19 (September 29, 2020): 6827. http://dx.doi.org/10.3390/app10196827.
Full textHan, Shuang, and Hongbin Dong. "A Temporal Window Attention-Based Window-Dependent Long Short-Term Memory Network for Multivariate Time Series Prediction." Entropy 25, no. 1 (December 21, 2022): 10. http://dx.doi.org/10.3390/e25010010.
Full textXia, X., Z. Chang, Y. Li, L. Ye, and M. Qiu. "Analysis and Prediction for Time Series on Torque Friction of Rolling Bearings." Journal of Testing and Evaluation 46, no. 3 (December 1, 2017): 20160549. http://dx.doi.org/10.1520/jte20160549.
Full textXia, Xin Tao, and Tao Mei Lv. "Dynamic Prediction of Rolling Bearing Friction Torque Using Lyapunov Exponent Method." Applied Mechanics and Materials 44-47 (December 2010): 1120–24. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.1120.
Full textShahriari, Siroos, Taha Hossein Rashidi, AKM Azad, and Fatemeh Vafaee. "COVIDSpread: real-time prediction of COVID-19 spread based on time-series modelling." F1000Research 10 (November 3, 2021): 1110. http://dx.doi.org/10.12688/f1000research.73969.1.
Full textPathak, Rajesh, Ranjan Das Gupta, Cleiton Guollo Taufemback, and Aviral Kumar Tiwari. "Testing the efficiency of metal's market: new evidence from a generalized spectral test." Studies in Economics and Finance 37, no. 2 (May 14, 2020): 311–21. http://dx.doi.org/10.1108/sef-07-2019-0253.
Full textXu, Bao Yu, Yi Lun Liu, Xu Dong Wang, and Fang Dong. "Stochastic Excitation Model of Strip Rolling Mill." Advanced Materials Research 216 (March 2011): 378–82. http://dx.doi.org/10.4028/www.scientific.net/amr.216.378.
Full textYuan, Can, Qi Cai, Gang Liu, and Feng Yan. "The Combinatorial Prediction about Chaotic Times Series of Natural Circulation Flow under Rolling Motion." Advanced Materials Research 989-994 (July 2014): 1348–51. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.1348.
Full textZhao Yong-Ping, Zhang Li-Yan, Li De-Cai, Wang Li-Feng, and Jiang Hong-Zhang. "Chaotic time series prediction using filtering window based least squares support vector regression." Acta Physica Sinica 62, no. 12 (2013): 120511. http://dx.doi.org/10.7498/aps.62.120511.
Full textFeng, Fu Zhou, Dong Dong Zhu, Peng Cheng Jiang, and Hao Jiang. "GA-SVR Based Bearing Condition Degradation Prediction." Key Engineering Materials 413-414 (June 2009): 431–37. http://dx.doi.org/10.4028/www.scientific.net/kem.413-414.431.
Full textMa, Leilei, Hong Jiang, Tongwei Ma, Xiangfeng Zhang, Yong Shen, and Lei Xia. "Fault Prediction of Rolling Element Bearings Using the Optimized MCKD–LSTM Model." Machines 10, no. 5 (May 6, 2022): 342. http://dx.doi.org/10.3390/machines10050342.
Full textGao, Lv, Wu, Si, and Hu. "Method for Determining Starting Point of Rolling Bearing Life Prediction Based on Linear Regression." Electronics 8, no. 9 (August 22, 2019): 923. http://dx.doi.org/10.3390/electronics8090923.
Full textYu, Lean, and Yueming Ma. "A Data-Trait-Driven Rolling Decomposition-Ensemble Model for Gasoline Consumption Forecasting." Energies 14, no. 15 (July 29, 2021): 4604. http://dx.doi.org/10.3390/en14154604.
Full textDong, Limei, Desheng Fang, Xi Wang, Wei Wei, Robertas Damaševičius, Rafał Scherer, and Marcin Woźniak. "Prediction of Streamflow Based on Dynamic Sliding Window LSTM." Water 12, no. 11 (October 29, 2020): 3032. http://dx.doi.org/10.3390/w12113032.
Full textCai, Bowen, and Qianli Di. "Different Forecasting Model Comparison for Near Future Crash Prediction." Applied Sciences 13, no. 2 (January 5, 2023): 759. http://dx.doi.org/10.3390/app13020759.
Full textLiu, Jingzhong. "Adaptive forgetting factor OS-ELM and bootstrap for time series prediction." International Journal of Modeling, Simulation, and Scientific Computing 08, no. 03 (September 2017): 1750029. http://dx.doi.org/10.1142/s1793962317500295.
Full textGürsakal, Necmi, Fırat Melih Yilmaz, and Erginbay Uğurlu:. "Finding opportunity windows in time series data using the sliding window technique: The case of stock exchanges." Econometrics 24, no. 3 (2020): 1–19. http://dx.doi.org/10.15611/eada.2020.3.01.
Full textGupta, Mehak, Raphael Poulain, Thao-Ly T. Phan, H. Timothy Bunnell, and Rahmatollah Beheshti. "Flexible-Window Predictions on Electronic Health Records." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (June 28, 2022): 12510–16. http://dx.doi.org/10.1609/aaai.v36i11.21520.
Full textBhanja, Samit, and Abhisek Das. "A hybrid deep learning model for air quality time series prediction." Indonesian Journal of Electrical Engineering and Computer Science 22, no. 3 (June 1, 2021): 1611. http://dx.doi.org/10.11591/ijeecs.v22.i3.pp1611-1618.
Full text