Academic literature on the topic 'Rotational Type Viscometer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rotational Type Viscometer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rotational Type Viscometer"

1

Yaltkaya, S., and S. Ozelsoy. "A Simple, New Type of Rotational Viscometer." Instrumentation Science & Technology 37, no. 6 (September 30, 2009): 655–59. http://dx.doi.org/10.1080/10739140903252105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barnes, Howard A. "An examination of the use of rotational viscometers for the quality control of non-Newtonian liquid products in factories." Applied Rheology 11, no. 2 (April 1, 2001): 89–101. http://dx.doi.org/10.1515/arh-2001-0006.

Full text
Abstract:
AbstractA frequent task undertaken by quality-control personnel in typical consumer-goods factories is the measurement of the viscosity of liquid products. The problem often faced in this task is how to strike the correct balance between the complete rheological characterisation of the non-Newtonian properties of the liquid of interest – which requires expensive, sophisticated equipment and can be quite time-consuming – and the dictates of production pressures that demand, as near as possible, an instant decision, and one usually based on a single number. Here we consider the rheological issues that arise in such a debate, which is aimed at finding what adequate characterisation would require.We will investigate the implications of liquids products being non-Newtonian for two of the most commonly encountered viscometers in factory quality laboratories, i.e. the simple ‘dip-in’ rotating spindle viscometer of the Brookfield type (with its different forms and many imitations) and the more sophisticated concentric-cylinder-type device typified by the Haake Rotovisco VT 550 range. Each is capable of giving a single-number answer for viscosity, but the implications of understanding this single number are different in each case, with the dip-in viscometer being in an infinite sea of liquid and the concentric-cylinder situation being narrow gap. We also investigate when the infinite sea of the ‘dip-in’ viscometer is effectively ‘infinite’ and when is a concentric-cylinder geometry really ‘narrow gap’? We will use the power-law model throughout our discussions.
APA, Harvard, Vancouver, ISO, and other styles
3

HU, WEI, and NORMAN M. WERELEY. "BEHAVIOR OF MR FLUIDS AT HIGH SHEAR RATE." International Journal of Modern Physics B 25, no. 07 (March 20, 2011): 979–85. http://dx.doi.org/10.1142/s0217979211058535.

Full text
Abstract:
The high shear rate behavior of MR fluids is investigated using a concentric rotational cylinder viscometer fabricated in-house. The rotational cylinder viscometer is designed such that a high shear rate of up to 30,000 s-1 can be applied to the MR fluid in a pure shear flow mode. As a comparison, the maximum shear rate of a commercially available parallel disk type rheometer is only up to 1,000 s-1. To determine the shear rate of the MR fluid in the viscometer, an exact expression between torque and angular velocity is established. The yield stress and viscosity of the MR fluid is determined by fitting the expression into the measured torque and angular velocities, and the shear stress as a function of the shear rate is further derived. The magnetic filed strength across the fluid gap is determined based on an electromagnetic field analysis, and the yield stress and viscosity of the fluid as a function of the magnetic filed is established. Specifically, the stability of the MR fluid at high shear rate is also evaluated. Two commercially available MR fluids, i.e., Lord's MRF-132DG and MRF-140CG, are investigated using the rotational cylinder viscometer, and the testing results are compared to the manufacturer's data.
APA, Harvard, Vancouver, ISO, and other styles
4

Hirano, Taichi, Shujiro Mitani, and Keiji Sakai. "Development and Progress of Innovative Rotational-Type Viscometer with Electromagnetically Spinning Method." Nihon Reoroji Gakkaishi 46, no. 2 (April 16, 2018): 53–58. http://dx.doi.org/10.1678/rheology.46.53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Eriksson, I., U. Bolmstedt, and A. Axelsson. "Evaluation of a helical ribbon impeller as a viscosity measuring device for fluid foods with particles." Applied Rheology 12, no. 6 (December 1, 2002): 303–8. http://dx.doi.org/10.1515/arh-2002-0018.

Full text
Abstract:
Abstract The traditional methods of measuring viscosity with rotational viscometers, i.e. cone-plate and concentric cylinder systems, are often not suitable for suspensions. To be able to measure viscosity on suspensions mixer viscometers have been developed. In this study a new design of a helical ribbon impeller has been evaluated and the Metzner-Otto approach has been used to calibrate the impeller. Different kinds of food products were studied. The Metzner-Otto parameter obtained from tomato products was lower than those obtained from starch products. The study showed that the Metzner-Otto parameter varied but seemed rather to be dependent on the composition of the food material than on the flow behaviour index. The impeller could handle high concentration of quite large particles. This type of helical ribbon impeller viscometer is thus recommended for rheological studies of suspensions with high concentration of particles.
APA, Harvard, Vancouver, ISO, and other styles
6

Asai, Kazuki, Masaaki Ichiyanagi, Hiroshi Satone, Takamasa Mori, JunIchiro Tsubaki, and Yoko Itoh. "The Influence of Non-Newtonian Property on the Apparent Viscosity Measured by Single Cylinder Rotational Viscometer (Type-B Viscometer)." Journal of the Society of Powder Technology, Japan 46, no. 12 (2009): 873–80. http://dx.doi.org/10.4164/sptj.46.873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kurkin, Evgenii Igorevich, Vladislava Olegovna Chertykovtseva, and Yaroslav Vyacheslavovich Zakhvatkin. "Processing a Brookfield Rotational Viscometer Measurement Results in the MATLAB." Key Engineering Materials 834 (March 2020): 82–89. http://dx.doi.org/10.4028/www.scientific.net/kem.834.82.

Full text
Abstract:
The Brookfield_to_MATLAB and ViscosityApproximation codes for processing of experiments results for determination of viscosity on a rotational Brookfield DV3T viscometer is developed in the MATLAB. The codes allow to carry out automatic capture data, to calculate the shear rate for standard spindles RV-1 ... RV-7, to sort the measurement results on temperatures, to combine the experimental data and to determine the coefficients of the Andrade type power-law model. Paper describes experiment results on determination of viscosity of the epoxy binder reinforced by short carbon fibers. The coefficients of the viscosity model are determined by the linear regression coefficients. The obtained determination coefficient shows a good agreement of the model with the experimental data. The results are used for study various contents of a mass fraction of fibers: 0%, 5%, 10%, and 15%.
APA, Harvard, Vancouver, ISO, and other styles
8

Efremov, D. V., I. A. Bannikova, Y. V. Bayandin, E. V. Krutikhin, and V. A. Zhuravlev. "Experimental study of rheological properties of liquids for hydrofracturing." Вестник Пермского университета. Физика, no. 4 (2020): 69–77. http://dx.doi.org/10.17072/1994-3598-2020-4-69-77.

Full text
Abstract:
The work is devoted to the study of the rheological behavior of proppant carrier fluids used for hydraulic fracturing (HF) technology in order to increase oil recovery, including from hard-torecover oil and gas reserves, in a wide range of deformation rates using viscometers of various designs. Rheological properties were studied for proppant carrier fluids based on guar and Surfogel grade D, (type 70–100, produced by JSC “Polyex”) with comparable shear rate 128 s–1. Quasistatic experiments to determine the values of the dynamic viscosity of the liquids under study were carried out using a falling ball viscometer (according to the Stokes method). Using an original viscometer, consisting of two coaxial cylinders (rotary rheometer), the dynamic viscosity of surfogel was investigated in a wide range of shear rates. The viscoelastic properties of surfactants were studied using a Physica MCR501 rheometer, which has a plane-to-plane measuring system and allows rheological studies in rotational and oscillatory modes. A comparison of the rheological properties of fluids based on the guar and the viscoelastic surfactant is carried out and it is established that a fluid based on the viscoelastic surfactant has a higher dynamic viscosity and does not lose its elastic properties, which is an certain advantage over a fluid based on the guar.
APA, Harvard, Vancouver, ISO, and other styles
9

Bodnárová, Lenka, Tomáš Jarolím, and Rudolf Hela. "Study of Effect of Various Types of Cement on Properties of Cement Pastes." Advanced Materials Research 897 (February 2014): 224–29. http://dx.doi.org/10.4028/www.scientific.net/amr.897.224.

Full text
Abstract:
This article studies the effect of various types of cement on rheological properties of cement pastes. Rheological properties are significantly related to workability of concrete and to requirements of mixing water amount and thus affect the development of strength, durability of concrete and resistance of concrete to extreme conditions and to high temperature. This article describes the influence of cement type, type and dose of superplasticising admixtures on development of torque in time. Torque was monitored by the rotational viscometer Viskomat NT. Theoretical part of the article briefly describes the phenomenons that can accompany mixing and processing of cement pastes. Experimental part is focused on monitoring the rheological behaviour of cement pastes of different formulas by monitoring the evolution of torque in time.
APA, Harvard, Vancouver, ISO, and other styles
10

Sokolov, A. Y., and D. I. Shishkina. "Study of the structural and mechanical properties of biopolymers in order to obtain a capsule-type product." Proceedings of the Voronezh State University of Engineering Technologies 83, no. 1 (June 3, 2021): 248–52. http://dx.doi.org/10.20914/2310-1202-2021-1-248-252.

Full text
Abstract:
The article presents some theoretical and experimental data on promising technologies, namely, the processes of obtaining artificial food materials such as spheres or "caviar". They are derived from molecular processes: solubilization, spherification, etc. Possible applications are the food industry, the food service industry, biotechnology, and others. There are different features of obtaining artificial products based on alginates. The peculiarities of the alginate structuring are that it is possible to form a gel layer-encapsulation and gel formation over the entire thickness of the product due to the special chemical properties of the fixing salt. Based on the theory of the molecular structure of biopolymers, molecular technologies for the synthesis of artificial food products were developed, using the example of molecular "caviar". As a result of our own experiments, we obtained a satisfactory encapsulated product from a biopolymer crosslinked with Ca2+ salts in terms of organoleptic and physico-chemical properties. The colloidal biopolymer solution for forming "eggs" was characterized using the method of rotational viscometry, which showed the features of the sodium alginate solution as a structured thixotropic material, which is characterized by" difficulty " of shear at low speeds of rotation of the viscometer rotor. Further on the rheogram, such material exhibits a predicted relatively stable flow. As a result, it can be used to produce semi-finished products of a given shape and texture as a food semi-finished product or product. If the technology is refined, it is possible to use colloidal systems based on alginates and other biopolymers in biotechnology, including the cultivation of microorganisms of various taxonomic groups.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Rotational Type Viscometer"

1

Gupta, S. V. "Rotational and Other Types of Viscometers." In Viscometry for Liquids, 81–105. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04858-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Rotational Type Viscometer"

1

Hongbo, Chen, Okesanya Temi, Kuru Ergun, Heath Garett, and Hadley Dylan. "A Generalized Model for the Field Assessment of Drilling Fluid Viscoelasticity." In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/205953-ms.

Full text
Abstract:
Abstract Recent studies highlight the significant role of drilling fluid elasticity in particle suspension and hole cleaning during drilling operations. Traditional methods to quantify fluid elasticity require the use of advanced rheometers not suitable for field application. The main objectives of the study were to develop a generalized model for determining viscoelasticity of a drilling fluid using standard field-testing equipment, investigate the factors influencing drilling fluid viscoelasticity in the field, and provide an understanding of the viscoelasticity concept. Over 80 fluid formulations used in this study included field samples of oil-based drilling fluids as well as laboratory samples formulated with bentonite and other polymers such as partially-hydrolyzed polyacrylamide, synthesized xanthan gum, and polyacrylic acid. Detailed rheological characterizations of these fluids used a funnel viscometer and a rotational viscometer. Elastic properties of the drilling fluids (quantified in terms of the energy required to cause an irreversible deformation in the fluid's structure) were obtained from oscillatory tests conducted using a cone-and-plate type rheometer. Using an empirical approach, a non-iterative model for quantifying elasticity correlated test results from a funnel viscometer and a rotational viscometer. The generalized model was able to predict the elasticity of drilling fluids with a mean absolute error of 5.75%. In addition, the model offers practical versatility by requiring only standard drilling fluid testing equipment to predict viscoelasticity. Experimental results showed that non-aqueous fluid (NAF) viscoelasticity is inversely proportional to the oil-water ratio and the presence of clay greatly debilitates the elasticity of the samples while enhancing their viscosity. The work efforts present a model for estimating drilling fluid elasticity using standard drilling fluid field-testing equipment. Furthermore, a revised approach helps to describe the viscoelastic property of a fluid that involves quantifying the amount of energy required to irreversibly deform a unit volume of viscoelastic fluid. The methodology, combined with the explanation of the viscoelasticity concept, provides a practical tool for optimizing drilling operations based on the viscoelasticity of drilling fluids.
APA, Harvard, Vancouver, ISO, and other styles
2

Davidson, Drew A., and Gary L. Lehmann. "Squeeze Flow Study of a Colloidal Paste." In ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73394.

Full text
Abstract:
Crucial to the development and characterization of thermal interface materials (TIMs) is an understanding of the squeeze flow process that is commonly used to form thin bond layers in micro-electronic assemblies. A single model TIM, a dense, fairly monomodal suspension of submicron alumina particles suspended in a silicone-based resin, is first characterized as a Bingham fluid using a parallel disk rotational viscometer. Next, the model TIM is squeezed from ∼1 mm initial thickness to ∼.01 mm limiting thickness under nominally constant applied load (68 to 345 kPa) between 20 mm diameter aluminum plates in an axial compression test apparatus (the type commonly used for materials testing). The test plates are flat (∼10 μm flatness deviation over the plate) and smooth (Ra ∼ 20 nm), and are fixed in the test column with epoxy for optimum parallelism. Bond layer thickness is estimated using the LVDT built into the compression tester. The thickness measurement resolution is limited by LVDT noise of 10–20 microns. Squeezing forces are well above the ∼.02 N noise level of the 100 N load cell. Of the test system compliance, inertia, and friction, only the compliance is significant to our testing, and is corrected for. Squeeze flow tests of Newtonian standards are used to qualify the test process. In the case of the model paste, Bingham fluid model parameters from rotational viscometry are used in a lubrication model of squeeze flow that shows good agreement with the measured gap vs. time behavior during squeezing. Improved agreement is obtained by including plate flatness deviation and time-dependent force in the lubrication model. Parallel disk viscometry and squeeze flow testing of the base resin of the model TIM shows Newtonian behavior.
APA, Harvard, Vancouver, ISO, and other styles
3

Sagdeev, D., Ch Isyanov, I. Gabitov, V. Khairutdinov, M. Farakhov, F. Gumerov, Kh Kharlampidi, R. Khamidullin, and I. Abdulagatov. "TEMPERATURE EFFECT ON DENSITY AND VISCOSITY OF LIGHT, MEDIUM, AND HEAVY CRUDE OILS." In RENEWABLE ENERGY: CHALLENGES AND PROSPECTS. ALEF, 2020. http://dx.doi.org/10.33580/2313-5743-2020-8-1-177-206.

Full text
Abstract:
The density and dynamic viscosity of four light, medium, and heavy (extra-viscous) crude oil samples from Tatarstan Oil Field (Russian Federation) have been measured over the temperature range from (293 to 473) K (for density) and from (293 to 348) K (for viscosity) at atmospheric pressure (101 kPa). The density measurements were made using a new densimeter based on hydrostatic weighing method. The viscosity measurements of the same crude oil samples were made us-ing Brookfield rotational viscometer (DV-II+PRO, LVD-II+PRO). The combined expanded uncertainty of the density, viscosity, atmospheric pressure, and temperature measurements at 0.95 confidence level with a coverage factor of k = 2 is estimated to be 0.16 %, 1.0 %, 1.0 %, and 20 mK, respectively. For validation of the reliability and accuracy of the measured density data and correct operation of the new densimeter, all oil samples were measured using the pycnometric method. The present study showed that the densities measured using the new hydrostatic weighing densimeter (HWD) are agree with the values obtained with pycnometric method within (0.03 to 0.14) %. The measured density and viscosity data were used to develop widerange correlations as a function of temperature and API characteristics. The measured densities were represented using simple function of temperature (polynomial type) with API gravity dependent parameters with an accuracy of AAD within from (0.10 to 0.18) %. The measured viscosity data were also used to develop linear Arrhenius and VTF models. API gravity dependence of the Arrhenius parameters was studied.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography