Journal articles on the topic 'Room temperature sodium battery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Room temperature sodium battery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Liu, Wen, Hong Li, Jing-Ying Xie, and Zheng-Wen Fu. "Rechargeable Room-Temperature CFx-Sodium Battery." ACS Applied Materials & Interfaces 6, no. 4 (2014): 2209–12. http://dx.doi.org/10.1021/am4051348.
Full textPark, Cheol-Wan, Jou-Hyeon Ahn, Ho-Suk Ryu, Ki-Won Kim, and Hyo-Jun Ahn. "Room-Temperature Solid-State Sodium∕Sulfur Battery." Electrochemical and Solid-State Letters 9, no. 3 (2006): A123. http://dx.doi.org/10.1149/1.2164607.
Full textHartmann, Pascal, Conrad L. Bender, Miloš Vračar, et al. "A rechargeable room-temperature sodium superoxide (NaO2) battery." Nature Materials 12, no. 3 (2012): 228–32. http://dx.doi.org/10.1038/nmat3486.
Full textXin, Sen, Ya-Xia Yin, Yu-Guo Guo, and Li-Jun Wan. "A High-Energy Room-Temperature Sodium-Sulfur Battery." Advanced Materials 26, no. 8 (2013): 1261–65. http://dx.doi.org/10.1002/adma.201304126.
Full textMcCormick, Colin. "Energy Focus: Rechargeable room-temperature sodium-air battery involves sodium superoxide." MRS Bulletin 38, no. 2 (2013): 119. http://dx.doi.org/10.1557/mrs.2013.30.
Full textKim, T. B., J. W. Choi, H. S. Ryu, et al. "Electrochemical properties of sodium/pyrite battery at room temperature." Journal of Power Sources 174, no. 2 (2007): 1275–78. http://dx.doi.org/10.1016/j.jpowsour.2007.06.093.
Full textFeng, Jinkui, Zhen Zhang, Lifei Li, Jian Yang, Shenglin Xiong, and Yitai Qian. "Ether-based nonflammable electrolyte for room temperature sodium battery." Journal of Power Sources 284 (June 2015): 222–26. http://dx.doi.org/10.1016/j.jpowsour.2015.03.038.
Full textBrutti, S., M. A. Navarra, G. Maresca, et al. "Ionic liquid electrolytes for room temperature sodium battery systems." Electrochimica Acta 306 (May 2019): 317–26. http://dx.doi.org/10.1016/j.electacta.2019.03.139.
Full textWang, Yanjie, Yingjie Zhang, Hongyu Cheng, et al. "Research Progress toward Room Temperature Sodium Sulfur Batteries: A Review." Molecules 26, no. 6 (2021): 1535. http://dx.doi.org/10.3390/molecules26061535.
Full textKim, Icpyo, Chang Hyeon Kim, Sun hwa Choi, et al. "A singular flexible cathode for room temperature sodium/sulfur battery." Journal of Power Sources 307 (March 2016): 31–37. http://dx.doi.org/10.1016/j.jpowsour.2015.12.035.
Full textXia, Chuan, Fan Zhang, Hanfeng Liang, and Husam N. Alshareef. "Layered SnS sodium ion battery anodes synthesized near room temperature." Nano Research 10, no. 12 (2017): 4368–77. http://dx.doi.org/10.1007/s12274-017-1722-0.
Full textXiao, Xiang, Wei Li, and Jianbing Jiang. "Sulfur-Biological Carbon for Long-Life Room-Temperature Sodium-Sulfur Battery." Journal of Biobased Materials and Bioenergy 14, no. 4 (2020): 487–91. http://dx.doi.org/10.1166/jbmb.2020.1982.
Full textWang, Nana, Yunxiao Wang, Zhongchao Bai, et al. "High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion." Energy & Environmental Science 13, no. 2 (2020): 562–70. http://dx.doi.org/10.1039/c9ee03251g.
Full textAdelhelm, Philipp, Pascal Hartmann, Conrad L. Bender, Martin Busche, Christine Eufinger, and Juergen Janek. "From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries." Beilstein Journal of Nanotechnology 6 (April 23, 2015): 1016–55. http://dx.doi.org/10.3762/bjnano.6.105.
Full textHan, Man Huon, Elena Gonzalo, Gurpreet Singh, and Teófilo Rojo. "A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries." Energy & Environmental Science 8, no. 1 (2015): 81–102. http://dx.doi.org/10.1039/c4ee03192j.
Full textRao, R. Prasada, Xin Zhang, Kia Chai Phuah, and Stefan Adams. "Mechanochemical synthesis of fast sodium ion conductor Na11Sn2PSe12 enables first sodium–selenium all-solid-state battery." Journal of Materials Chemistry A 7, no. 36 (2019): 20790–98. http://dx.doi.org/10.1039/c9ta06279c.
Full textWang, Chueh-Han, Cheng-Hsien Yang, and Jeng-Kuei Chang. "Suitability of ionic liquid electrolytes for room-temperature sodium-ion battery applications." Chemical Communications 52, no. 72 (2016): 10890–93. http://dx.doi.org/10.1039/c6cc04625h.
Full textZhou, Jiahui, Yue Yang, Yingchao Zhang, et al. "Sulfur in Amorphous Silica for an Advanced Room‐Temperature Sodium–Sulfur Battery." Angewandte Chemie International Edition 60, no. 18 (2021): 10129–36. http://dx.doi.org/10.1002/anie.202015932.
Full textZhou, Jiahui, Yue Yang, Yingchao Zhang, et al. "Sulfur in Amorphous Silica for an Advanced Room‐Temperature Sodium–Sulfur Battery." Angewandte Chemie 133, no. 18 (2021): 10217–24. http://dx.doi.org/10.1002/ange.202015932.
Full textOh, Jin An Sam, Yumei Wang, Qibin Zeng, et al. "Intrinsic low sodium/NASICON interfacial resistance paving the way for room temperature sodium-metal battery." Journal of Colloid and Interface Science 601 (November 2021): 418–26. http://dx.doi.org/10.1016/j.jcis.2021.05.123.
Full textLiu, Xizheng, Xi Wang, Akira Iyo, Haijun Yu, De Li, and Haoshen Zhou. "High stable post-spinel NaMn2O4 cathode of sodium ion battery." J. Mater. Chem. A 2, no. 36 (2014): 14822–26. http://dx.doi.org/10.1039/c4ta03349c.
Full textCarter, Rachel, Landon Oakes, Anna Douglas, Nitin Muralidharan, Adam P. Cohn, and Cary L. Pint. "A Sugar-Derived Room-Temperature Sodium Sulfur Battery with Long Term Cycling Stability." Nano Letters 17, no. 3 (2017): 1863–69. http://dx.doi.org/10.1021/acs.nanolett.6b05172.
Full textXin, Sen, Ya-Xia Yin, Yu-Guo Guo, and Li-Jun Wan. "Batteries: A High-Energy Room-Temperature Sodium-Sulfur Battery (Adv. Mater. 8/2014)." Advanced Materials 26, no. 8 (2014): 1308. http://dx.doi.org/10.1002/adma.201470053.
Full textGaddam, Rohit Ranganathan, Amir H. Farokh Niaei, Marlies Hankel, Debra J. Searles, Nanjundan Ashok Kumar, and X. S. Zhao. "Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon." J. Mater. Chem. A 5, no. 42 (2017): 22186–92. http://dx.doi.org/10.1039/c7ta06754b.
Full textZhao, Hongyang, Jianwei Wang, Yuheng Zheng, et al. "Organic Thiocarboxylate Electrodes for a Room-Temperature Sodium-Ion Battery Delivering an Ultrahigh Capacity." Angewandte Chemie International Edition 56, no. 48 (2017): 15334–38. http://dx.doi.org/10.1002/anie.201708960.
Full textYang, Tingting, Bingshu Guo, Wenyan Du, et al. "Design and Construction of Sodium Polysulfides Defense System for Room‐Temperature Na–S Battery." Advanced Science 6, no. 23 (2019): 1901557. http://dx.doi.org/10.1002/advs.201901557.
Full textZhao, Hongyang, Jianwei Wang, Yuheng Zheng, et al. "Organic Thiocarboxylate Electrodes for a Room-Temperature Sodium-Ion Battery Delivering an Ultrahigh Capacity." Angewandte Chemie 129, no. 48 (2017): 15536–40. http://dx.doi.org/10.1002/ange.201708960.
Full textKim, Tae-Bum, Cheol Wan Park, Ho Suk Ryu, and Hyo Jun Ahn. "Ionic Conductivity of Sodium Ion with NaCF3SO3 Salts in Electrolyte for Sodium Batteries." Materials Science Forum 486-487 (June 2005): 638–41. http://dx.doi.org/10.4028/www.scientific.net/msf.486-487.638.
Full textLi, Shuping, Ziqi Zeng, Jiaqiang Yang, et al. "High Performance Room Temperature Sodium–Sulfur Battery by Eutectic Acceleration in Tellurium-Doped Sulfurized Polyacrylonitrile." ACS Applied Energy Materials 2, no. 4 (2019): 2956–64. http://dx.doi.org/10.1021/acsaem.9b00343.
Full textLiu, Yihang, Qingzhou Liu, Anyi Zhang, et al. "Room-Temperature Pressure Synthesis of Layered Black Phosphorus–Graphene Composite for Sodium-Ion Battery Anodes." ACS Nano 12, no. 8 (2018): 8323–29. http://dx.doi.org/10.1021/acsnano.8b03615.
Full textKim, Icpyo, Jin-Young Park, ChangHyeon Kim, et al. "Sodium Polysulfides during Charge/Discharge of the Room-Temperature Na/S Battery Using TEGDME Electrolyte." Journal of The Electrochemical Society 163, no. 5 (2016): A611—A616. http://dx.doi.org/10.1149/2.0201605jes.
Full textBellusci, Mariangela, Elisabetta Simonetti, Massimo De Francesco, and Giovanni Battista Appetecchi. "Ionic Liquid Electrolytes for Safer and More Reliable Sodium Battery Systems." Applied Sciences 10, no. 18 (2020): 6323. http://dx.doi.org/10.3390/app10186323.
Full textYang, Ming Shan, Jian Wei Liu, Jin Yu, Xu Zhang, Jing Wei, and Lin Kai Li. "The Synthesis and Properties of a Novel Solid Polyphosphazene Electrolyte for Lithium Ion Battery." Advanced Materials Research 148-149 (October 2010): 749–52. http://dx.doi.org/10.4028/www.scientific.net/amr.148-149.749.
Full textZhu, Jianhui, Amr Abdelkader, Denisa Demko, et al. "Electrocatalytic Assisted Performance Enhancement for the Na-S Battery in Nitrogen-Doped Carbon Nanospheres Loaded with Fe." Molecules 25, no. 7 (2020): 1585. http://dx.doi.org/10.3390/molecules25071585.
Full textR, Arunkumar, Ajay Piriya Vijaya Kumar Saroja, and Ramaprabhu Sundara. "Barium Titanate-Based Porous Ceramic Flexible Membrane as a Separator for Room-Temperature Sodium-Ion Battery." ACS Applied Materials & Interfaces 11, no. 4 (2019): 3889–96. http://dx.doi.org/10.1021/acsami.8b17887.
Full textWan, Hongli, Wei Weng, Fudong Han, Liangting Cai, Chunsheng Wang, and Xiayin Yao. "Bio-inspired Nanoscaled Electronic/Ionic Conduction Networks for Room-Temperature All-Solid-State Sodium-Sulfur Battery." Nano Today 33 (August 2020): 100860. http://dx.doi.org/10.1016/j.nantod.2020.100860.
Full textZhao, Liang, Junmei Zhao, Yong-Sheng Hu, et al. "Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low-Cost Room-Temperature Sodium-Ion Battery." Advanced Energy Materials 2, no. 8 (2012): 962–65. http://dx.doi.org/10.1002/aenm.201200166.
Full textYe, Xin, Jiafeng Ruan, Yuepeng Pang, et al. "Enabling a Stable Room-Temperature Sodium–Sulfur Battery Cathode by Building Heterostructures in Multichannel Carbon Fibers." ACS Nano 15, no. 3 (2021): 5639–48. http://dx.doi.org/10.1021/acsnano.1c00804.
Full textZhang, Xueqian, Zhiguo Hou, Xiaona Li, Jianwen Liang, Yongchun Zhu, and Yitai Qian. "Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes." Journal of Materials Chemistry A 4, no. 3 (2016): 856–60. http://dx.doi.org/10.1039/c5ta08857g.
Full textRyu, Hosuk, Taebum Kim, Kiwon Kim, et al. "Discharge reaction mechanism of room-temperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte." Journal of Power Sources 196, no. 11 (2011): 5186–90. http://dx.doi.org/10.1016/j.jpowsour.2011.01.109.
Full textAsakura, Ryo, David Reber, Léo Duchêne, et al. "4 V room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface." Energy & Environmental Science 13, no. 12 (2020): 5048–58. http://dx.doi.org/10.1039/d0ee01569e.
Full textTabuyo-Martínez, Marina, Bernd Wicklein, and Pilar Aranda. "Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries." Beilstein Journal of Nanotechnology 12 (September 9, 2021): 995–1020. http://dx.doi.org/10.3762/bjnano.12.75.
Full textKumar, Ajit, Arnab Ghosh, Amlan Roy, et al. "High-energy density room temperature sodium-sulfur battery enabled by sodium polysulfide catholyte and carbon cloth current collector decorated with MnO2 nanoarrays." Energy Storage Materials 20 (July 2019): 196–202. http://dx.doi.org/10.1016/j.ensm.2018.11.031.
Full textVijaya Kumar Saroja, Ajay Piriya, Kamaraj Muthusamy, and Ramaprabhu Sundara. "Strong Surface Bonding of Polysulfides by Teflonized Carbon Matrix for Enhanced Performance in Room Temperature Sodium‐Sulfur Battery." Advanced Materials Interfaces 6, no. 7 (2019): 1801873. http://dx.doi.org/10.1002/admi.201801873.
Full textPonnaiah, Arjunan, Subadevi Rengapillai, Diwakar Karuppiah, Sivakumar Marimuthu, Wei-Ren Liu, and Chia-Hung Huang. "High Capacity Prismatic Type Layered Electrode with Anionic Redox Activity as an Efficient Cathode Material and PVdF/SiO2 Composite Membrane for a Sodium Ion Battery." Polymers 12, no. 3 (2020): 662. http://dx.doi.org/10.3390/polym12030662.
Full textArjunan, Ponnaiah, Mathiyalagan Kouthaman, Rengapillai Subadevi, et al. "Superior Ionic Transferring Polymer with Silicon Dioxide Composite Membrane via Phase Inversion Method Designed for High Performance Sodium-Ion Battery." Polymers 12, no. 2 (2020): 405. http://dx.doi.org/10.3390/polym12020405.
Full textHassan, N., A. Sanusi, and Azizah Hanom Ahmad. "Evaluation of Binary System (NaI-Na3PO4) Solid Electrolyte and Performance of Sodium Battery." Applied Mechanics and Materials 703 (December 2014): 33–40. http://dx.doi.org/10.4028/www.scientific.net/amm.703.33.
Full textZhao, Liang, Hui-Lin Pan, Yong-Sheng Hu, Hong Li, and Li-Quan Chen. "Spinel lithium titanate (Li 4 Ti 5 O 12 ) as novel anode material for room-temperature sodium-ion battery." Chinese Physics B 21, no. 2 (2012): 028201. http://dx.doi.org/10.1088/1674-1056/21/2/028201.
Full textNagata, Hiroshi, and Yasuo Chikusa. "An All-solid-state Sodium–Sulfur Battery Operating at Room Temperature Using a High-sulfur-content Positive Composite Electrode." Chemistry Letters 43, no. 8 (2014): 1333–34. http://dx.doi.org/10.1246/cl.140353.
Full textBenchakar, Mohamed, Régine Naéjus, Christine Damas, and Jesús Santos-Peña. "Exploring the use of EMImFSI ionic liquid as additive or co-solvent for room temperature sodium ion battery electrolytes." Electrochimica Acta 330 (January 2020): 135193. http://dx.doi.org/10.1016/j.electacta.2019.135193.
Full text