Journal articles on the topic 'Rotating detonation engines'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Rotating detonation engines.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wang, Yuhui, Wenyou Qiao, and JialingLe. "Combustion Characteristics in Rotating Detonation Engines." International Journal of Aerospace Engineering 2021 (March 13, 2021): 1–17. http://dx.doi.org/10.1155/2021/8839967.
Full textXie, Qiaofeng, Zifei Ji, Haocheng Wen, Zhaoxin Ren, Piotr Wolanski, and Bing Wang. "Review on the Rotating Detonation Engine and It’s Typical Problems." Transactions on Aerospace Research 2020, no. 4 (2020): 107–63. http://dx.doi.org/10.2478/tar-2020-0024.
Full textJi, Zifei, Ruize Duan, Renshuai Zhang, Huiqiang Zhang, and Bing Wang. "Comprehensive Performance Analysis for the Rotating Detonation-Based Turboshaft Engine." International Journal of Aerospace Engineering 2020 (July 2, 2020): 1–11. http://dx.doi.org/10.1155/2020/9587813.
Full textSosa, Jonathan, Kareem A. Ahmed, Robert Fievisohn, John Hoke, Timothy Ombrello, and Frederick Schauer. "Supersonic driven detonation dynamics for rotating detonation engines." International Journal of Hydrogen Energy 44, no. 14 (2019): 7596–606. http://dx.doi.org/10.1016/j.ijhydene.2019.02.019.
Full textWang, Yu Hui, and Jian Ping Wang. "Rotating Detonation Instabilities in Hydrogen-Oxygen Mixture." Applied Mechanics and Materials 709 (December 2014): 56–62. http://dx.doi.org/10.4028/www.scientific.net/amm.709.56.
Full textZhou, Jianping, Feilong Song, Shida Xu, Xingkui Yang, and Yongjun Zheng. "Investigation of Rotating Detonation Fueled by Liquid Kerosene." Energies 15, no. 12 (2022): 4483. http://dx.doi.org/10.3390/en15124483.
Full textZhou, Rui, Dan Wu, and Jianping Wang. "Progress of continuously rotating detonation engines." Chinese Journal of Aeronautics 29, no. 1 (2016): 15–29. http://dx.doi.org/10.1016/j.cja.2015.12.006.
Full textWang, Yuhui, and Jianping Wang. "Coexistence of detonation with deflagration in rotating detonation engines." International Journal of Hydrogen Energy 41, no. 32 (2016): 14302–9. http://dx.doi.org/10.1016/j.ijhydene.2016.06.026.
Full textBatista, Armani, Mathias C. Ross, Christopher Lietz, and William A. Hargus. "Descending Modal Transition Dynamics in a Large Eddy Simulation of a Rotating Detonation Rocket Engine." Energies 14, no. 12 (2021): 3387. http://dx.doi.org/10.3390/en14123387.
Full textFrolov, Sergey M., Igor O. Shamshin, Viktor S. Aksenov, Vladislav S. Ivanov, and Pavel A. Vlasov. "Ion Sensors for Pulsed and Continuous Detonation Combustors." Chemosensors 11, no. 1 (2023): 33. http://dx.doi.org/10.3390/chemosensors11010033.
Full textBennewitz, John W., Blaine R. Bigler, Jessica J. Pilgram, and William A. Hargus. "MODAL TRANSITIONS IN ROTATING DETONATION ROCKET ENGINES." International Journal of Energetic Materials and Chemical Propulsion 18, no. 2 (2019): 91–109. http://dx.doi.org/10.1615/intjenergeticmaterialschemprop.2019027880.
Full textKoch, James, and J. Nathan Kutz. "Modeling thermodynamic trends of rotating detonation engines." Physics of Fluids 32, no. 12 (2020): 126102. http://dx.doi.org/10.1063/5.0023972.
Full textYan, Chenglong, Wei Lin, Chen Shu, Yue Zhi, and Wei He. "Numerical study of air-breathing two-phase rotating detonation engine under Ma 6 flight conditions." Journal of Physics: Conference Series 2364, no. 1 (2022): 012063. http://dx.doi.org/10.1088/1742-6596/2364/1/012063.
Full textXiong, Dapeng, Mingbo Sun, Haoyang Peng, et al. "Numerical Investigation of Contact Burning in an Air-Breathing Continuous Rotating Detonation Engine." International Journal of Aerospace Engineering 2022 (March 19, 2022): 1–13. http://dx.doi.org/10.1155/2022/1487613.
Full textHeister, Stephen D., John Smallwood, Alexis Harroun, Kevin Dille, Ariana Martinez, and Nathan Ballintyn. "Rotating Detonation Combustion for Advanced Liquid Propellant Space Engines." Aerospace 9, no. 10 (2022): 581. http://dx.doi.org/10.3390/aerospace9100581.
Full textLangston, Lee S. "Detonation Gas Turbines." Mechanical Engineering 135, no. 12 (2013): 50–54. http://dx.doi.org/10.1115/1.2013-dec-4.
Full textMikhalchenko, E. V., V. F. Nikitin, Yu G. Phylippov, and L. I. Stamov. "Numerical study of rotating detonation onset in engines." Shock Waves 31, no. 7 (2021): 763–76. http://dx.doi.org/10.1007/s00193-021-01051-5.
Full textWang, Yuhui, and Jialing Le. "Rotating detonation engines with two fuel orifice schemes." Acta Astronautica 161 (August 2019): 262–75. http://dx.doi.org/10.1016/j.actaastro.2019.05.035.
Full textNordeen, Craig A., and Lee S. Langston. "There's a New Cycle in Town." Mechanical Engineering 140, no. 07 (2018): 36–41. http://dx.doi.org/10.1115/1.2018-jul-2.
Full textWolański, P. "RDE research and development in Poland." Shock Waves 31, no. 7 (2021): 623–36. http://dx.doi.org/10.1007/s00193-021-01038-2.
Full textWang, Yuhui, and Jialing Le. "Experimental study of sharp noise caused by rotating detonation waves." Noise Control Engineering Journal 70, no. 6 (2022): 527–39. http://dx.doi.org/10.3397/1/377046.
Full textPrisacariu, Vasile, Constantin Rotaru, and Mihai Leonida Niculescu. "Considerations and simulations about Pulse Detonation Engine." MATEC Web of Conferences 290 (2019): 04009. http://dx.doi.org/10.1051/matecconf/201929004009.
Full textSchwer, Douglas, and Kailas Kailasanath. "Numerical investigation of the physics of rotating-detonation-engines." Proceedings of the Combustion Institute 33, no. 2 (2011): 2195–202. http://dx.doi.org/10.1016/j.proci.2010.07.050.
Full textWu, Dan, Rui Zhou, Meng Liu, and Jianping Wang. "Numerical Investigation of the Stability of Rotating Detonation Engines." Combustion Science and Technology 186, no. 10-11 (2014): 1699–715. http://dx.doi.org/10.1080/00102202.2014.935641.
Full textYan, Chenglong, Chen Shu, Jiafeng Zhao, et al. "Influences of thermal physical property parameters on operating characteristics of simulated rotating detonation ramjet fueled by C12H23." AIP Advances 12, no. 11 (2022): 115309. http://dx.doi.org/10.1063/5.0101939.
Full textSmith, Richard D., and Steven B. Stanley. "Experimental Investigation of Rotating Detonation Rocket Engines for Space Propulsion." Journal of Propulsion and Power 37, no. 3 (2021): 463–73. http://dx.doi.org/10.2514/1.b37959.
Full textBraun, James, Bayindir H. Saracoglu, and Guillermo Paniagua. "Unsteady Performance of Rotating Detonation Engines with Different Exhaust Nozzles." Journal of Propulsion and Power 33, no. 1 (2017): 121–30. http://dx.doi.org/10.2514/1.b36164.
Full textMizener, Andrew R., Frank K. Lu, and Patrick E. Rodi. "Performance Sensitivities of Rotating Detonation Engines Installed onto Waverider Forebodies." Journal of Propulsion and Power 35, no. 2 (2019): 289–302. http://dx.doi.org/10.2514/1.b37033.
Full textWang, Fang, and Chunsheng Weng. "Numerical research on two-phase kerosene/air rotating detonation engines." Acta Astronautica 192 (March 2022): 199–209. http://dx.doi.org/10.1016/j.actaastro.2021.12.026.
Full textLiu, M., R. Zhou, and J. P. Wang. "Numerical Investigation of Different Injection Patterns in Rotating Detonation Engines." Combustion Science and Technology 187, no. 3 (2014): 343–61. http://dx.doi.org/10.1080/00102202.2014.923411.
Full textKindracki, Jan, Krzysztof Wacko, Przemysław Woźniak, Stanisław Siatkowski, and Łukasz Mężyk. "Influence of Gaseous Hydrogen Addition on Initiation of Rotating Detonation in Liquid Fuel–Air Mixtures." Energies 13, no. 19 (2020): 5101. http://dx.doi.org/10.3390/en13195101.
Full textFotia, Matthew L., John Hoke, and Fred Schauer. "Experimental Performance Scaling of Rotating Detonation Engines Operated on Gaseous Fuels." Journal of Propulsion and Power 33, no. 5 (2017): 1187–96. http://dx.doi.org/10.2514/1.b36213.
Full textLiu, Yan, Weijiang Zhou, Yunjun Yang, Zhou Liu, and Jianping Wang. "Numerical study on the instabilities in H2-air rotating detonation engines." Physics of Fluids 30, no. 4 (2018): 046106. http://dx.doi.org/10.1063/1.5024867.
Full textSchwer, Douglas, and K. Kailasanath. "Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels." Proceedings of the Combustion Institute 34, no. 2 (2013): 1991–98. http://dx.doi.org/10.1016/j.proci.2012.05.046.
Full textWu, Dan, Yan Liu, Yusi Liu, and Jianping Wang. "Numerical investigations of the restabilization of hydrogen–air rotating detonation engines." International Journal of Hydrogen Energy 39, no. 28 (2014): 15803–9. http://dx.doi.org/10.1016/j.ijhydene.2014.07.159.
Full textHarroun, Alexis J., Stephen D. Heister, and Joseph H. Ruf. "Computational and Experimental Study of Nozzle Performance for Rotating Detonation Rocket Engines." Journal of Propulsion and Power 37, no. 5 (2021): 660–73. http://dx.doi.org/10.2514/1.b38244.
Full textYao, Song-Bai, Meng Liu, and Jian-Ping Wang. "The Effect of the Inlet Total Pressure and the Number of Detonation Waves on Rotating Detonation Engines." Procedia Engineering 99 (2015): 848–52. http://dx.doi.org/10.1016/j.proeng.2014.12.611.
Full textLuan, Zhenye, Yue Huang, Sijia Gao, and Yancheng You. "Formation of multiple detonation waves in rotating detonation engines with inhomogeneous methane/oxygen mixtures under different equivalence ratios." Combustion and Flame 241 (July 2022): 112091. http://dx.doi.org/10.1016/j.combustflame.2022.112091.
Full textBedick, Clinton R., Charlotte Albunio, Peter Strakey, Donald Ferguson, and Rigel Woodside. "Potassium carbonate decomposition modeling within rotating detonation engines for direct power extraction applications." Combustion and Flame 244 (October 2022): 112263. http://dx.doi.org/10.1016/j.combustflame.2022.112263.
Full textZhou, Rui, Dan Wu, Yan Liu, and Jian-Ping Wang. "Particle path tracking method in two- and three-dimensional continuously rotating detonation engines." Chinese Physics B 23, no. 12 (2014): 124704. http://dx.doi.org/10.1088/1674-1056/23/12/124704.
Full textZhang, Li-Feng, John Z. Ma, Shu-Jie Zhang, Ming-Yi Luan, and Jian-Ping Wang. "Three-dimensional numerical study on rotating detonation engines using reactive Navier-Stokes equations." Aerospace Science and Technology 93 (October 2019): 105271. http://dx.doi.org/10.1016/j.ast.2019.07.004.
Full textWang, Fang, Chunsheng Weng, Yuwen Wu, Qiaodong Bai, Quan Zheng, and Han Xu. "Numerical research on kerosene/air rotating detonation engines under different injection total temperatures." Aerospace Science and Technology 103 (August 2020): 105899. http://dx.doi.org/10.1016/j.ast.2020.105899.
Full textWang, Fang, Huangwei Zhang, Qiaodong Bai, and Chunsheng Weng. "Numerical simulations of vapor kerosene/air rotating detonation engines with different slot inlet configurations." Acta Astronautica 194 (May 2022): 286–300. http://dx.doi.org/10.1016/j.actaastro.2022.02.015.
Full textZhou, R., and J. P. Wang. "Numerical investigation of shock wave reflections near the head ends of rotating detonation engines." Shock Waves 23, no. 5 (2013): 461–72. http://dx.doi.org/10.1007/s00193-013-0440-0.
Full textZhou, Rui, and Jian-Ping Wang. "Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines." Combustion and Flame 159, no. 12 (2012): 3632–45. http://dx.doi.org/10.1016/j.combustflame.2012.07.007.
Full textZhu, Wenchao, and Yuhui Wang. "Effect of hydrogen flow rate and particle diameter on coal-hydrogen-air rotating detonation engines." International Journal of Hydrogen Energy 47, no. 2 (2022): 1328–42. http://dx.doi.org/10.1016/j.ijhydene.2021.10.088.
Full textAnand, Vijay, and Ephraim Gutmark. "A review of pollutants emissions in various pressure gain combustors." International Journal of Spray and Combustion Dynamics 11 (January 2019): 175682771987072. http://dx.doi.org/10.1177/1756827719870724.
Full textNejaamtheen, M. N., T. Y. Kim, P. K. Pavalavanni, J. Ryu, and J. Y. Choi. "Effects of the dimensionless radius of an annulus on the detonation propagation characteristics in circular and non-circular rotating detonation engines." Shock Waves 31, no. 7 (2021): 703–15. http://dx.doi.org/10.1007/s00193-021-01065-z.
Full textWang, Y., J. Le, C. Wang, Y. Zheng, and S. Huang. "The effect of the throat width of plug nozzles on the combustion mode in rotating detonation engines." Shock Waves 29, no. 4 (2018): 471–85. http://dx.doi.org/10.1007/s00193-018-0865-6.
Full textFureby, Christer, Guillaume Sahut, Alessandro Ercole, and Thommie Nilsson. "Large Eddy Simulation of Combustion for High-Speed Airbreathing Engines." Aerospace 9, no. 12 (2022): 785. http://dx.doi.org/10.3390/aerospace9120785.
Full text