Academic literature on the topic 'Rössler'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rössler.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rössler"

1

Scarponi, Danny. "The realization of the degree zero part of the motivic polylogarithm on abelian schemes in Deligne–Beilinson cohomology." International Journal of Number Theory 13, no. 09 (September 20, 2017): 2471–85. http://dx.doi.org/10.1142/s1793042117501378.

Full text
Abstract:
In 2014, Kings and Rössler showed that the realization of the degree zero part of the abelian polylogarithm in analytic Deligne cohomology can be described in terms of a class of currents which was previously defined by Maillot and Rössler and strongly related to the Bismut–Köhler higher torsion form of the Poincaré bundle. In this paper we show that, if the base of the abelian scheme is proper, Kings and Rössler’s result can be refined to hold already in Deligne–Beilinson cohomology. More precisely, by means of Burgos’ theory of arithmetic Chow groups, we prove that the class of currents defined by Maillot and Rössler has a representative with logarithmic singularities at the boundary and therefore defines an element in Deligne–Beilinson cohomology. This element coincides with the realization of the degree zero part of the motivic polylogarithm on abelian schemes in Deligne–Beilinson cohomology.
APA, Harvard, Vancouver, ISO, and other styles
2

Fannon, Dominic. "Wulf Rössler." Psychiatric Bulletin 29, no. 8 (August 2005): 320. http://dx.doi.org/10.1192/pb.29.8.320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

DENG, BO. "SPIRAL-PLUS-SADDLE ATTRACTORS AND ELEMENTARY MECHANISMS FOR CHAOS GENERATION." International Journal of Bifurcation and Chaos 06, no. 03 (March 1996): 513–27. http://dx.doi.org/10.1142/s0218127496000229.

Full text
Abstract:
Rössler's spiral-plus-saddle (SPS) mechanism for chaotic attractors is systematically implemented. The method is based on the works of Rössler [1976, 1979] and Deng [1994]. Some more complex chaotic structures are also investigated experimentally when the SPS, branching, and relaxation-folding mechanisms for chaos generation are combined.
APA, Harvard, Vancouver, ISO, and other styles
4

Markoski, Gjorgji. "BIFURCATION ANALYSIS OF FRACTIONAL ORDER RÖSSLER SYSTEM ORDER RÖSSLER SYSTEM." Математички билтен/BULLETIN MATHÉMATIQUE DE LA SOCIÉTÉ DES MATHÉMATICIENS DE LA RÉPUBLIQUE MACÉDOINE, no. 1 (2018): 28–37. http://dx.doi.org/10.37560/matbil18100028m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Ranchao, and Xiang Li. "Hopf Bifurcation Analysis and Anticontrol of Hopf Circles of the Rössler-Like System." Abstract and Applied Analysis 2012 (2012): 1–16. http://dx.doi.org/10.1155/2012/341870.

Full text
Abstract:
A new Rössler-like system is constructed by the linear feedback control scheme in this paper. As well, it exhibits complex dynamical behaviors, such as bifurcation, chaos, and strange attractor. By virtue of the normal form theory, its Hopf bifurcation and stability are investigated in detail. Consequently, the stable periodic orbits are bifurcated. Furthermore, the anticontrol of Hopf circles is achieved between the new Rössler-like system and the original Rössler one via a modified projective synchronization scheme. As a result, a stable Hopf circle is created in the controlled Rössler system. The corresponding numerical simulations are presented, which agree with the theoretical analysis.
APA, Harvard, Vancouver, ISO, and other styles
6

LLIBRE, JAUME, and XIANG ZHANG. "DARBOUX INTEGRABILITY FOR THE RÖSSLER SYSTEM." International Journal of Bifurcation and Chaos 12, no. 02 (February 2002): 421–28. http://dx.doi.org/10.1142/s0218127402004474.

Full text
Abstract:
In this note we characterize all generators of Darboux polynomials of the Rössler system by using weight homogeneous polynomials and the method of characteristic curves for solving linear partial differential equations. As a corollary we prove that the Rössler system is not algebraically integrable, and that every rational first integral is a rational function in the variable x2+y2+2z. Moreover, we characterize the topological phase portrait of the Darboux integrable Rössler system.
APA, Harvard, Vancouver, ISO, and other styles
7

Krotz, Friedrich. "Patrick Rössler, Universität Erfurt." Publizistik 49, no. 2 (June 2004): 212–13. http://dx.doi.org/10.1007/s11616-004-0042-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rysak, Andrzej, and Magdalena Gregorczyk. "Differential Transform Method as an Effective Tool for Investigating Fractional Dynamical Systems." Applied Sciences 11, no. 15 (July 28, 2021): 6955. http://dx.doi.org/10.3390/app11156955.

Full text
Abstract:
This study investigates the use of the differential transform method (DTM) for integrating the Rössler system of the fractional order. Preliminary studies of the integer-order Rössler system, with reference to other well-established integration methods, made it possible to assess the quality of the method and to determine optimal parameter values that should be used when integrating a system with different dynamic characteristics. Bifurcation diagrams obtained for the Rössler fractional system show that, compared to the RK4 scheme-based integration, the DTM results are more resistant to changes in the fractionality of the system.
APA, Harvard, Vancouver, ISO, and other styles
9

XIE, QINGXIAN, and GUANRONG CHEN. "SYNCHRONIZATION STABILITY ANALYSIS OF THE CHAOTIC RÖSSLER SYSTEM." International Journal of Bifurcation and Chaos 06, no. 11 (November 1996): 2153–61. http://dx.doi.org/10.1142/s0218127496001429.

Full text
Abstract:
In this paper we show, both analytically and experimentally, that the Rössler system synchronization is either asymptotically stable or orbitally stable within a wide range of the system key parameters. In the meantime, we provide some simple sufficient conditions for synchronization stabilities of the Rössler system in a general situation. Our computer simulation shows that the type of stability of the synchronization is very sensitive to the initial values of the two (drive and response) Rössler systems, especially for higher-periodic synchronizing trajectories, which is believed to be a fundamental characteristic of chaotic synchronization that preserves the extreme sensitivity to initial conditions of chaotic systems.
APA, Harvard, Vancouver, ISO, and other styles
10

YAN, ZHENYA, and PEI YU. "GLOBALLY EXPONENTIAL HYPERCHAOS (LAG) SYNCHRONIZATION IN A FAMILY OF MODIFIED HYPERCHAOTIC RÖSSLER SYSTEMS." International Journal of Bifurcation and Chaos 17, no. 05 (May 2007): 1759–74. http://dx.doi.org/10.1142/s0218127407018063.

Full text
Abstract:
In this paper, we consider a new family of modified hyperchaotic Rössler systems, recently studied by Nikolov and Clodong using proper nonlinear feedback controllers. Particular attention is given to (i) globally exponential lag synchronization (GELS) for τ > 0; and (ii) globally exponential synchronization (GES) for τ = 0. As a representative example, one system of the family of modified hyperchaotic Rössler systems is particularly studied, and Lyapunov stability criteria for the GELS and GES are derived via eight families of proper nonlinear feedback controllers. Moreover, we also present some nonlinear feedback control laws for other modified hyperchaotic Rössler systems. Numerical simulations are used to illustrate the theoretical results.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Rössler"

1

Steininger, Kathrin [Verfasser], Karl [Akademischer Betreuer] Rössler, and Karl [Gutachter] Rössler. "Korrelation des Resektionsausmaßes der Corticoamygdalohippokampektomie mit dem postoperativen Anfallsoutcome / Kathrin Steininger ; Gutachter: Karl Rössler ; Betreuer: Karl Rössler." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2020. http://d-nb.info/1221803751/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Heisler, Ismael Andre. "A sincronização de osciladores de Rössler acoplados." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2002. http://hdl.handle.net/10183/3250.

Full text
Abstract:
Neste trabalho utiliza-se como sistema dinâmico o circuito eletrônico que integra o sistema de equações acopladas de Rossler modificado. Este sistema possui uma nãolinearidade dada por uma função linear por partes e apresenta comportamento caótico para certos valores dos seus parâmetros. Isto e evidenciado pela rota de dobramento de período obtida variando-se um dos parâmetros do sistema. A caracterização experimental da dinâmica do sistema Rossler modificado e realizada através do diagrama de bifurcações. Apresenta-se uma fundamentação teórica de sistemas dinâmicos introduzindo conceitos importantes tais como atratores estranhos, variedades invariantes e tamb em uma análise da estabilidade de comportamentos assintóticos como pontos fixos e ciclos limites. Para uma caracterização métrica do caos, apresenta-se a definção dos expoentes de Lyapunov. São introduzidos também os expoentes de Lyapunov condicionais e transversais, que estão relacionados com a teoria de sincronizção de sistemas caóticos. A partir de uma montagem mestre-escravo, onde dois osciladores de Rossler estão acoplados unidirecionalmente, introduz-se a de nição de sincronização idêntica, sincronização de fase e variedade de sincronização. Demonstra-se a possibilidade de sincronização em uma rede de osciladores caóticos de Rossler, acoplados simetricamente via acoplamento de primeiros vizinhos. A rede composta por seis osciladores mostrou ser adequada pelo fato de apresentar uma rica estrutura espacial e, ao mesmo tempo, ser experimentalmente implementável. Além da sincronização global (osciladores identicamente sincronizados), obtém-se a sincronização parcial, onde parte dos osciladores sincronizam entre si e a outra parte não o faz. Esse tipo de sincronização abre a possibilidade da formação de padrões de sincronização e, portanto, exibe uma rica estrutura de comportamentos dinâmicos. A sincronização parcial e investigada em detalhes e apresentam-se vários resultados. A principal ferramenta utilizada na análise experimental e numérica e a inspeção visual do gráfico yi yj , fazendo todas as combinações entre elementos diferentes (i e j) da rede. Na análise numérica obtém-se como resultado complementar o máximo expoente de Lyapunov transversal, que descreve a estabilidade da variedade de sincronização global.
APA, Harvard, Vancouver, ISO, and other styles
3

Blair, Lisa [Verfasser], Karl [Akademischer Betreuer] Rössler, and Karl [Gutachter] Rössler. "Anwendung von Neuronavigation und intraoperativer MRT Bildgebung bei der neurochirurgischen Resektion zerebraler Kavernome / Lisa Blair ; Gutachter: Karl Rössler ; Betreuer: Karl Rössler." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2020. http://d-nb.info/1203879261/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prants, Willian Tiago. "Dinâmica do acoplamento de dois osciladores caóticos de Rössler." Universidade do Estado de Santa Catarina, 2012. http://tede.udesc.br/handle/handle/1972.

Full text
Abstract:
Made available in DSpace on 2016-12-12T20:15:49Z (GMT). No. of bitstreams: 1 Willians Prants.pdf: 18721085 bytes, checksum: 3872eb4cc3f6155fd37e124cf75d4e35 (MD5) Previous issue date: 2012-07-26
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
In this work we analyze the dynamics of two continuous time models: (i) the Rössler model, a model for the Lorenz system, composed by a set of three differential equations of first order, autonomous, and has only one nonlinearity and (ii) the model of two coupled chaotic Rössler oscillators, built by the linear coupling between two Rössler systems and controlled by two coupling parameters Є e θ, which correspond to intensity and symmetry of the coupling. For the first model, we find analytically the equilibrium points and analyzed by the method of Routh-Hurwitz, their stability. We construct numerically the parameters space a × b, a × c and c × b identifying the regions of chaotic regime and detect typical periodic structures immersed in these regions. For the second model, we construct numerically the parameter space for the coupling parameters Є e θ, and we find a periodic region immersed in chaos characterizing the effect of suppression of chaos. By analyzing the second largest Lyapunov exponent we detect a hiperchaotic region. For both models we use bifurcation diagrams to analyze the periodic structures and to determine the routes to chaos
Neste trabalho analisamos a dinâmica de dois modelos a tempo contínuo: (i) o modelo de Rössler, um modelo para o sistema de Lorenz, composto pelo conjunto de três equações diferenciais, de primeira ordem, autônomo e que apresenta apenas uma não-linearidade e (ii) o modelo de dois osciladores caóticos de Rössler acoplados, construído pelo acoplamento linear entre dois sistemas de Rössler e controlado por dois parâmetros de acoplamento Є e θ, que correspondem a intensidade e simetria de acoplamento. Para o primeiro modelo, encontramos analiticamente os pontos de equilíbrio e analisamos, através do método de Routh-Hurwitz, suas estabilidades. Construímos numericamente os espaços de parâmetros a × b, a × c e c × b identificando as regiões de regime caótico e detectamos estruturas periódicas típicas imersas nessas regiões. Para o segundo modelo, construímos numericamente o espaço de parâmetros para os parâmetros de acoplamento Є e θ, e encontramos uma região periódica imersa em caos, caracterizando o efeito de supressão de caos. Analisando o segundo maior expoente de Lyapunov detectamos uma larga região hipercaótica. Para ambos os modelos usamos diagramas de bifurcação para analisar as estruturas periódicas e determinar as rotas para o caos.
APA, Harvard, Vancouver, ISO, and other styles
5

CARMO, Ricardo Batista do. "Um mapa discreto unidimensional para o sistema de Rössler." Universidade Federal de Pernambuco, 2015. https://repositorio.ufpe.br/handle/123456789/18322.

Full text
Abstract:
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-02-15T12:52:08Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação - Ricardo Batista.pdf: 10061311 bytes, checksum: ce7d296a73fc33cb8f4605b5e94a9cfb (MD5)
Made available in DSpace on 2017-02-15T12:52:08Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação - Ricardo Batista.pdf: 10061311 bytes, checksum: ce7d296a73fc33cb8f4605b5e94a9cfb (MD5) Previous issue date: 2015-03-02
CNPq
Centros de periodicidade e caos (CPCs) s˜ao pontos que podem aparecer quando projetamos certo expoente de Lyapunov λ em um plano de parˆametros de um sistema dinˆamico dissipativo. Espirais de solu¸c˜oes peri´odicas (λ < 0) e ca´oticas (λ > 0) circulam alternadamente um CPC, como aquele no ter¸co inferior direito na figura da folha de rosto. Nesta disserta¸c˜ao foi desenvolvido inicialmente um programa para o c´alculo num´erico do espectro de Lyapunov de um sistema dinˆamico tridimensional (3D) gen´erico. Em seguida, CPCs foram procurados e achados nas solu¸c˜oes das equa¸c˜oes de R¨ossler, que possuem trˆes parˆametros, a, b, e c. Em particular, para b = bc = 0.17872, o CPC foi encontrado no plano a×c com coordenadas a = ac = 0.17694 e c = cc = 10.5706. Fixando a = ac e tomando c como um parˆametro de controle no intervalo 3 < c < cc, uma sequˆencia de dobramentos de per´ıodo seguida por uma sequˆencia de janelas de adi¸c˜ao de per´ıodo dentro da regi˜ao ca´otica. Ajustes por fun¸c˜oes simples de mapas de retorno de m´aximos locais em uma das vari´aveis dinˆamicas do sistema de R¨ossler permitiram a elabora¸c˜ao de um mapa discreto unidimensional Mr(x) no intervalo unit´ario, o qual faz a m´ımica sin´optica da dinˆamica do fluxo. A raz˜ao de convergˆencia para a sequˆencia de adi¸c˜ao de per´ıodo foi estimada dos ciclos superest´aveis do mapa como um valor pouco acima de 1.7, em bom acordo com o que se obt´em do sistema de R¨ossler. Uma f´ormula para a medida invariante foi obtida de um ajuste para a distribui¸c˜ao das iteradas em regime erg´odico. O correspondente expoente de Lyapunov, 0.597, est´a em bom acordo com 0.588, valor obtido da m´edia discreta de ln|Mr(xi)|.
Aperiodicityhub(PH)isthecommoncenterofperiodic(λ < 0)andchaotic(λ > 0) spirals which show up when a characteristic Lyapunov exponent λ of a dissipative dynamical system is projected onto a planar subset of its parameter space. The color plate in a previous page of this document shows one such PH in the lower right third. In this work Lyapunov spectra of three-dimensional dynamical systems were numericallycalculatedwithastandardalgorithmwhichreliesonrepeatedapplication of the Gram-Schmidt orghonormalization procedure on certain vectors in the phase space. PHs were then searched and found in the R¨ossler system, which has three parameters, namely, a,b, and c. In particular, for b = bh = 0.17872, a PH was found in the ca-plane with coordinates a = ah = 0.17694 and c = ch = 10.5706. By fixing a = ah and taking c as a control parameter in the interval 3 < c < ch, a complete sequence , i.e., a period-doubling sequence followed by a sequence of period-adding windows within the chaotic region, was observed. Fits to tens of return maps for local maxima in one of the dynamical variables allowed the construction of a oneparameter one-dimensional discrete map in the unit interval that synoptically mimics the dynamics of the flow. The convergence ratio for the period-adding sequence was estimated from the superstable cycles as 1.7, in good agreement with the value obtained from the R¨ossler system. At full ergodicity, a formula for the invariant measurewasobtainedfromafittothedistributionoftheiterates. Fromthatformula, we estimated a Lyapunov exponent of 0.597, which is in reasonable agreement with 0.588, the value obtained straightforwardly from the discrete iterates of the map.
APA, Harvard, Vancouver, ISO, and other styles
6

Rössler, Stephanie [Verfasser]. "Tumorsuppressive genetische und epigenetische Mechanismen in hepatobiliären Karzinomen / Stephanie Rössler." Düren : Shaker, 2020. http://d-nb.info/1213471583/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Paaz, Roberto. "Caracterização de intermitência modulacional em dois circuitos de Rössler acoplados." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2004. http://hdl.handle.net/10183/8775.

Full text
Abstract:
Neste trabalho utiliza-se como sistema dinâmico o circuito eletrônico que simula o conjunto de equações acopladas do sistema de Rössler modificado. Este sistema possui uma nâo-linearidade dada por uma função linear por partes e apresenta comportamento caótico para certos valores dos seus parâmetros. A caracterização experimental da dinâmica do sistema de Rössler modificado é realizada através do diagrama de bifurcações. Apresenta-se uma fundamentação teórica de sistemas dinâmicos introduzindo conceitos importantes tais como atratores estranhos, variedades invariantes e também uma análise da estabilidade de comportamentos assintóticos como pontos fixos e ciclos limites. Para uma caracterização métrica do caos, apresenta-se a definição dos expoentes de Lyapunov. São introduzidos também os expoentes de Lyapunov condicionais e transversais, que estão relacionados com a teoria de sincronização de sistemas caóticos. Apresenta-se também a conceituação da sincronização de sistemas caóticos, introduzindo-se a definição de sincronização idêntica, sincronização de fase e variedade de sincronização. As principais propriedades da intermitência modulacional, obtidas a partir de aplicações discretas (mapas), são apresentadas, dando-se ênfase à obtenção das leis de escala. Relatamos a nossa contribuição mais importante: a análise experimental da intermitência modulacional em dois circuitos de Rössler (osciladores eletrônicos) acoplados em uma configuração do tipo mestre-escravo. Atenção particular é devotada às leis estatísticas associadas com a intermitência modulacional.
In this work it is used as a dynamical system the electronic circuit that integrates the modified system of Rössler coupled equations. This system has a nonlinearity given by a piecewise linear function and shows chaotic behavior for certain values of the system parameters. The experimental characterization of the modified Rössler system dynamics is realized through a bifurcation diagram. It is presented a theoretical fundamentation of dynamical systems introducing important concepts like strange attractors, invariant manifolds and also a stability analysis of asymptotic behaviors like fixed points and limit cycles. For a metric characterization of chaos, the definition of the Lyapunov exponents is presented. Also introduced are the conditional and transversal Lyapunov exponents, that are related with the synchronization theory of chaotic systems. It is also presented the conceptual ideas of chaotic synchronization introducing the definitions of identical synchronization, phase synchronization and synchronization manifold. The main properties of modulational sychronization are obtained from discrete systems (maps), giving special attention to the scaling laws. We report our chief contribution: the experimental analysis of modulational intermittency in two coupled Rössler circuits (electronic oscillators) in a master-slave configuration. Particular attention is devoted to the statistical laws associated with modulational intermittency.
APA, Harvard, Vancouver, ISO, and other styles
8

Karagiozis, Konstantinos. "Analytical map approximations to vector fields, the Rössler and Lorenz systems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0018/MQ54629.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rössler, Andreas [Verfasser]. "Runge-Kutta Methods for the Numerical Solution of Stochastic Differential Equations / Andreas Rössler." Aachen : Shaker, 2003. http://d-nb.info/1179021118/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Janszky, Babett [Verfasser], Martin [Akademischer Betreuer] Rössler, and Michael [Akademischer Betreuer] Bollig. "Überleben an Grenzen. Ressourcenkonflikte und Risikomanagement im Sahel / Babett Janszky. Gutachter: Martin Rössler ; Michael Bollig." Köln : Universitäts- und Stadtbibliothek Köln, 2014. http://d-nb.info/1080294317/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Rössler"

1

Funke, Jaromír. Jaromír Funke/Jaroslav Rössler. 27 contemporary photographers from Czechoslovakia. London: Photographer's Gallery, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weitergabe: Festschrift für die Ägyptologin Ursula Rössler-Köhler zum 65. Geburtstag. Wiesbaden: Harrassowitz Verlag, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Landesmuseum, Pommersches, ed. Nackt und natürlich: Günter Rössler, Susanne Kandt-Horn, Otto Niemeyer-Holstein, Sabine Curio. Greifswald: Stiftung Pommersches Landesmuseum, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Blüm, Norbert. Das Defilee der hohen Rösser: Nachdenkliches, gerade heraus. Freiburg im Breisgau: Herder, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Freivogel-Stuber, Kurt. Die Fryvogel, Freyvogel, Freivogel von Gelterkinden: 1530-1995 : Bauern, Posamenter, Rössli- und Ochsenwirte in Gelterkinden, Pioniere in Kanada. [Gelterkinden: the authors, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Les traités d'obstétrique en langue française au seuil de la modernité: Bibliographie critique des "Divers travaulx" d'Euchaire Rösslin (1536) à l'"Apologie de Louyse Bourgeois sage femme" (1627). Genève: Droz, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jörg, Abbing, ed. -- es blüht hinter uns her: Festschrift für Almut Rössler. Köln: Dohr, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1949-, Drehsen Volker, Henke Dieter, Schmidt-Rost Reinhard, and Steck Wolfgang, eds. Der 'ganze Mensch': Perspektiven lebensgeschichtlicher Individualität ; Festschrift für Dietrich Rössler zum siebzigsten Geburtstag. Berlin: W. de Gruyter, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hamperl, Herwig. Robert Rössle in seinem letzten Lebensjahrzehnt. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Caspar, Franz, and Ursula M. Williams. Das große Buch vom Rösslein Hü. Arena, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Rössler"

1

Hald, B. G., C. N. Laugesen, C. Nielsen, E. Mosekilde, E. R. Larsen, and J. Engelbrecht. "Rössler Bands in Economic and Biological Systems." In Computer-Based Management of Complex Systems, 509–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74946-9_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leonov, Gennadij A., and Volker Reitmann. "Zur fehlenden Dissipativität zweier Systeme von Rössler." In Teubner-Texte zur Mathematik, 42–54. Wiesbaden: Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-322-91271-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Frunzete, Madalin, Anca Andreea Popescu, and Jean-Pierre Barbot. "Dynamical Discrete-Time Rössler Map with Variable Delay." In Computational Science and Its Applications -- ICCSA 2015, 431–46. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21404-7_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Banerjee, Chayan, Debanjana Datta, and Debarshi Datta. "A Random Bit Generator Using Rössler Chaotic System." In Computational Advancement in Communication Circuits and Systems, 81–87. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2274-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Frasca, Mattia, Lucia Valentina Gambuzza, Arturo Buscarino, and Luigi Fortuna. "Memristor Based Adaptive Coupling for Synchronization of Two Rössler Systems." In Advances in Neural Networks: Computational and Theoretical Issues, 395–400. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18164-6_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Frunzete, Madalin, Adrian Luca, Adriana Vlad, and Jean-Pierre Barbot. "Statistical Behaviour of Discrete-Time Rössler System with Time Varying Delay." In Computational Science and Its Applications - ICCSA 2011, 706–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21928-3_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hermelink, Jan. "Dietrich Rössler (*1927) – Theorie der pastoralen Praxis im Kontext des gegenwärtigen Christentums." In Stiftsgeschichte(n), 255–66. Göttingen: Vandenhoeck & Ruprecht, 2015. http://dx.doi.org/10.13109/9783666570377.255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Middya, Rajarshi, Shankar Kumar Basak, Anirban Ray, and Asesh Roychowdhury. "Outer and Inner Synchronization in Networks on Rössler Oscillators: An Experimental Verification." In Understanding Complex Systems, 203–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34017-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vaidyanathan, Sundarapandian, and Suresh Rasappan. "Hybrid Synchronization of Arneodo and Rössler Chaotic Systems by Active Nonlinear Control." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 73–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27299-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lawrenz, Alexander. "E – Systemansichten des BSHs der Familie Rössle." In Diffusionsoffener Holzrahmenbau des Bio-Solar-Hauses, 81–88. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-28685-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Rössler"

1

Shao-Qing, Zhao, Cui Yan, Zhou Liu-Yuan, Sun Guan, and He Hong-Jun. "Hopf Bifurcation Analysis of Nonlinear Rössler Systems." In 2019 4th International Conference on Robotics and Automation Engineering (ICRAE). IEEE, 2019. http://dx.doi.org/10.1109/icrae48301.2019.9043789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jakubik, Jozef. "Handling Fluctuating Observability of the Rössler System." In 2021 13th International Conference on Measurement. IEEE, 2021. http://dx.doi.org/10.23919/measurement52780.2021.9446819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schmitz, Jesse, and Lei Zhang. "Rössler-based chaotic communication system implemented on FPGA." In 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2017. http://dx.doi.org/10.1109/ccece.2017.7946729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Choque-Rivero, Abdon E., Efrain Cruz Mullisaca, and Blanca de Jesus Gomez Orozco. "Bounded finite-time stabilization of the Rössler system." In 2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). IEEE, 2019. http://dx.doi.org/10.1109/ropec48299.2019.9057054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Butusov, Denis N., Timur I. Karimov, Inna A. Lizunova, Alina A. Soldatkina, and Ekaterina N. Popova. "Synchronization of analog and discrete Rössler chaotic systems." In 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). IEEE, 2017. http://dx.doi.org/10.1109/eiconrus.2017.7910544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Yingkui. "A Scheme of Rössler Chaotic Synchronization Under Impulsive Control." In 2010 International Conference on e-Education, e-Business, e-Management, and e-Learning, (IC4E). IEEE, 2010. http://dx.doi.org/10.1109/ic4e.2010.139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nian, Yi-bei, and Yong-ai Zheng. "Synchronization for Rössler Chaotic Systems Using Fuzzy Impulsive Controls." In 2007 Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing. IEEE, 2007. http://dx.doi.org/10.1109/iih-msp.2007.286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Estrada, Ernesto, Lucia Valentina Gambuzza, and Mattia Frasca. "Synchronization in networks of Rössler oscillators with long-range interactions." In 2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2018. http://dx.doi.org/10.1109/iscas.2018.8351626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rybin, Vyacheslav, Aleksandra Tutueva, Timur Karimov, Georgii Kolev, Denis Butusov, and Ekaterina Rodionova. "Optimizing the Synchronization Parameters in Adaptive Models of Rössler system." In 2021 10th Mediterranean Conference on Embedded Computing (MECO). IEEE, 2021. http://dx.doi.org/10.1109/meco52532.2021.9460301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gope, Saikat, and Sarbani Chakraborty. "Stabilization & Synchronization of Rössler System using T-S Fuzzy Controller." In 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). IEEE, 2019. http://dx.doi.org/10.1109/vitecon.2019.8899709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography