Academic literature on the topic 'Rotor-Structure Coupling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rotor-Structure Coupling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rotor-Structure Coupling"

1

Cheng, Tai-Hong, and Il-Kwon Oh. "P-58 Static Deformation Analyses of Composite Rotor Blades Based On Fluid-Structure Coupling." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2007.6 (2007): _P—58–1_—_P—58–5_. http://dx.doi.org/10.1299/jsmeatem.2007.6._p-58-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ortun, Biel, Mark Potsdam, Hyeonsoo Yeo, and Khiem Van Truong. "Rotor Loads Prediction on the ONERA 7A Rotor Using Loose Fluid/Structure Coupling." Journal of the American Helicopter Society 62, no. 3 (2017): 1–13. http://dx.doi.org/10.4050/jahs.62.032005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Choy, F. K., J. Padovan, and Y. F. Ruan. "Coupling of Rotor-Gear-Casing Vibrations During Extreme Operating Events." Journal of Pressure Vessel Technology 114, no. 4 (1992): 464–71. http://dx.doi.org/10.1115/1.2929256.

Full text
Abstract:
During extreme operating environments (i.e., seismic events, base motion-induced vibrations, etc.), the coupled vibrations developed between the rotors, bearings, gears and enclosing structure of gear-driven rotating equipment can be quite substantial. Generally, such large vibrational amplitudes may lead to failures in both the rotor-gearing system and/or the casing structure. This paper simulates the dynamic behavior of rotor-bearing-gear system resulting from motion of the enclosed structure. The modal synthesis approach is used in this study to synthesize the dynamics of the rotor systems with the vibrations of their casing structure in modal coordinates. Modal characteristics of the rotor-bearing-gear systems are evaluated using the matrix transfer technique, while the modal parameters for the casing structure are developed through a finite element model using NASTRAN. The modal accelerations calculated are integrated through a numerical algorithm to generate modal transient vibration analysis. Vibration results are examined in both time and frequency domains to develop representations for the coupled dynamics generated during extreme operating conditions. Typical three-rotor bull gear-driven power plant equipment (compressors, pumps, etc.) is used as an example to demonstrate the procedure developed.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Hongxian, Liangpei Huang, Xuejun Li, et al. "Spectrum Analysis of a Coaxial Dual-Rotor System with Coupling Misalignment." Shock and Vibration 2020 (July 10, 2020): 1–19. http://dx.doi.org/10.1155/2020/5856341.

Full text
Abstract:
The finite element model of a dual-rotor system was established by Timoshenko beam element. The dual-rotor system is a coaxial rotor whose supporting structure is similar to that of an aero-engine rotor system. The inner rotor is supported by three bearings, which makes it a redundantly supported rotor. The outer rotor connects the inner rotor by an intershaft bearing. The spectrum characteristics of the dual-rotor system under unbalanced excitation and misalignment excitation were analysed in order to study the influence of coupling misalignment of the inner rotor on the spectral characteristics of the rotor system. The results indicate that the vibration caused by the misaligned coupling of the inner rotor will be transmitted to the outer rotor through the intershaft bearing. Multiple harmonic frequency components, mainly 1x and 2x, will be excited by the coupling misalignment. The amplitudes of all harmonic frequencies increase with the misalignment in both the inner and outer rotors. The vibration level of the outer rotor affected by the misalignment is lower than that of the inner rotor because it is far from the misaligned coupling. Harmonic resonance occurs when any harmonic frequencies of the misalignment response coincide with a natural frequency of the system. In order to verify the theoretical model, experiments are performed on a test rig. Both the experimental and simulation results are in good accordance with each other.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhao, Hai Xia, and Hui Guang Bian. "Fluid-Solid Coupling Analysis on the 2-Dimentional Flow Field of Internal Mixer." Advanced Materials Research 221 (March 2011): 592–97. http://dx.doi.org/10.4028/www.scientific.net/amr.221.592.

Full text
Abstract:
Two-dimensional flow field simulation of two-wing synchronous rotor and four-wing synchronous rotor mixer were studied and the simulation computation of the fluid-structure interaction in a real sense were realized with FEM software. It can be concluded that the synchronous four-wing rotor can produce the pressure area for mixing rubber better than the synchronous two-wing rotor under the same conditions, and therefore, refining capacity and efficiency of the synchronous four-wing rotor are bigger than that of the synchronous two-wing rotor.
APA, Harvard, Vancouver, ISO, and other styles
6

Ma, Xunxun, Shujia Li, Wangliang Tian, Xiqiang Qu, Shengze Wang, and Yongxing Wang. "Dynamic Behavior Analysis of the Winding Rotor with Structural Coupling and Time-Frequency Varying Parameters: Simulation and Measurement." Applied Sciences 11, no. 17 (2021): 8124. http://dx.doi.org/10.3390/app11178124.

Full text
Abstract:
To satisfy the requirements of high speed, large capacity and constant winding, a textile winding rotor needs to work in a wide rotation speed range and frequently pass through critical speed points. Thus, the winding rotor adopts the flexible long shaft coupling structure and flexible support with rubber O-rings. This kind of rotor has a multi-coupling structure and frequency-dependent parameters characteristics, especially representative and universal in the dynamic analysis method of the high-speed rotor. In this paper, an approach was proposed to investigate the dynamic behavior of the winding rotor considering the flexible coupling and frequency-dependent supporting parameters. Firstly, a dynamic model of the winding rotor was established by using a Timoshenko beam element. Its dynamic behaviors were simulated by considering the time-varying rotation speed and the frequency-dependent parameters of flexible support. Secondly, a non-contact measuring device was developed for measuring the vibration displacement of the winding rotor in three different speed-up times. Finally, based on simulation and measurement data, how flexible support parameters and the speed-up time affect the winding rotor passing through the critical speed point of the rotor smoothly is revealed. The methods and findings reported here can be used for theoretical and experimental vibration analysis of other types of high-speed flexible rotors.
APA, Harvard, Vancouver, ISO, and other styles
7

Peng, Guangjie, Zhuoran Zhang, and Ling Bai. "Wet Modal Analyses of Various Length Coaxial Sump Pump Rotors with Acoustic-Solid Coupling." Shock and Vibration 2021 (February 15, 2021): 1–9. http://dx.doi.org/10.1155/2021/8823150.

Full text
Abstract:
The dynamic characteristics of the rotor components were determined using a first-order modal model of the rotor components for various sump pump shaft lengths for actual working environments. By employing ANSYS-Workbench software, this paper uses a fluid-solid coupling analysis to calculate the reaction forces of the fluid on the rotor with results, which is then used in dry and wet modal analyses of the rotor parts to calculate the vibration modal characteristics with and without prestresses. The differences between the wet and dry modal characteristics were compared and investigated by ANSYS. The results show that increasing the sump pump shaft length reduces the first-order natural frequency of the prestressed rotor components. The structure also experiences stress stiffening, which is more obvious in the high-order modes. The natural frequency of the rotor in the wet mode is about 16% less than that in the dry mode for the various shaft lengths due to the added mass of the water on the surface which reduces the natural frequency. In the wet modal analysis, when the structure is in a different fluid medium, the influence of its modal distribution will also change, this is because the additional mass produced by the fluid medium of different density on the structure surface is different. Thus, the wet modal analysis of the rotor is important for more accurate dynamic analyses.
APA, Harvard, Vancouver, ISO, and other styles
8

Wen, Sheng-Ping, Pei-Feng Hong, and Pei-Hui Huang. "Multizone barrel temperature control of the eccentric rotor extrusion process." Journal of Polymer Engineering 40, no. 3 (2020): 247–55. http://dx.doi.org/10.1515/polyeng-2019-0315.

Full text
Abstract:
AbstractThe eccentric rotor extruder is a new kind of extrusion equipment with novel structure and outstanding engineering performance. As the structure of the eccentric rotor extruder is different from that of the traditional screw extruder, the control of the barrel temperature becomes important, including avoiding the influence of heating coupling and achieving high control accuracy. A neuron proportional-integral-derivative (neuron-PID) control algorithm of barrel temperature for the eccentric rotor extruder is introduced. The neural self-learning algorithm is able to tune PID parameters online, and the particle swarm optimization (PSO) algorithm is adopted to optimize the initial weight coefficients of the neuron. The experimental results show that the PSO-neuron-PID controller has the advantages of low overshoot and high control accuracy, and the influence of heat coupling can be counteracted effectively.
APA, Harvard, Vancouver, ISO, and other styles
9

CHEN, LONG, YIZHAO WU, and JIAN XIA. "AEROELASTIC ANALYSIS OF ROTOR BLADES USING CFD/CSD COUPLING IN HOVER MODE." Modern Physics Letters B 24, no. 13 (2010): 1307–10. http://dx.doi.org/10.1142/s0217984910023499.

Full text
Abstract:
A computational fluid dynamics (CFD) is coupled with a computational structural dynamics (CSD) to simulate the unsteady rotor flow with aeroelasticity effects. An unstructured upwind Navier-Stokes solver was developed for this simulation, with 2nd order time-accurate dual-time stepping method for temporal discretization and low Mach number preconditioning method. For turbulent flows, both the Spalart-Allmaras and Menter's SST model are available. Mesh deformation is achieved through a fast dynamic grid method called Delaunay graph map method for unsteady flow simulation. The rotor blades are modeled as Hodges & Dowell's nonlinear beams coupled flap-lag-torsion. The rotorcraft computational structural dynamics code employs the 15-dof beam finite element formulation for modeling. The structure code was validated by comparing the natural frequencies of a rotor model with UMARC. The flow and structure codes are coupled tightly with information exchange several times at every time step. A rotor blade model's unsteady flow field in the hover mode is simulated using the coupling method. Effect of blade elasticity with aerodynamic loads was compared with rigid blade.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Zheng Yang, Yuan Zheng, and Xin Zhang. "Modal Analysis Based on Fluid-Structure Interaction of Axial Flow Rotor." Applied Mechanics and Materials 799-800 (October 2015): 565–69. http://dx.doi.org/10.4028/www.scientific.net/amm.799-800.565.

Full text
Abstract:
In order to study the impact of prestress and aqueous medium for axial pump flow rotor modal ,in this paper, with a axial flow model test of North Water Diversion Project, the flow of aqueous medium modal distribution of axial flow rotary mechanism was calculated through the coupling APDL command stream in ANSYS WORKBENCH with the basic idea of Fluid-structure interaction,and axial flow changes of impeller modal in aqueous medium and in the air was compared under prestressed case; the load of prestressed modal of the rotation for the entire organization was calculated through the one-way coupling method . The results show that the water medium has a significant decreases to the natural frequency of the impeller, while the impact of the prestress for modal is not obvious.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Rotor-Structure Coupling"

1

Rouchon, Thibaut. "Contribution à la modélisation des couplages aéroélastiques rotor-structure en application à l'hélicoptère." Thesis, Paris, ENSAM, 2015. http://www.theses.fr/2015ENAM0047.

Full text
Abstract:
L’introduction de fuselages et de pales de plus en plus légers durant le développement des nouveaux hélicoptères, combinée à une puissance disponible augmentée peut donner lieu à des couplages rotor/structure d’un nouveau genre. Ces instabilités complexes apparaissent à des fréquences plus élevées que les couplages connus et étudiés tels que les résonances sol et air, et impliquent des modes de pale souple, des modes de structure, et des phénomènes aérodynamiques. Des codes de calcul multi-corps aéromécaniques tels que HOST sont capables de déterminer la stabilité de l’hélicoptère, mais sont difficilement modifiables et manipulables. Des modèles analytiques existent également pour les instabilités maîtrisées citées précédemment, mais n’ont pas les capacités de modélisation nécessaires à la prédiction de ces couplages haute fréquence. Ce travail de thèse se concentre sur le développement d’un modèle semi-analytique, capable de prédire la stabilité de l’hélicoptère vis-à-vis de ces phénomènes. Cette approche est différente de l’approche multi-corps et a un double avantage car elle permet des études paramétriques rapides et une analyse terme à terme des équations de la dynamique de l’hélicoptère. Ce modèle a été validé à l’aide de HOST et le mécanisme de l'instabilité a été détaillé. Enfin, l’influence des paramètres de rotor, de structure, et de vol a été évaluée et les considérations architecturales pour éviter l'apparition de tels phénomènes sont présentées<br>The introduction of lightweight fuselages and blades during new developments, combined with an increased available power, may lead to the triggering of a new kind of rotor/structure coupling. These complex instabilities appear at higher frequencies than known and studied couplings, such as ground and air resonance, and involve elastic blade modes, structure modes, and aerodynamic phenomena. Comprehensive analysis codes, like HOST, are able to determine the helicopter stability but can hardly be tweaked and handled. Rotor/structure coupling analytical models also exist for ground and air resonance, but do not have the modeling capabilities required to predict these high frequency couplings. This research work focuses on the development of a semi-analytical model, able to predict the helicopter stability with respect to these phenomena. This approach has a two-fold advantage since fast parametric studies can be carried out and a term-by-term analysis of the helicopter stability equations can be performed. This model has been validated with HOST and the triggering mechanism has been detailed. Finally, the influence of rotor, structure, and flight parameters has been evaluated and architectural considerations to avoid the appearance of such couplings are presented
APA, Harvard, Vancouver, ISO, and other styles
2

Katsanis, George R. Mr. "Transient Small Wind Turbine Tower Structural Analysis with Coupled Rotor Dynamic Interaction." DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/960.

Full text
Abstract:
Structural dynamics is at the center of wind turbine tower design - excessive vibrations can be caused by a wide range of environmental and mechanical sources and can lead to reduced component life due to fatigue, noise, and impaired public perception of system integrity. Furthermore, periodic turbulent wind conditions can cause system resonance resulting in significantly increased structural loads. Structural vibration issues may become exacerbated in small wind applications where the analytical and experimental resources for system verification and optimization are scarce. This study combines several structural analysis techniques and packages them into a novel and integrated form that can be readily used by the small wind community/designer to gain insight into tower/rotor dynamic interaction, system modal characteristics, and to optimize the design for reduced tower loads and cost. The finite element method is used to model the tower structure and can accommodate various configurations including fixed monopole towers, guy-wire supported towers, and gin-pole and strut supported towers. The turbine rotor is modeled using the Equivalent Hinge-Offset blade model and coupled to the tower structure through the use of Lagrange’s Equations. Standard IEC Aeroelastic load cases are evaluated and transient solutions developed using the Modal Superposition Method and Runge-Kutta 4th order numerical integration. Validation is performed through comparisons to theoretical closed form solutions, physical laboratory test results, and peer studies. Finally a case study is performed by using the tool to simulate the Cal Poly Wind Power Research Center Wind Turbine and Tower System. Included in the case study is an optimization for hypothetical guy-wire placement to minimize tower stresses and maximize the tower’s natural frequency.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Rotor-Structure Coupling"

1

Stanger, Christian, Martin Hollands, Manuel Keßler, and Ewald Krämer. "Adaptation of the Dynamic Rotor Blade Modelling in CAMRAD for Fluid-Structure Coupling Within a Blade Design Process." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03158-3_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Rotor/Structure Coupling: Examples of Ground Resonance and Air Resonance." In Mechanical Instability. John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118600849.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Rotor-Structure Coupling"

1

Yang, Hui, and Yun Zheng. "A Fluid-Structure Coupling Method for Rotor Blade Unrunning Design." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-94653.

Full text
Abstract:
This paper reports a numerical method for the design of a unrunning blade with the consideration of both nonlinear aerodynamic and centrifugal forces. Accurate prediction of blade manufacture shape in turbomachinery is crucial for performance, efficiency and aeroelastic stability. An iterative procedure starting from a given blade running shape is developed to predict the manufacture blade shape. The model is based on a three-dimensional (3D) unsteady nonlinear Navier-Stokes Computational Fluid Dynamics (CFD) solver and the mode superposition structural dynamic theory in conjunction with a finite element structural model for the rotor blade. The manufacture profile of the blade (“Cold” blade) is estimated from the running blade shape (“Hot” blade). ANSYS finite element code is used to compute the deflection of the cold blade due to centrifugal loads. A finite volume based 3D nonlinear CFD code, coupled with a mode superposition structural dynamic modal method, is employed to determine the blade deflection due to unsteady aerodynamic loading. The difference between the computed blade profile and the targeted hot blade shape is used to predict a new cold blade for the next iteration if the convergence criterion is not met. The method is applied to predict the manufacture blade shape of a large-scale propfan and a NASA rotor 67 fan. The predicted blade profile and the twist angle of the blade at various spans are presented. The results show that improvements of the manufacture blade profile can be made by including proper nonlinear aerodynamic effect on the blade deflection in the numerical model. The results also illustrate that aerodynamic nonlinear effects on structural deformation should be included for a better cold blade design.
APA, Harvard, Vancouver, ISO, and other styles
2

Castorrini, A., V. F. Barnabei, A. Corsini, and F. Rispoli. "Strongly Coupled Fluid-Structure Interaction Simulation of a 3D Printed Fan Rotor." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91296.

Full text
Abstract:
Abstract Additive manufacturing represents a new frontier in the design and production of rotor machines. This technology drives the engineering research framework to new possibilities of design and testing of new prototypes, reducing costs and time. On the other hand, the fast additive manufacturing implies the use of plastic and light materials (as PLA or ABS), often including a certain level of anisotropy due to the layered deposition. These two aspects are critical, because the aero-elastic coupling and flow induced vibrations are not negligible for high aspect ratio rotors. In this work, we investigate the aeroelastic response of a small sample fan blade, printed using PLA material. Scope of the work is to study both the structure and flow field dynamics, where strong coupling is considered on the simulation. We test the blade in two operating points, to see the aero-mechanical dynamics of the system in stall and normal operating condition. The computational fluid-structure interaction (FSI) technique is applied to simulate the coupled dynamics. The FSI solver is developed on the base of the finite element stabilized formulations proposed by Tezduyar et al. We use the ALE formulation of RBVMS-SUPS equations for the aerodynamics, the non-linear elasticity is solved with the Updated Lagrangian formulation of the equations of motion for the elastic solid. The strong coupling is made with a block-iterative algorithm, including the Jacobian based stiffness method for the mesh motion.
APA, Harvard, Vancouver, ISO, and other styles
3

Dai, Zezeng, Jianping Jing, Changmin Chen, and Jiqing Cong. "Extensive Experimental Study on the Stability of Rotor System With Spline Coupling." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-76262.

Full text
Abstract:
Spline couplings which have simple structure, high reliability and can compensate torque transmission error are widely used in rotating machineries, such as aeroengine and gasturbine, etc. Recent efforts show that it is potential to make the rotor system losing its stability. Nevertheless, the experimental study of rotor system with spline coupling is rare and inadequate. This indicates a need to study the factors that affect the stability of rotor system with spline coupling experimentally. In this paper, a specially designed spline connection rotor test rig has been built and used to simulate a multi rotor system of turboshaft engine. The experimental instability characteristics of spline connected rotor system are presented. The instability speed and critical speed under different conditions such as lubrication conditions, external damping, load torque, spline tooth error and fit type of internal and external spline are measured. Based on the above-mentioned results, the effect rules of the influence factors on spline connected rotor system stability are studied. Results show that lubrication can effectively weaken the vibration of the system. The increased external damping makes the stability better when the spline coupling is unlubricated. With the increasing of load, the subharmonic vibration decreases after the system loses its stability, the system stability becomes better. The stability of spline coupled system with larger tooth error is better than that with normal one. Normal fit-up spline coupling improves the system stability under the conditions of lubrication and small external damping. This study may be helpful to get the favorable parameter setting of spline connected rotor system for avoiding instability and reducing vibration.
APA, Harvard, Vancouver, ISO, and other styles
4

Huitenga, H., T. Formanski, N. K. Mitra, and M. Fiebig. "3D Flow Structures and Operating Characteristic of an Industrial Fluid Coupling." In ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/95-gt-052.

Full text
Abstract:
A liquid circulating between an input rotor and an output rotor transmits power in a fluid coupling. Insight into the flow field is required to influence the transmission behaviour. Parameter studies of model geometries of fluid couplings were presented previously. Laminar and turbulent flow fields and characteristic curves of an actual industrial fluid coupling have been computed from the numerical solution of the three-dimensional, nonsteady Navier-Stokes equations on a body fitted rotating coordinate system. Results show the complex flow structure and vortices that determine the transported angular momentum. Comparison with measured torque suggests that the turbulence modeling by standard k-ϵ model may be inadequate at large slip.
APA, Harvard, Vancouver, ISO, and other styles
5

Ma, Yanhong, Chenglong Shi, Bo Sun, and Jie Hong. "Method of Coupled Vibration Control for Dual Rotor System With Inter-Shaft Bearing." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-60162.

Full text
Abstract:
Abstract Structural layout scheme of dual rotor system with inter-shaft bearing plays an important role in reducing the bearing frame and structure weight of areo-engine. This kind of scheme is often used in the design of high thrust-weight ratio turbofan engine. However, the inter-shaft bearing will cause the direct interaction of the force and displacement between the high and low pressure rotor systems, contributing to the coupling of the dynamic characteristics of two rotor systems. The coupling may eventually lead to the failure of the rotor displacement control, loss of the robustness of the connection structure or excessive dynamic load of the bearing. The main purpose of this paper is to, firstly study and quantitatively evaluate the coupling characteristics of the dual rotor system, secondly obtain the correlation between the structural feature parameters such as the position of the inter-shaft bearing and the coupling vibration or interactive excitation characteristics of the system, finally propose the coupling vibration control method of dual rotor system. The dynamic model of dual rotor system with inter-shaft bearing is established. The modal frequencies and modes of dual rotor system with or without coupling are analyzed and compared. The results illustrate the complexity of coupled vibration of high pressure and low pressure rotors. Then modal coupling characteristics evaluation parameter of dual rotor system based on energy distribution relationship is proposed. Using the coupling factor defined, the correlation between the inter-shaft bearing support feature and the modal coupling characteristics is discussed. The results show that, placing the inter-shaft bearing near the mass center of low pressure turbine can effectively restrain the mode coupling, meanwhile the proportion of bearing strain energy can also reflect the mode coupling characteristics of dual rotor system to a certain extent. Then a method of controlling the response coupled vibration of dual rotor system with inter-shaft bearing, based on the principle of mode superposition, is proposed. An example verifies the method can control the response coupling vibration of dual rotor system in wide speed range and under complex excitation conditions.
APA, Harvard, Vancouver, ISO, and other styles
6

Karlsson, B. Agne, C. Pontus Bergström, and J. Thomas F. Domeij. "Rotor Dynamic Response at Blade Loss." In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-201.

Full text
Abstract:
This paper shows the influence of the method of modelling the support structure, i.e. the casings, support struts and skid, on the rotor dynamics and forced response in a gas turbine structure. Numerical examples, based on the conceptual design of GTX100 in the simple cycle configuration, are given for the blade loss case. The standard method of analysing the rotor dynamics of a stationary gas- or steam-turbine rotor train, with hydrodynamic bearings, is based on beam theory. The bearings are modelled as a system of linear springs and dampers and are in some cases modelled as if there is no cross-coupling between the bearings. The support structure is normally based on a simple FE-analysis. This method is normally sufficient for the analysis of rotor dynamics characteristics at normal running if the stiffness of the bearings are much lower than the stiffness of the support structure. In analysing the case of blade loss, the dynamic characteristics of the casing and the support structure have a much stronger influence on the rotor dynamics and the forced response in the structure. At the high unbalance forces present at a blade loss, the stiffness of the bearings will be of the same magnitude as that of the structure. Results are given and discussed for the analysis of the rotor dynamic response based on coupled 3D-FE models, and on beam theory with the dynamic characteristics of the support structure described by various FE models.
APA, Harvard, Vancouver, ISO, and other styles
7

Castorrini, A., A. Corsini, A. G. Sheard, F. Rispoli, and M. Lamperini. "Fluid-Structure Interaction Study of Large and Light Axial Fan Blade." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64644.

Full text
Abstract:
Numerical simulation tools are acquiring a crucial role in the virtual prototyping of new fan rotor blades. This, considering also the possibility in using new advanced materials, is opening the design capability to blades of longer, lighter and more slender structure. On this perspective, the numerical tools must be improved in order to catch also the non-linear and coupling phenomena which were been treated until now using a weak coupling approach. Here we present a fluid-structure interaction solver based on the finite element method, through its application to an existing fan blade. The study will show how, even in case of metal structure with little deformation, the coupling between fluid dynamics and structure dynamics can produce effects on both the fluid and the solid involved in the machine main process. The possibility to simulate directly both the aerodynamic and the effective structure response opens the way to improved design capabilities, avoiding time waste and costs due to long experimental testing campaign and over-dimensioned structures.
APA, Harvard, Vancouver, ISO, and other styles
8

Debrabandere, F., B. Tartinville, Ch Hirsch, and G. Coussement. "Fluid-Structure Interaction Using a Modal Approach." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45692.

Full text
Abstract:
A new method for Fluid-Structure Interaction (FSI) predictions is here introduced, based on a Reduced-Order Model (ROM) for the structure, described by its mode shapes and natural frequencies. A linear structure is assumed as well as Rayleigh damping. A two-way coupling between the fluid and the structure is ensured by a loosely-coupling staggered approach: the aerodynamic loads computed by the flow solver are used to determine the deformations from the modal equations, which are sent back to the flow solver. The method is firstly applied to a clamped beam oscillating under the effect of von Karman vortices. The results are compared to a full-order model. Then a flutter application is considered on the AGARD wing 445.6. Finally, the modal approach is applied to the aeroelastic behavior of an axial compressor stage. The influence of passing rotor blade wakes on the downstream stator blades is investigated.
APA, Harvard, Vancouver, ISO, and other styles
9

Lück, Hannes, Michael Schäfer, and Heinz-Peter Schiffer. "Simulation of Thermal Fluid-Structure Interaction in Blade-Disc Configuration of an Aircraft Turbine Model." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-26316.

Full text
Abstract:
This paper describes the impact of structural deformations on interstage cavity flow dynamics by adopting thermal fluid-structure interaction methods. These coupled numerical approaches solve the fluid-solid heat transfer in conjunction with the geometrical deformation due to mismatched centrifugal and thermal expansion of rotating and stationary turbine discs. Especially the changing clearances at the interstage labyrinth seal, at the rotor blade tips and at the rotor stator rim seals can be captured to calculate the correct flow physics at these locations. A manual explicit coupling approach in ANSYS is utilized that couples the CFX CHT solver with the FE solver Mechanical. The validation of a 3D sector model with experimental data shows improvements in predicting the metal temperature of the rotating walls but also disclose problems with the overheated stationary parts, mainly due to the utilization of steady state mixing planes. Additionally, a surrogate 2D model of the 3D model is introduced to compare the explicit coupling approach with an implicit approach exploiting the ANSYS MFX interface between the fluid and the solid domain. Thereby, the manual coupling approach reveals to be much more efficient for the examined thermal fluid-structure interaction.
APA, Harvard, Vancouver, ISO, and other styles
10

Settipalli, Manoj, Rahul Chandran, Venkatarao Ganji, and Theodore Brockett. "Imbalance Response of Nonlinear Rotor-SFD Dynamic Systems With Structure Modelled As FRFs Using Harmonic Balance Method." In ASME 2017 Gas Turbine India Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gtindia2017-4749.

Full text
Abstract:
Squeeze-film-dampers (SFDs) used to couple rotor dynamic systems to linear static structures, such as those in aircraft engines and turbochargers, are often approximated as linear connections in dynamic simulations. Linearized stiffness and damping coefficients of the SFDs can be reasonably estimated for circular centered orbits. Selection of linearized properties for the SFD is challenged under more general whirling conditions, such as those occurring in non-centered dampers with steady gravity loading. In this paper, an efficient method for coupling the rotor system to a static structure modeled as frequency-response-functions (FRFs) through nonlinear SFDs is illustrated. The harmonic balance method (HBM) with arc length continuation technique is employed in the frequency domain to obtain the system periodic response. Degrees-of-freedom participating in the non-linear SFD model, when separated from the remaining linear degrees-of-freedom, are expanded in terms of Fourier coefficients. The algorithm allows the Fourier coefficients approximating the nonlinearity to be iteratively determined at each frequency of interest. The approach has a tremendous time advantage over a traditional nonlinear transient analysis. The method can be used to efficiently predict vibration response on the engine static structure to typical imbalance on the rotors to assess the risk of meeting the low vibration requirements typical of new designs. The prediction includes the primary driving frequencies and their harmonics in the vibration estimate. A flexible rotor system connected to structure through an SFD is used to demonstrate the approach and discuss the impact of results.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography