To see the other types of publications on this topic, follow the link: Rotary encoder.

Journal articles on the topic 'Rotary encoder'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Rotary encoder.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

SOMEYA, Atsushi. "Rotary Encoder." Journal of the Robotics Society of Japan 9, no. 7 (1991): 922–24. http://dx.doi.org/10.7210/jrsj.9.922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Miljkovic, Goran S., and Dragan B. Denic. "Redundant and Flexible Pseudorandom Optical Rotary Encoder." Elektronika ir Elektrotechnika 26, no. 6 (December 18, 2020): 10–16. http://dx.doi.org/10.5755/j01.eie.26.6.25476.

Full text
Abstract:
Optical encoders are mainly used in modern motion servo systems for high-resolution and reliable position and velocity feedback. Pseudorandom optical rotary encoders are single-track and use a serial pseudorandom binary code to measure absolute position. The realization and analysis of such a rotary encoder with advanced code scanning and error detection techniques, as well as an improved redundancy in operation, are presented. A presented serial code reading solution uses two phase-shifted code tracks and two optical encoder modules. So, the realized encoder, hybrid in nature, provides “output on demand” and more or less reliable position information using very efficient error checking. Compared to a standard absolute encoder, this encoder requires a smaller code disc, facilitates installation, has greater flexibility in operation, and is less sensitive to external influences.
APA, Harvard, Vancouver, ISO, and other styles
3

WATANABE, Tsukasa. "Self-Calibratable Rotary Encoder." Journal of the Japan Society for Precision Engineering 82, no. 9 (2016): 792–96. http://dx.doi.org/10.2493/jjspe.82.792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Watanabe, Tsukasa, Hiroyuki Fujimoto, and Tadashi Masuda. "Self-calibratable rotary encoder." Journal of Physics: Conference Series 13 (January 1, 2005): 240–45. http://dx.doi.org/10.1088/1742-6596/13/1/056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Ji-hua, and Lilong Cai. "Autofocus laser rotary encoder." Applied Optics 37, no. 13 (May 1, 1998): 2691. http://dx.doi.org/10.1364/ao.37.002691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yamaguchi, Ichirou, and Tadashige Fujita. "Laser speckle rotary encoder." Applied Optics 28, no. 20 (October 15, 1989): 4401. http://dx.doi.org/10.1364/ao.28.004401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cheung, Wan-Sup. "Calibration System for Angular Vibration Using Precision Rotary Encoder." Journal Of The Acoustical Society Of Korea 33, no. 1 (2014): 31. http://dx.doi.org/10.7776/ask.2014.33.1.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

de Buda, Eric, and Stewart deWalle. "Ultrasonic rotary shaft position encoder." Journal of the Acoustical Society of America 100, no. 4 (1996): 1938. http://dx.doi.org/10.1121/1.417861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Oleksenko, P. F., Yu V. Ushenin, Yu V. Kolomzarov, Yu Ya Tsirkunov, L. D. Yatsko, G. V. Brodovoj, and V. P. Ishchuk. "Optoelectronic Digital Rotary Angle Encoder." Nauka ta innovacii 3, no. 6 (December 25, 2007): 4–12. http://dx.doi.org/10.15407/scin3.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jia, Hua-Kun, Lian-Dong Yu, Yi-Zhou Jiang, Hui-Ning Zhao, and Jia-Ming Cao. "Compensation of Rotary Encoders Using Fourier Expansion-Back Propagation Neural Network Optimized by Genetic Algorithm." Sensors 20, no. 9 (May 3, 2020): 2603. http://dx.doi.org/10.3390/s20092603.

Full text
Abstract:
The measurement accuracy of the precision instruments that contain rotation joints is influenced significantly by the rotary encoders that are installed in the rotation joints. Apart from the imperfect manufacturing and installation of the rotary encoder, the variations of ambient temperature could cause the angle measurement error of the rotary encoder. According to the characteristics of the 2 π periodicity of the angle measurement at the stationary temperature and the complexity of the effects of ambient temperature changes, the method based on the Fourier expansion-back propagation (BP) neural network optimized by genetic algorithm (FE-GABPNN) is proposed to improve the angle measurement accuracy of the rotary encoder. The proposed method, which innovatively integrates the characteristics of Fourier expansion, the BP neural network and genetic algorithm, has good fitting performance. The rotary encoder that is installed in the rotation joint of the articulated coordinate measuring machine (ACMM) is calibrated by using an autocollimator and a regular optical polygon at ambient temperature ranging from 10 to 40 °C. The contrastive analysis is carried out. The experimental results show that the angle measurement errors decrease remarkably, from 110.2″ to 2.7″ after compensation. The mean root mean square error (RMSE) of the residual errors is 0.85″.
APA, Harvard, Vancouver, ISO, and other styles
11

Wu, Qi, Jizhou Lai, Ya Qin, and Jianye Liu. "MEMS Rotary Strapdown INS with Low-Resolution Rotary Encoder." Giroskopiya i Navigatsiya 24, no. 3 (2016): 3–13. http://dx.doi.org/10.17285/0869-7035.2016.24.3.003-013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Qin, Y., J. Lai, Q. Wu, and J. Liu. "MEMS rotary strapdown INS with low-resolution rotary encoder." Gyroscopy and Navigation 7, no. 4 (October 2016): 311–17. http://dx.doi.org/10.1134/s2075108716040106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Duarte, Nelson Roberto, Slamet Riyadi, Leonardus Heru Pratomo, and Florentinus Budi Setiawan. "Pulse Injection Method to Increase Precision of Rotary Encoder on Switched Reluctance Motors." JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING 4, no. 2 (January 18, 2021): 317–24. http://dx.doi.org/10.31289/jite.v4i2.4425.

Full text
Abstract:
Penggunaan switched reluctance motor (SRM) dalam aplikasi industri banyak diterapkan, hal ini dikarenakan SRM memiliki kelebihan antara lain tidak menggunakan magnet permanen serta kontruksi sederhana berupa inti besi pada rotor dan belitan stator. SRM membutuhkan informasi posisi rotor dalam pengoperasianya. Informasi posisi rotor yang sering digunakan adalah sensor hall effect yang sudah terpasang di dalam body motor walaupun adanya kelemahan terhadap akurasi. Untuk mendapatkan akurasi yang baik maka rotary encoder digunakan sebagai informasi posisi rotor. Rotary encoder memiliki tingkat kepresisian yang tinggi tapi dalam pemasangannya dibutuhkan sinkronisasi terhadap posisi rotor. Injeksi pulsa dilakukan untuk mencari kesesuaian antara posisi rotor dengan rotary encoder. Pada makalah ini diusulkan kendali SRM dengan informasi posisi rotor berasal dari pulsa rotary encoder. Hasil dari injeksi pulsa digunakan untuk menentukan profil induktansi pada posisi tertentu. Berdasarkan profil induktansi didapatkan sinkronisasi antara posisi rotor dengan pulsa rotary encoder. Untuk mendukung tercapainya metode analisis yang diusulkan dilakakukan pengujian pada laboratorium
APA, Harvard, Vancouver, ISO, and other styles
14

PUTRI, THETA DINNARWATY, WINARNO SUGENG, and FUADI RAMDANI. "Sistem Pembayaran Elektronik pada Transportasi Angkutan Kota menggunakan Rotary Encoder." MIND Journal 6, no. 1 (August 1, 2021): 1–15. http://dx.doi.org/10.26760/mindjournal.v6i1.1-15.

Full text
Abstract:
AbstrakAngkutan kota (angkot) adalah salah satu transportasi umum yang berada di kota Bandung. Tetapi belum semua warga menggunakannya karena tarif yang diberikan pengemudi tidak sesuai jarak yang ditempuh dan menyebabkan tarif yang beragam. Tujuan dari penelitian ini adalah membuat sistem pembayaran pada angkot serta menentukan tarifnya sesuai jarak yang ditempuh. Penelitian ini memodelkan sistem pembayaran menggunakan RFID, rotary encoder dan arduiono uno. Sistem yang dibuat menghasilkan output berupa tarif sesuai jarak yang ditempuh dengan menghitung jumlah putaran roda yang dihubungkan dengan rotary encoder. Rotary encoder digunakan untuk mengetahui arah putaran roda yang mana dapat menghasilkan output berupa jarak. Hasil dari penelitian ini adalah jarak yang diperoleh dari putaran roda yang di ekuivalensikan dengan jarak sebenarnya, dimana tarif dasar sebesar Rp.2000 akan bertambah Rp.100 setiap bertambah jarak 100 m. Kata kunci: Rotary Encoder, RFID, Transportasi, Arduino ABSTRACT City transportation (angkot) is one of the public transportation located in the city of Bandung. However, not all residents use it because the tariff given by the driver does not match the distance traveled and causes varying rates. The purpose of this research is to create a payment system for public transportation and determine the tariff according to the distance traveled. This study models a payment system using RFID, rotary encoder and Arduiono Uno. The system created produces an output in the form of a rate according to the distance traveled by calculating the number of wheel rotations connected to the rotary encoder. Rotary encoder is used to determine the direction of rotation of the wheel which can produce output in the form of distance. The result of this research is the distance obtained from the rotation of the wheel which is equivalent to the actual distance, where the basic fare of Rp. 2000 will increase by Rp. 100 for every 100 m increase in distance.Keywords: Rotary Encoder, RFID, Transportation, Arduino
APA, Harvard, Vancouver, ISO, and other styles
15

Miyashita, Kunio, Tadashi Takahashi, and Shoichi Kawamata. "Magnetic rotary encoder with sinusoidal output." IEEJ Transactions on Industry Applications 107, no. 6 (1987): 751–55. http://dx.doi.org/10.1541/ieejias.107.751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Miyashita, K., T. Takahashi, and M. Yamanaka. "Features of a magnetic rotary encoder." IEEE Transactions on Magnetics 23, no. 5 (September 1987): 2182–84. http://dx.doi.org/10.1109/tmag.1987.1065634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Watanabe, Tsukasa, Watcharin Samit, Ketsaya Vatcharanukul, Anusorn Tonmueanwai, and Agustinus Praba Drijarkara. "High Resolution SelfA Rotary Table by the Interpolation Signal Calibration." Key Engineering Materials 625 (August 2014): 53–59. http://dx.doi.org/10.4028/www.scientific.net/kem.625.53.

Full text
Abstract:
Self-A (Self-calibratable Angle device) rotary encoder can detect some kinds of angle error, not only its encoder scale error, but also the encoder attachment error (e.g. eccentricity error). When rotary table with built-in Self-A encoder rotates only one revolution, inner Self-A rotary encoder can calibrate the own angle error with a high accuracy. However, in the case of the Self-A using the encoder of 36,000 graduation scales, since the angular interval of the calibrated main scales corresponds to 36", it is insufficient for high resolution angular indexing control with high accuracy. Generally, the angle error of electric interpolation signal is estimated to be 1 % of main scale resolution that corresponds to about 0.36" for 36,000 scales encoder. Accordingly, even if Self-A had the ability which can calibrate in the accuracy 0.1", when it was controlling the rotary table using an electric interpolation signal, its total accuracy worsened to about 0.36". For improvement in precise angular-position control, we developed Self-A rotary table which can calibrate the angle signal at high resolution including electric interpolation signals. In this paper, we introduce the performance of the new high resolution Self-A encoder table. It keeps high accuracy and good repeatability in the 360° whole range as well as in the short range of ±1,000".
APA, Harvard, Vancouver, ISO, and other styles
18

Prielaidas, Artūras, and Rimas Lazdinas. "RESEARCH ON THE ACCURACY OF ANGLE MEASUREMENT / KAMPŲ MATAVIMO TIKSLUMO TYRIMAS." Mokslas - Lietuvos ateitis 3, no. 6 (January 3, 2012): 15–18. http://dx.doi.org/10.3846/mla.2011.103.

Full text
Abstract:
Rotary encoders are the main devices in industrial angle measurement. Accuracy is very important and is assured by the technology of manufacture. The main part (rotary disk) is under examination, and therefore a number of its characteristics are established and a comparison with the assembled encoder is presented. In conclusion, an error in the angle of the rotary disk makes a possibility of forecasting an error in the assembled encoder angle. Santrauka Nagrinėjamas limbų paklaidų matavimas, jų vertinimas, fotoelektrinių matavimų keitiklių paklaidų matavimas, bandoma nustatyti keitiklio paklaidų priklausomybę nuo limbo paklaidų. Pateikta limbų, keitiklių apžvalga, analizė, pagrindinės schemos. Atlikta limbų ir keitiklių paklaidų aproksimacija parametrinėmis funkcijomis. Apibendrinti visų matavimų rezultatai – kas būdinga paklaidų kreivėms, kokie dydžiai, jų aproksimacijos parametrinėmis funkcijomis rezultatai, formulės, analizė. Atlikti koreliacijos tarp limbo ir matavimo keitiklio paklaidų tyrimai.
APA, Harvard, Vancouver, ISO, and other styles
19

Paredes, Ferran, Cristian Herrojo, and Ferran Martín. "Position Sensors for Industrial Applications Based on Electromagnetic Encoders." Sensors 21, no. 8 (April 13, 2021): 2738. http://dx.doi.org/10.3390/s21082738.

Full text
Abstract:
Optical and magnetic linear/rotary encoders are well-known systems traditionally used in industry for the accurate measurement of linear/angular displacements and velocities. Recently, a different approach for the implementation of linear/rotary encoders has been proposed. Such an approach uses electromagnetic signals, and the working principle of these electromagnetic encoders is very similar to the one of optical encoders, i.e., pulse counting. Specifically, a transmission line based structure fed by a harmonic signal tuned to a certain frequency, the stator, is perturbed by encoder motion. Such encoder consists in a linear or circular chain (or chains) of inclusions (metallic, dielectric, or apertures) on a dielectric substrate, rigid or flexible, and made of different materials, including plastics, organic materials, rubber, etc. The harmonic signal is amplitude modulated by the encoder chain, and the envelope function contains the information relative to the position and velocity. The paper mainly focuses on linear encoders based on metallic and dielectric inclusions. Moreover, it is shown that synchronous electromagnetic encoders, able to provide the quasi-absolute position (plus the velocity and direction of motion in some cases), can be implemented. Several prototype examples are reviewed in the paper, including encoders implemented by means of additive process, such as 3D printed and screen-printed encoders.
APA, Harvard, Vancouver, ISO, and other styles
20

Jovanović, Jelena, Dragan Denić, and Uglješa Jovanović. "An Improved Linearization Circuit Used for Optical Rotary Encoders." Measurement Science Review 17, no. 5 (October 1, 2017): 241–49. http://dx.doi.org/10.1515/msr-2017-0029.

Full text
Abstract:
Abstract Optical rotary encoders generate nonlinear sine and cosine signals in response to a change of angular position that is being measured. Due to the nonlinear shape of encoder output signals, encoder sensitivity to very small changes of angular position is low, causing a poor measurement accuracy level. To improve the optical encoder sensitivity and to increase its accuracy, an improved linearization circuit based on pseudo-linear signal generation and its further linearization with the two-stage piecewise linear analog-to-digital converter is presented in this paper. The proposed linearization circuit is composed of a mixed-signal circuit, which generates analog pseudo-linear signal and determines the first four bits of the final digital result, and the two-stage piecewise linear analog-to-digital converter, which performs simultaneous linearization and digitalization of the pseudo-linear signal. As a result, the maximal value of the absolute measurement error equals to 3.77168·10−5 [rad] (0.00216°) over the full measurement range of 2π [rad].
APA, Harvard, Vancouver, ISO, and other styles
21

Xiaowei, Zhang, Masami Ando, and Wang Jidong. "Precision goniometer equipped with a 22-bit absolute rotary encoder." Journal of Synchrotron Radiation 5, no. 3 (May 1, 1998): 955–57. http://dx.doi.org/10.1107/s0909049598001253.

Full text
Abstract:
The calibration of a compact precision goniometer equipped with a 22-bit absolute rotary encoder is presented. The goniometer is a modified Huber 410 goniometer: the diffraction angles can be coarsely generated by a stepping-motor-driven worm gear and precisely interpolated by a piezoactuator-driven tangent arm. The angular accuracy of the precision rotary stage was evaluated with an autocollimator. It was shown that the deviation from circularity of the rolling bearing utilized in the precision rotary stage restricts the angular positioning accuracy of the goniometer, and results in an angular accuracy ten times larger than the angular resolution of 0.01 arcsec. The 22-bit encoder was calibrated by an incremental rotary encoder. It became evident that the accuracy of the absolute encoder is approximately 18 bit due to systematic errors.
APA, Harvard, Vancouver, ISO, and other styles
22

Li, Yi-Tsung, and Kuang-Chao Fan. "A novel method of angular positioning error analysis of rotary stages based on the Abbe principle." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 232, no. 11 (January 30, 2017): 1885–92. http://dx.doi.org/10.1177/0954405416688936.

Full text
Abstract:
Abbe error is the inherent systematic error in linear displacement measurement due to the measuring axis being out of line with the moving axis. The resulting gap is called the Abbe offset, which will multiply the angular pitch error of the moving stage to become the positioning error of the linear stage along the moving axis. Analogous to the Abbe principle, in the rotary stage, the rotary encoder is used to detect the worktable’s rotational angle. The encoder is normally mounted at a distance from the bearing. This distance can be also regarded as Abbe offset. Due to the inherent tilt and radial motions of the axis of rotation, the encoder’s rotating component, that is, the circular grating, would result in a lateral displacement relative to its sensing head that is fixed inside the stage housing. The actual measured angle is, therefore, different from the commanded angle, causing the angular positioning error of the rotary stage in machine tools and open-loop controlled system. In this article, the angular positioning error of the rotary stage caused by the tilt motion error and radial motion error of the spindle, the offset and the size of encoder is analyzed and experimentally verified.
APA, Harvard, Vancouver, ISO, and other styles
23

Palacín, Jordi, and David Martínez. "Improving the Angular Velocity Measured with a Low-Cost Magnetic Rotary Encoder Attached to a Brushed DC Motor by Compensating Magnet and Hall-Effect Sensor Misalignments." Sensors 21, no. 14 (July 12, 2021): 4763. http://dx.doi.org/10.3390/s21144763.

Full text
Abstract:
This paper proposes a method to improve the angular velocity measured by a low-cost magnetic rotary encoder attached to a brushed direct current (DC) motor. The low-cost magnetic rotary encoder used in brushed DC motors use to have a small magnetic ring attached to the rotational axis and one or more fixed Hall-effect sensors next to the magnet. Then, the Hall-effect sensors provide digital pulses with a duration and frequency proportional to the angular rotational velocity of the shaft of the encoder. The drawback of this mass produced rotary encoder is that any structural misalignment between the rotating magnetic field and the Hall-effect sensors produces asymmetric pulses that reduces the precision of the estimation of the angular velocity. The hypothesis of this paper is that the information provided by this low-cost magnetic rotary encoder can be processed and improved in order to obtain an accurate and precise estimation of the angular rotational velocity. The methodology proposed has been validated in four compact motorizations obtaining a reduction in the ripple of the estimation of the angular rotational velocity of: 4.93%, 59.43%, 76.49%, and 86.75%. This improvement has the advantage that it does not add time delays and does not increases the overall cost of the rotary encoder. These results showed the real dimension of this structural misalignment problem and the great improvement in precision that can be achieved.
APA, Harvard, Vancouver, ISO, and other styles
24

KAMIGAKI, Tomoo, Ichiro TOKUNAGA, Satoshi YANAGITA, Shingo TONEGAWA, Koro HAYASAKA, and Ken Ichi ARAI. "NEW ROTARY ENCODER WITH ALUMITE MAGNETIC FILM." Journal of the Magnetics Society of Japan 13, S_1_PMRC_89 (1989): S1_291–296. http://dx.doi.org/10.3379/jmsjmag.13.s1_291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Yan, Dai, Jing Shu Wang, Ming San Xu, and Guo Fu Lian. "Accurately Counting Algorithm of Incremental Rotary Encoder." Advanced Materials Research 468-471 (February 2012): 225–28. http://dx.doi.org/10.4028/www.scientific.net/amr.468-471.225.

Full text
Abstract:
Base on the structure of the mechanical rotary encoder, the characteristics of the glitches and the effective waveform are analyzed. A new algorithm for removing the glitches and accurately counting is introduced. The core idea of the algorithm is to check the output of the phase-lag part when the output of the phase-advance port changes. This algorithm can accurately remove the glitches form the signal and count exactly. This method for glitches removing is very convenient, without additional cost and efficient for rapid rotation.
APA, Harvard, Vancouver, ISO, and other styles
26

Smith, J. D. "Alias Errors in Precision Rotary Encoder Calibration." Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering Science 206, no. 1 (January 1992): 71–73. http://dx.doi.org/10.1243/pime_proc_1992_206_096_02.

Full text
Abstract:
Discrepancies between errors measured by back-to-back tests on rotary encoders and the errors quoted by the manufacturers led to investigation of the causes for the difference. An error that was apparently at 96 cycles per revolution was found to be due to a much higher frequency which was well outside the normal operating range for transmission error work.
APA, Harvard, Vancouver, ISO, and other styles
27

Liu, Lei, Chen Hu Yuan, Qiang Lin Zeng, and Jian Ming Wang. "An Initial Positioning Method on Magnetic Rotary Encoder Applying to PMSM." Applied Mechanics and Materials 687-691 (November 2014): 201–5. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.201.

Full text
Abstract:
Magnetic rotary encoder can be used to detect the rotor position of PMSM, in order to realize vector control of PMSM. An initial positioning method on magnetic rotary encoder based on open loop control system was presented to calculate absolute difference of average through setting Rotor position angle on multi point.Experimental results show that the method was simple and suitable to measure rotor angle exactly and easily.
APA, Harvard, Vancouver, ISO, and other styles
28

Saputra, Hendri Maja, Totok Agung Pambudi, and Dalmasius Ganjar Subagjo. "RANCANG BANGUN UMPAN BALIK EKSTERNAL UNTUK KENDALI SUDUT MOTOR SERVO BERBASIS ARDUINO." Jurnal Teknologi Bahan dan Barang Teknik 6, no. 2 (December 31, 2016): 43. http://dx.doi.org/10.37209/jtbbt.v6i2.68.

Full text
Abstract:
Rancang bangun umpan balik eksternal untuk kendali posisi sudut AC motor servo berbasis Arduino menggunakan sensor rotary encoder telah dilakukan. Penelitian ini dilakukan untuk meminimalisir kesalahan posisi sudut absolut dari poros motor. Kendali posisi pada AC motor servo tipe MHMD022G1U diamati bersifat relatif, sehingga peluang terjadinya kesalahan penentuan posisi sudut sangat besar, terutama pada saat terjadi distorsi pulsa atau saat suplai daya hilang. Sensor rotary encoder tipe EP50S8-1024-2F-P-24 dikopel dengan poros motor untuk membaca sudut aktual yang kemudian dijadikan sebagai umpan balik eksternal. Rotary encoder yang menggambarkan position sudut actual dari of AC servo motor menghasilkan digital code 10-bit yang kemudian dikonversi menjadi data desimal dengan rentang 0-1023 menggunakan sebuah mikrokontroler Arduino Nano V3. Data umpan balik yang diterima oleh mikrokontroler Arduino digunakan untuk menyesuaikan posisi atau sudut dari putaran poros motor servo AC. Hasil penelitian menunjukkan bahwa pada kendali sudut motor servo AC terdapat osilasi pada semua variasi frekuensi atau kecepatan yang diberikan dengan standar deviasi 1,62º pada 1 kHz, 1,92º pada 5 kHz, 2,29º pada 10 kHz, dan 19,01º pada 50 kHz. Walaupun demikian, nilai rata-rata posisi sudut putaran motor tetap dapat mengikuti referensi yang diberikan oleh potensiometer.Keywords: motor servo AC, rotary encoder, arduino, kendali sudut
APA, Harvard, Vancouver, ISO, and other styles
29

Kabashima, Takefumi, Yuji Arinaga, Koji Uemura, Ikuma Murokita, and Motomichi Ohto. "A Novel Magnetic Rotary Encoder for Servo Motors." IEEJ Transactions on Industry Applications 126, no. 9 (2006): 1202–7. http://dx.doi.org/10.1541/ieejias.126.1202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Mayer, J. R. R. "High-resolution of rotary encoder analog quadrature signals." IEEE Transactions on Instrumentation and Measurement 43, no. 3 (June 1994): 494–98. http://dx.doi.org/10.1109/19.293478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

WATANABE, Tsukasa, Tadashi MASUDA, Makoto KAJITANI, Hiroyuki FUJIMOTO, and Kan NAKAYAMA. "Automatic High Precision Calibration System for Rotary Encoder." Journal of the Japan Society for Precision Engineering 67, no. 7 (2001): 1091–95. http://dx.doi.org/10.2493/jjspe.67.1091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Nakano, K., T. Takahashi, and S. Kawahito. "A CMOS rotary encoder using magnetic sensor arrays." IEEE Sensors Journal 5, no. 5 (October 2005): 889–94. http://dx.doi.org/10.1109/jsen.2005.853597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Okuno, H., M. Ishikawa, and Y. Sakaki. "Properties of SmCo film for magnetic rotary encoder." IEEE Transactions on Magnetics 23, no. 5 (September 1987): 2425–27. http://dx.doi.org/10.1109/tmag.1987.1065330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Okuno, H., M. Ishikawa, and Y. Sakaki. "Properties of SmCo Film for Magnetic Rotary Encoder." IEEE Translation Journal on Magnetics in Japan 2, no. 12 (December 1987): 1146–48. http://dx.doi.org/10.1109/tjmj.1987.4549720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Das, Subir, Tuhin Subhra Sarkar, and Badal Chakraborty. "Simple approach to design a capacitive rotary encoder." IET Science, Measurement & Technology 12, no. 4 (July 1, 2018): 500–506. http://dx.doi.org/10.1049/iet-smt.2017.0376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Tobita, K., T. Ohira, M. Kajitani, C. Kanamori, M. Shimojo, and A. Ming. "A Rotary Encoder Based on Magneto-Optical Storage." IEEE/ASME Transactions on Mechatronics 10, no. 1 (February 2005): 87–97. http://dx.doi.org/10.1109/tmech.2004.842230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

SUN, Jian, Chengri CUI, and Masaomi TSUTSUMI. "A28 Development of Servo-clinometer Using Rotary Encoder." Proceedings of The Manufacturing & Machine Tool Conference 2008.7 (2008): 209–10. http://dx.doi.org/10.1299/jsmemmt.2008.7.209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Yavsan, Emrehan, Muhammet Rojhat Kara, Mehmet Karali, Baris Gokce, and Mehmet Akif Erismis. "A novel high resolution miniaturized capacitive rotary encoder." Sensors and Actuators A: Physical 331 (November 2021): 112992. http://dx.doi.org/10.1016/j.sna.2021.112992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Smith, J. D., and J. S. Echeverria-Villagomez. "Using an Encoder as a Torsional Vibration Transducer." Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering Science 203, no. 3 (May 1989): 219–20. http://dx.doi.org/10.1243/pime_proc_1989_203_106_02.

Full text
Abstract:
The use of a standard rotary encoder as a torsional vibration transducer is described. Its performance is compared with that of a standard seismic transducer and the relative advantages and disadvantages discussed.
APA, Harvard, Vancouver, ISO, and other styles
40

Kojima, Takuya, Koji Usuki, Takao Kitayama, Daisuke Tonaru, Hiroki Matsumura, Junichi Uchikoshi, Yasuo Higashi, and Katsuyosi Endo. "Absolute Calibration of the Rotary Encoder Considering the Influence on-Machine for Development of High-Speed Nanoprofiler." Key Engineering Materials 523-524 (November 2012): 842–46. http://dx.doi.org/10.4028/www.scientific.net/kem.523-524.842.

Full text
Abstract:
The development of a high-speed nanoprofiler is essential for developing the next generation of ultraprecision aspheric mirrors. The purpose of this study is to develop a new high-speed nanoprofiler that traces the normal vector of an aspheric mirror surface. The method of measurement adopted here is based upon the accuracy of a rotation goniometer. In order to attain a form measurement accuracy of PV1nm, it is necessary to improve the angle measurement accuracy. In this study, we equip a nanoprofiler with a rotary encoder that is calibrated in order to accomplish this objective, using a national standard machine. Consequently, this rotary encoder can be calibrated with an accuracy of ±0.12 μrad when considering the influence of installing the encoder on the nanoprofiler.
APA, Harvard, Vancouver, ISO, and other styles
41

Nakano, Kazuhiro, Toru Takahashi, and Shoji Kawahito. "Angle Detection Methods for a CMOS Smart Rotary Encoder." Journal of Robotics and Mechatronics 17, no. 4 (August 20, 2005): 469–74. http://dx.doi.org/10.20965/jrm.2005.p0469.

Full text
Abstract:
A CMOS smart magnetic rotary encoder is useful for compact equipment such as personal robots. In the proposed encoder, the geometrical angle of a magnet is detected with digital signal processing. The output signal of our proposed system is susceptible to sensor offsets caused by sensors mismatch and misalignment between sensor chip and magnet. The accuracy of angle detection method and the robustness to rotation axis misalignment depend greatly on the angle detection algorithm. This paper presents three types of angle detection and their performance in precision and compares rotation angle misalignment tolerance. Simulation results show that detecting two zero-crossing points in the signal profile, ZC method, is the most adequate for this system.
APA, Harvard, Vancouver, ISO, and other styles
42

Yamamoto, Kodai, Kazuki Otomo, and Hideki Hashimoto. "Development of Absolute Magnetic Rotary Encoder with Eccentric Rotation." IEEJ Transactions on Industry Applications 138, no. 12 (December 1, 2018): 920–25. http://dx.doi.org/10.1541/ieejias.138.920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Yamamoto, Kodai, Kazuki Otomo, and Hideki Hashimoto. "Development of Absolute Magnetic Rotary Encoder with Eccentric Rotation." IEEJ Journal of Industry Applications 8, no. 6 (November 1, 2019): 991–96. http://dx.doi.org/10.1541/ieejjia.8.991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Iafolla, Lorenzo, Massimiliano Filipozzi, Sara Freund, Azhar Zam, Georg Rauter, and Philippe Claude Cattin. "Proof of concept of a novel absolute rotary encoder." Sensors and Actuators A: Physical 312 (September 2020): 112100. http://dx.doi.org/10.1016/j.sna.2020.112100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Feng, Zhipeng, Aoran Gao, Kangqiang Li, and Haoqun Ma. "Planetary gearbox fault diagnosis via rotary encoder signal analysis." Mechanical Systems and Signal Processing 149 (February 2021): 107325. http://dx.doi.org/10.1016/j.ymssp.2020.107325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tresanchez, M., T. Pallejà, M. Teixidó, and J. Palacín. "The optical mouse sensor as an incremental rotary encoder." Sensors and Actuators A: Physical 155, no. 1 (October 2009): 73–81. http://dx.doi.org/10.1016/j.sna.2009.08.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Taufiqqurohman, M., and N. F. Sari. "Odometry Method and Rotary Encoder for Wheeled Soccer Robot." IOP Conference Series: Materials Science and Engineering 407 (September 26, 2018): 012103. http://dx.doi.org/10.1088/1757-899x/407/1/012103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wu, Shang-Teh, Jing-Ying Chen, and Szu-Hsien Wu. "A Rotary Encoder With an Eccentrically Mounted Ring Magnet." IEEE Transactions on Instrumentation and Measurement 63, no. 8 (August 2014): 1907–15. http://dx.doi.org/10.1109/tim.2014.2302243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zhao, Ming, and Jing Lin. "Health Assessment of Rotating Machinery Using a Rotary Encoder." IEEE Transactions on Industrial Electronics 65, no. 3 (March 2018): 2548–56. http://dx.doi.org/10.1109/tie.2017.2739689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kikuchi, Y., F. Nakamura, H. Wakiwaka, H. Yamada, and Y. Yamamoto. "Consideration for a high resolution of magnetic rotary encoder." IEEE Transactions on Magnetics 32, no. 5 (1996): 4959–61. http://dx.doi.org/10.1109/20.539301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography