Academic literature on the topic 'Rotor-blade system'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rotor-blade system.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rotor-blade system"

1

Ngui, Wai Keng, M. Salman Leong, L. M. Hee, and Ahmed M. Abdelrhman. "Detection of Twisted Blade in Multi Stage Rotor System." Applied Mechanics and Materials 773-774 (July 2015): 144–48. http://dx.doi.org/10.4028/www.scientific.net/amm.773-774.144.

Full text
Abstract:
This paper studies the detection of twisted blade in a multi stages rotor system. Experimental study was undertaken to simulate twisted blade conditions in a three stages rotor system. The feasibility of vibration analysis as the technique to detect twisted blade based on the rotor operating frequency and its blade passing frequency was investigated in this study. Experimental results show that twisted blade can be easily detected by looking into the pattern of the vibration spectrum and its individual peaks.
APA, Harvard, Vancouver, ISO, and other styles
2

Dalli, Uğbreve;ur, and Şcedilefaatdin Yüksel. "Identification of Flap Motion Parameters for Vibration Reduction in Helicopter Rotors with Multiple Active Trailing Edge Flaps." Shock and Vibration 18, no. 5 (2011): 727–45. http://dx.doi.org/10.1155/2011/675791.

Full text
Abstract:
An active control method utilizing the multiple trailing edge flap configuration for rotorcraft vibration suppression and blade loads control is presented. A comprehensive model for rotor blade with active trailing edge flaps is used to calculate the vibration characteristics, natural frequencies and mode shapes of any complex composite helicopter rotor blade. A computer program is developed to calculate the system response, rotor blade root forces and moments under aerodynamic forcing conditions. Rotor blade system response is calculated using the proposed solution method and the developed pr
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Yu-Tai, and JinZhang Feng. "Potential and Viscous Interactions for a Multi-Blade-Row Compressor." Journal of Turbomachinery 126, no. 4 (2004): 464–72. http://dx.doi.org/10.1115/1.1740778.

Full text
Abstract:
A computationally efficient time-accurate vortex method for unsteady incompressible flows through multiple blade row systems is presented. The method represents the boundary surfaces using vortex systems. A local coordinate system is assigned to each independently moving blade row. Blade shed vorticity is determined from two generating mechanisms and convected using the Euler equation. The first mechanism of vorticity generation is a potential mechanism from a nonlinear unsteady pressure-type Kutta condition applied at the blade trailing edges. The second mechanism is a viscous mechanism from
APA, Harvard, Vancouver, ISO, and other styles
4

Lu, Zhenyong, Shun Zhong, Huizheng Chen, Yushu Chen, Jiajie Han, and Chao Wang. "Modeling and Dynamic Characteristics Analysis of Blade-Disk Dual-Rotor System." Complexity 2020 (January 25, 2020): 1–13. http://dx.doi.org/10.1155/2020/2493169.

Full text
Abstract:
In this paper, a simplified dynamic model of a dual-rotor system coupled with blade disk is built, and the effects of blade parameters of an aircraft engine on the dynamic characteristics of a dual-rotor system are studied. In the methodology, the blade is simplified as a cantilever structure, and the dynamical equations are obtained by the means of a finite element method. The amplitude-frequency response curves and orbits of shaft centre-vibration shape diagram are used to analyze the effects of blade parameters on dynamic characteristics of a dual-rotor system. The results indicate that the
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Nanfei, Chao Liu, and Dongxiang Jiang. "Prediction of transient vibration response of dual-rotor-blade-casing system with blade off." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 14 (2019): 5164–76. http://dx.doi.org/10.1177/0954410019839884.

Full text
Abstract:
Fan blade off occurring in a running rotor of the turbofan engine dual-rotor system will cause a sudden unbalance and inertia asymmetry, which results in large impact load and consequently induces the rubbing between blade and casing. In order to reveal the transient dynamic response characteristics of actual aero-engine when fan blade off event occurs, the dynamic model of dual-rotor-blade-casing system is developed, in which the distribution characteristics of the stiffness and mass, the load transfer, and the coupling effects of dual-rotor and casing are included. Considering several excita
APA, Harvard, Vancouver, ISO, and other styles
6

Lu, Xin, Jie Tang, and Liwen Wang. "Simulation and Experimental Study on Rotor System Dynamic Analysis with the Blade-Coating Rubbing Faults." Shock and Vibration 2021 (September 10, 2021): 1–15. http://dx.doi.org/10.1155/2021/2442760.

Full text
Abstract:
In the modern turbo-machinery, reducing the clearance between the blade tip and casing inner face is an effective method to improve the power performance, but the clearance reduction leads to increased risk of blade-casing rubbing. In this paper, a blade-coating rubbing force model which considered the abradable coating scraping is developed to simulate the rotor system dynamic characteristics at blade-casing rubbing faults with abradable coating. An experimental tester is established to simulate the rotor system blade-casing rubbing faults; the AlSi-ployphenyl ester abradable coating is prepa
APA, Harvard, Vancouver, ISO, and other styles
7

Zalkind, Daniel S., Gavin K. Ananda, Mayank Chetan, et al. "System-level design studies for large rotors." Wind Energy Science 4, no. 4 (2019): 595–618. http://dx.doi.org/10.5194/wes-4-595-2019.

Full text
Abstract:
Abstract. We examine the effect of rotor design choices on the power capture and structural loading of each major wind turbine component. A harmonic model for structural loading is derived from simulations using the National Renewable Energy Laboratory (NREL) aeroelastic code FAST to reduce computational expense while evaluating design trade-offs for rotors with radii greater than 100 m. Design studies are performed, which focus on blade aerodynamic and structural parameters as well as different hub configurations and nacelle placements atop the tower. The effects of tower design and closed-lo
APA, Harvard, Vancouver, ISO, and other styles
8

Christensen, René H., and Ilmar F. Santos. "Active Rotor-Blade Vibration Control Using Shaft-Based Electromagnetic Actuation." Journal of Engineering for Gas Turbines and Power 128, no. 3 (2004): 644–52. http://dx.doi.org/10.1115/1.2056533.

Full text
Abstract:
In this paper the feasibility of actively suppressing rotor and blade vibration via shaft-based actuation is studied. A mathematical model is derived, taking into account the special dynamical characteristics of coupled rotor-blade systems, such as centrifugal stiffened blades and parametric vibration modes. An investigation of controllability and observability shows that if the blades are properly mistuned, it is possible to suppress shaft as well as blade vibration levels by using only shaft-based actuation and sensing; though, in tuned bladed systems, shaft as well as blade actuation and se
APA, Harvard, Vancouver, ISO, and other styles
9

Abdelrhman, Ahmed M., M. Salman Leong, Yasin M. Hamdan, and Kar Hoou Hui. "Time Frequency Analysis for Blade Rub Detection in Multi Stage Rotor System." Applied Mechanics and Materials 773-774 (July 2015): 95–99. http://dx.doi.org/10.4028/www.scientific.net/amm.773-774.95.

Full text
Abstract:
Blade fault is one of the most causes of failure in turbo machinery. This paper discussed the time frequency analysis for blade rubbing detection from casing vibration signal. Feasibility of Short Time Fourier Transform (STFT), Wigner-Ville distribution (WVD) and Choi-Williams distribution (CWD) were examined for blade rub detection in a multi stage blade system through an experimental data. Analysis results of the experimental data showed that these time frequency analysis methods have some inevitable deficiencies in segregating the blade passing frequency (BPF) components of the three rotor
APA, Harvard, Vancouver, ISO, and other styles
10

Qian, Xiaoru, Peigang Yan, Xiangfeng Wang, and Wanjin Han. "Numerical Analysis of Conjugated Heat Transfer and Thermal Stress Distributions in a High-Temperature Ni-Based Superalloy Turbine Rotor Blade." Energies 15, no. 14 (2022): 4972. http://dx.doi.org/10.3390/en15144972.

Full text
Abstract:
This paper establishes a multidisciplinary method combining conjugate heat transfer (CHT) and thermal stress for a high-temperature Ni-based superalloy turbine rotor blade with integrated cooling structures. A conjugate calculation is performed to investigate the coolant flow characteristics, heat transfer, and thermal stress of the rotor blade under rotating and stationary conditions to understand the effects of rotation on the multidisciplinary design of the blade. Furthermore, the maximum resolved shear stress among the 30-slip systems and the corresponding dominant slip system are obtained
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!