Academic literature on the topic 'Rössler'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rössler.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Rössler"
Scarponi, Danny. "The realization of the degree zero part of the motivic polylogarithm on abelian schemes in Deligne–Beilinson cohomology." International Journal of Number Theory 13, no. 09 (September 20, 2017): 2471–85. http://dx.doi.org/10.1142/s1793042117501378.
Full textFannon, Dominic. "Wulf Rössler." Psychiatric Bulletin 29, no. 8 (August 2005): 320. http://dx.doi.org/10.1192/pb.29.8.320.
Full textDENG, BO. "SPIRAL-PLUS-SADDLE ATTRACTORS AND ELEMENTARY MECHANISMS FOR CHAOS GENERATION." International Journal of Bifurcation and Chaos 06, no. 03 (March 1996): 513–27. http://dx.doi.org/10.1142/s0218127496000229.
Full textMarkoski, Gjorgji. "BIFURCATION ANALYSIS OF FRACTIONAL ORDER RÖSSLER SYSTEM ORDER RÖSSLER SYSTEM." Математички билтен/BULLETIN MATHÉMATIQUE DE LA SOCIÉTÉ DES MATHÉMATICIENS DE LA RÉPUBLIQUE MACÉDOINE, no. 1 (2018): 28–37. http://dx.doi.org/10.37560/matbil18100028m.
Full textWu, Ranchao, and Xiang Li. "Hopf Bifurcation Analysis and Anticontrol of Hopf Circles of the Rössler-Like System." Abstract and Applied Analysis 2012 (2012): 1–16. http://dx.doi.org/10.1155/2012/341870.
Full textLLIBRE, JAUME, and XIANG ZHANG. "DARBOUX INTEGRABILITY FOR THE RÖSSLER SYSTEM." International Journal of Bifurcation and Chaos 12, no. 02 (February 2002): 421–28. http://dx.doi.org/10.1142/s0218127402004474.
Full textKrotz, Friedrich. "Patrick Rössler, Universität Erfurt." Publizistik 49, no. 2 (June 2004): 212–13. http://dx.doi.org/10.1007/s11616-004-0042-z.
Full textRysak, Andrzej, and Magdalena Gregorczyk. "Differential Transform Method as an Effective Tool for Investigating Fractional Dynamical Systems." Applied Sciences 11, no. 15 (July 28, 2021): 6955. http://dx.doi.org/10.3390/app11156955.
Full textXIE, QINGXIAN, and GUANRONG CHEN. "SYNCHRONIZATION STABILITY ANALYSIS OF THE CHAOTIC RÖSSLER SYSTEM." International Journal of Bifurcation and Chaos 06, no. 11 (November 1996): 2153–61. http://dx.doi.org/10.1142/s0218127496001429.
Full textYAN, ZHENYA, and PEI YU. "GLOBALLY EXPONENTIAL HYPERCHAOS (LAG) SYNCHRONIZATION IN A FAMILY OF MODIFIED HYPERCHAOTIC RÖSSLER SYSTEMS." International Journal of Bifurcation and Chaos 17, no. 05 (May 2007): 1759–74. http://dx.doi.org/10.1142/s0218127407018063.
Full textDissertations / Theses on the topic "Rössler"
Steininger, Kathrin [Verfasser], Karl [Akademischer Betreuer] Rössler, and Karl [Gutachter] Rössler. "Korrelation des Resektionsausmaßes der Corticoamygdalohippokampektomie mit dem postoperativen Anfallsoutcome / Kathrin Steininger ; Gutachter: Karl Rössler ; Betreuer: Karl Rössler." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2020. http://d-nb.info/1221803751/34.
Full textHeisler, Ismael Andre. "A sincronização de osciladores de Rössler acoplados." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2002. http://hdl.handle.net/10183/3250.
Full textBlair, Lisa [Verfasser], Karl [Akademischer Betreuer] Rössler, and Karl [Gutachter] Rössler. "Anwendung von Neuronavigation und intraoperativer MRT Bildgebung bei der neurochirurgischen Resektion zerebraler Kavernome / Lisa Blair ; Gutachter: Karl Rössler ; Betreuer: Karl Rössler." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2020. http://d-nb.info/1203879261/34.
Full textPrants, Willian Tiago. "Dinâmica do acoplamento de dois osciladores caóticos de Rössler." Universidade do Estado de Santa Catarina, 2012. http://tede.udesc.br/handle/handle/1972.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
In this work we analyze the dynamics of two continuous time models: (i) the Rössler model, a model for the Lorenz system, composed by a set of three differential equations of first order, autonomous, and has only one nonlinearity and (ii) the model of two coupled chaotic Rössler oscillators, built by the linear coupling between two Rössler systems and controlled by two coupling parameters Є e θ, which correspond to intensity and symmetry of the coupling. For the first model, we find analytically the equilibrium points and analyzed by the method of Routh-Hurwitz, their stability. We construct numerically the parameters space a × b, a × c and c × b identifying the regions of chaotic regime and detect typical periodic structures immersed in these regions. For the second model, we construct numerically the parameter space for the coupling parameters Є e θ, and we find a periodic region immersed in chaos characterizing the effect of suppression of chaos. By analyzing the second largest Lyapunov exponent we detect a hiperchaotic region. For both models we use bifurcation diagrams to analyze the periodic structures and to determine the routes to chaos
Neste trabalho analisamos a dinâmica de dois modelos a tempo contínuo: (i) o modelo de Rössler, um modelo para o sistema de Lorenz, composto pelo conjunto de três equações diferenciais, de primeira ordem, autônomo e que apresenta apenas uma não-linearidade e (ii) o modelo de dois osciladores caóticos de Rössler acoplados, construído pelo acoplamento linear entre dois sistemas de Rössler e controlado por dois parâmetros de acoplamento Є e θ, que correspondem a intensidade e simetria de acoplamento. Para o primeiro modelo, encontramos analiticamente os pontos de equilíbrio e analisamos, através do método de Routh-Hurwitz, suas estabilidades. Construímos numericamente os espaços de parâmetros a × b, a × c e c × b identificando as regiões de regime caótico e detectamos estruturas periódicas típicas imersas nessas regiões. Para o segundo modelo, construímos numericamente o espaço de parâmetros para os parâmetros de acoplamento Є e θ, e encontramos uma região periódica imersa em caos, caracterizando o efeito de supressão de caos. Analisando o segundo maior expoente de Lyapunov detectamos uma larga região hipercaótica. Para ambos os modelos usamos diagramas de bifurcação para analisar as estruturas periódicas e determinar as rotas para o caos.
CARMO, Ricardo Batista do. "Um mapa discreto unidimensional para o sistema de Rössler." Universidade Federal de Pernambuco, 2015. https://repositorio.ufpe.br/handle/123456789/18322.
Full textMade available in DSpace on 2017-02-15T12:52:08Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação - Ricardo Batista.pdf: 10061311 bytes, checksum: ce7d296a73fc33cb8f4605b5e94a9cfb (MD5) Previous issue date: 2015-03-02
CNPq
Centros de periodicidade e caos (CPCs) s˜ao pontos que podem aparecer quando projetamos certo expoente de Lyapunov λ em um plano de parˆametros de um sistema dinˆamico dissipativo. Espirais de solu¸c˜oes peri´odicas (λ < 0) e ca´oticas (λ > 0) circulam alternadamente um CPC, como aquele no ter¸co inferior direito na figura da folha de rosto. Nesta disserta¸c˜ao foi desenvolvido inicialmente um programa para o c´alculo num´erico do espectro de Lyapunov de um sistema dinˆamico tridimensional (3D) gen´erico. Em seguida, CPCs foram procurados e achados nas solu¸c˜oes das equa¸c˜oes de R¨ossler, que possuem trˆes parˆametros, a, b, e c. Em particular, para b = bc = 0.17872, o CPC foi encontrado no plano a×c com coordenadas a = ac = 0.17694 e c = cc = 10.5706. Fixando a = ac e tomando c como um parˆametro de controle no intervalo 3 < c < cc, uma sequˆencia de dobramentos de per´ıodo seguida por uma sequˆencia de janelas de adi¸c˜ao de per´ıodo dentro da regi˜ao ca´otica. Ajustes por fun¸c˜oes simples de mapas de retorno de m´aximos locais em uma das vari´aveis dinˆamicas do sistema de R¨ossler permitiram a elabora¸c˜ao de um mapa discreto unidimensional Mr(x) no intervalo unit´ario, o qual faz a m´ımica sin´optica da dinˆamica do fluxo. A raz˜ao de convergˆencia para a sequˆencia de adi¸c˜ao de per´ıodo foi estimada dos ciclos superest´aveis do mapa como um valor pouco acima de 1.7, em bom acordo com o que se obt´em do sistema de R¨ossler. Uma f´ormula para a medida invariante foi obtida de um ajuste para a distribui¸c˜ao das iteradas em regime erg´odico. O correspondente expoente de Lyapunov, 0.597, est´a em bom acordo com 0.588, valor obtido da m´edia discreta de ln|Mr(xi)|.
Aperiodicityhub(PH)isthecommoncenterofperiodic(λ < 0)andchaotic(λ > 0) spirals which show up when a characteristic Lyapunov exponent λ of a dissipative dynamical system is projected onto a planar subset of its parameter space. The color plate in a previous page of this document shows one such PH in the lower right third. In this work Lyapunov spectra of three-dimensional dynamical systems were numericallycalculatedwithastandardalgorithmwhichreliesonrepeatedapplication of the Gram-Schmidt orghonormalization procedure on certain vectors in the phase space. PHs were then searched and found in the R¨ossler system, which has three parameters, namely, a,b, and c. In particular, for b = bh = 0.17872, a PH was found in the ca-plane with coordinates a = ah = 0.17694 and c = ch = 10.5706. By fixing a = ah and taking c as a control parameter in the interval 3 < c < ch, a complete sequence , i.e., a period-doubling sequence followed by a sequence of period-adding windows within the chaotic region, was observed. Fits to tens of return maps for local maxima in one of the dynamical variables allowed the construction of a oneparameter one-dimensional discrete map in the unit interval that synoptically mimics the dynamics of the flow. The convergence ratio for the period-adding sequence was estimated from the superstable cycles as 1.7, in good agreement with the value obtained from the R¨ossler system. At full ergodicity, a formula for the invariant measurewasobtainedfromafittothedistributionoftheiterates. Fromthatformula, we estimated a Lyapunov exponent of 0.597, which is in reasonable agreement with 0.588, the value obtained straightforwardly from the discrete iterates of the map.
Rössler, Stephanie [Verfasser]. "Tumorsuppressive genetische und epigenetische Mechanismen in hepatobiliären Karzinomen / Stephanie Rössler." Düren : Shaker, 2020. http://d-nb.info/1213471583/34.
Full textPaaz, Roberto. "Caracterização de intermitência modulacional em dois circuitos de Rössler acoplados." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2004. http://hdl.handle.net/10183/8775.
Full textIn this work it is used as a dynamical system the electronic circuit that integrates the modified system of Rössler coupled equations. This system has a nonlinearity given by a piecewise linear function and shows chaotic behavior for certain values of the system parameters. The experimental characterization of the modified Rössler system dynamics is realized through a bifurcation diagram. It is presented a theoretical fundamentation of dynamical systems introducing important concepts like strange attractors, invariant manifolds and also a stability analysis of asymptotic behaviors like fixed points and limit cycles. For a metric characterization of chaos, the definition of the Lyapunov exponents is presented. Also introduced are the conditional and transversal Lyapunov exponents, that are related with the synchronization theory of chaotic systems. It is also presented the conceptual ideas of chaotic synchronization introducing the definitions of identical synchronization, phase synchronization and synchronization manifold. The main properties of modulational sychronization are obtained from discrete systems (maps), giving special attention to the scaling laws. We report our chief contribution: the experimental analysis of modulational intermittency in two coupled Rössler circuits (electronic oscillators) in a master-slave configuration. Particular attention is devoted to the statistical laws associated with modulational intermittency.
Karagiozis, Konstantinos. "Analytical map approximations to vector fields, the Rössler and Lorenz systems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0018/MQ54629.pdf.
Full textRössler, Andreas [Verfasser]. "Runge-Kutta Methods for the Numerical Solution of Stochastic Differential Equations / Andreas Rössler." Aachen : Shaker, 2003. http://d-nb.info/1179021118/34.
Full textJanszky, Babett [Verfasser], Martin [Akademischer Betreuer] Rössler, and Michael [Akademischer Betreuer] Bollig. "Überleben an Grenzen. Ressourcenkonflikte und Risikomanagement im Sahel / Babett Janszky. Gutachter: Martin Rössler ; Michael Bollig." Köln : Universitäts- und Stadtbibliothek Köln, 2014. http://d-nb.info/1080294317/34.
Full textBooks on the topic "Rössler"
Funke, Jaromír. Jaromír Funke/Jaroslav Rössler. 27 contemporary photographers from Czechoslovakia. London: Photographer's Gallery, 1985.
Find full textWeitergabe: Festschrift für die Ägyptologin Ursula Rössler-Köhler zum 65. Geburtstag. Wiesbaden: Harrassowitz Verlag, 2015.
Find full textLandesmuseum, Pommersches, ed. Nackt und natürlich: Günter Rössler, Susanne Kandt-Horn, Otto Niemeyer-Holstein, Sabine Curio. Greifswald: Stiftung Pommersches Landesmuseum, 2008.
Find full textBlüm, Norbert. Das Defilee der hohen Rösser: Nachdenkliches, gerade heraus. Freiburg im Breisgau: Herder, 2004.
Find full textFreivogel-Stuber, Kurt. Die Fryvogel, Freyvogel, Freivogel von Gelterkinden: 1530-1995 : Bauern, Posamenter, Rössli- und Ochsenwirte in Gelterkinden, Pioniere in Kanada. [Gelterkinden: the authors, 1996.
Find full textLes traités d'obstétrique en langue française au seuil de la modernité: Bibliographie critique des "Divers travaulx" d'Euchaire Rösslin (1536) à l'"Apologie de Louyse Bourgeois sage femme" (1627). Genève: Droz, 2007.
Find full textJörg, Abbing, ed. -- es blüht hinter uns her: Festschrift für Almut Rössler. Köln: Dohr, 2007.
Find full text1949-, Drehsen Volker, Henke Dieter, Schmidt-Rost Reinhard, and Steck Wolfgang, eds. Der 'ganze Mensch': Perspektiven lebensgeschichtlicher Individualität ; Festschrift für Dietrich Rössler zum siebzigsten Geburtstag. Berlin: W. de Gruyter, 1997.
Find full textCaspar, Franz, and Ursula M. Williams. Das große Buch vom Rösslein Hü. Arena, 2002.
Find full textBook chapters on the topic "Rössler"
Hald, B. G., C. N. Laugesen, C. Nielsen, E. Mosekilde, E. R. Larsen, and J. Engelbrecht. "Rössler Bands in Economic and Biological Systems." In Computer-Based Management of Complex Systems, 509–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74946-9_55.
Full textLeonov, Gennadij A., and Volker Reitmann. "Zur fehlenden Dissipativität zweier Systeme von Rössler." In Teubner-Texte zur Mathematik, 42–54. Wiesbaden: Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-322-91271-8_5.
Full textFrunzete, Madalin, Anca Andreea Popescu, and Jean-Pierre Barbot. "Dynamical Discrete-Time Rössler Map with Variable Delay." In Computational Science and Its Applications -- ICCSA 2015, 431–46. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21404-7_32.
Full textBanerjee, Chayan, Debanjana Datta, and Debarshi Datta. "A Random Bit Generator Using Rössler Chaotic System." In Computational Advancement in Communication Circuits and Systems, 81–87. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2274-3_10.
Full textFrasca, Mattia, Lucia Valentina Gambuzza, Arturo Buscarino, and Luigi Fortuna. "Memristor Based Adaptive Coupling for Synchronization of Two Rössler Systems." In Advances in Neural Networks: Computational and Theoretical Issues, 395–400. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18164-6_39.
Full textFrunzete, Madalin, Adrian Luca, Adriana Vlad, and Jean-Pierre Barbot. "Statistical Behaviour of Discrete-Time Rössler System with Time Varying Delay." In Computational Science and Its Applications - ICCSA 2011, 706–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21928-3_52.
Full textHermelink, Jan. "Dietrich Rössler (*1927) – Theorie der pastoralen Praxis im Kontext des gegenwärtigen Christentums." In Stiftsgeschichte(n), 255–66. Göttingen: Vandenhoeck & Ruprecht, 2015. http://dx.doi.org/10.13109/9783666570377.255.
Full textMiddya, Rajarshi, Shankar Kumar Basak, Anirban Ray, and Asesh Roychowdhury. "Outer and Inner Synchronization in Networks on Rössler Oscillators: An Experimental Verification." In Understanding Complex Systems, 203–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34017-8_8.
Full textVaidyanathan, Sundarapandian, and Suresh Rasappan. "Hybrid Synchronization of Arneodo and Rössler Chaotic Systems by Active Nonlinear Control." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 73–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27299-8_8.
Full textLawrenz, Alexander. "E – Systemansichten des BSHs der Familie Rössle." In Diffusionsoffener Holzrahmenbau des Bio-Solar-Hauses, 81–88. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-28685-9_12.
Full textConference papers on the topic "Rössler"
Shao-Qing, Zhao, Cui Yan, Zhou Liu-Yuan, Sun Guan, and He Hong-Jun. "Hopf Bifurcation Analysis of Nonlinear Rössler Systems." In 2019 4th International Conference on Robotics and Automation Engineering (ICRAE). IEEE, 2019. http://dx.doi.org/10.1109/icrae48301.2019.9043789.
Full textJakubik, Jozef. "Handling Fluctuating Observability of the Rössler System." In 2021 13th International Conference on Measurement. IEEE, 2021. http://dx.doi.org/10.23919/measurement52780.2021.9446819.
Full textSchmitz, Jesse, and Lei Zhang. "Rössler-based chaotic communication system implemented on FPGA." In 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2017. http://dx.doi.org/10.1109/ccece.2017.7946729.
Full textChoque-Rivero, Abdon E., Efrain Cruz Mullisaca, and Blanca de Jesus Gomez Orozco. "Bounded finite-time stabilization of the Rössler system." In 2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). IEEE, 2019. http://dx.doi.org/10.1109/ropec48299.2019.9057054.
Full textButusov, Denis N., Timur I. Karimov, Inna A. Lizunova, Alina A. Soldatkina, and Ekaterina N. Popova. "Synchronization of analog and discrete Rössler chaotic systems." In 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). IEEE, 2017. http://dx.doi.org/10.1109/eiconrus.2017.7910544.
Full textLi, Yingkui. "A Scheme of Rössler Chaotic Synchronization Under Impulsive Control." In 2010 International Conference on e-Education, e-Business, e-Management, and e-Learning, (IC4E). IEEE, 2010. http://dx.doi.org/10.1109/ic4e.2010.139.
Full textNian, Yi-bei, and Yong-ai Zheng. "Synchronization for Rössler Chaotic Systems Using Fuzzy Impulsive Controls." In 2007 Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing. IEEE, 2007. http://dx.doi.org/10.1109/iih-msp.2007.286.
Full textEstrada, Ernesto, Lucia Valentina Gambuzza, and Mattia Frasca. "Synchronization in networks of Rössler oscillators with long-range interactions." In 2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2018. http://dx.doi.org/10.1109/iscas.2018.8351626.
Full textRybin, Vyacheslav, Aleksandra Tutueva, Timur Karimov, Georgii Kolev, Denis Butusov, and Ekaterina Rodionova. "Optimizing the Synchronization Parameters in Adaptive Models of Rössler system." In 2021 10th Mediterranean Conference on Embedded Computing (MECO). IEEE, 2021. http://dx.doi.org/10.1109/meco52532.2021.9460301.
Full textGope, Saikat, and Sarbani Chakraborty. "Stabilization & Synchronization of Rössler System using T-S Fuzzy Controller." In 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). IEEE, 2019. http://dx.doi.org/10.1109/vitecon.2019.8899709.
Full text