Journal articles on the topic 'Roughness prediction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Roughness prediction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Saleh, A., D. W. Fryrear, and J. D. Bilbro. "AERODYNAMIC ROUGHNESS PREDICTION FROM SOIL SURFACE ROUGHNESS MEASUREMENT." Soil Science 162, no. 3 (1997): 205–10. http://dx.doi.org/10.1097/00010694-199703000-00006.
Full textCai, Xiao Jiang, Z. Q. Liu, Q. C. Wang, Shu Han, Qing Long An, and Ming Chen. "Surface Roughness Prediction in Turning of Free Machining Steel 1215 by Artificial Neural Network." Advanced Materials Research 188 (March 2011): 535–41. http://dx.doi.org/10.4028/www.scientific.net/amr.188.535.
Full textAlajmi, Mahdi S., and Abdullah M. Almeshal. "Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method." Materials 13, no. 13 (2020): 2986. http://dx.doi.org/10.3390/ma13132986.
Full textNalbant, Muammer, Hasan Gokkaya, and İhsan Toktaş. "Comparison of Regression and Artificial Neural Network Models for Surface Roughness Prediction with the Cutting Parameters in CNC Turning." Modelling and Simulation in Engineering 2007 (2007): 1–14. http://dx.doi.org/10.1155/2007/92717.
Full textZhang, Qi, Yuechao Pei, Yixin Shen, Xiaojun Wang, Jingqi Lai, and Maohui Wang. "A New Perspective on Predicting Roughness of Discontinuity from Fractal Dimension D of Outcrops." Fractal and Fractional 7, no. 7 (2023): 496. http://dx.doi.org/10.3390/fractalfract7070496.
Full textZeng, Shi, and Dechang Pi. "Milling Surface Roughness Prediction Based on Physics-Informed Machine Learning." Sensors 23, no. 10 (2023): 4969. http://dx.doi.org/10.3390/s23104969.
Full textAlam, S., A. K. M. Nurul Amin, Anayet Ullah Patwari, and Mohamed Konneh. "Prediction and Investigation of Surface Response in High Speed End Milling of Ti-6Al-4V and Optimization by Genetic Algorithm." Advanced Materials Research 83-86 (December 2009): 1009–15. http://dx.doi.org/10.4028/www.scientific.net/amr.83-86.1009.
Full textNg, J. J., Z. W. Zhong, and T. I. Liu. "Prediction of Roughness Heights of Milled Surfaces for Product Quality Prediction and Tool Condition Monitoring." Journal of Materials and Applications 8, no. 2 (2019): 97–104. http://dx.doi.org/10.32732/jma.2019.8.2.97.
Full textSun, Hao, Chaochao Zhang, Yikai Li, Tingting Yin, Hanming Zhang, and Jin Pu. "Study on prediction model of surface roughness of SiCp/Al composites based on Neural Network." Journal of Physics: Conference Series 2174, no. 1 (2022): 012091. http://dx.doi.org/10.1088/1742-6596/2174/1/012091.
Full textMirifar, Siamak, Mohammadali Kadivar, and Bahman Azarhoushang. "First Steps through Intelligent Grinding Using Machine Learning via Integrated Acoustic Emission Sensors." Journal of Manufacturing and Materials Processing 4, no. 2 (2020): 35. http://dx.doi.org/10.3390/jmmp4020035.
Full textSukkam, Chaiyakron, and Seksan Chaijit. "A Surface Roughness Prediction Model for SKT4 Steel Milling." Engineering, Technology & Applied Science Research 14, no. 4 (2024): 15499–504. http://dx.doi.org/10.48084/etasr.7612.
Full textDing, Ning, Chang Long Zhao, Xi Chun Luo, Qing Hua Li, and Yao Chen Shi. "An Intelligent Prediction of Surface Roughness on Precision Grinding." Solid State Phenomena 261 (August 2017): 221–25. http://dx.doi.org/10.4028/www.scientific.net/ssp.261.221.
Full textLu, Xiaohong, Xiaochen Hu, Hua Wang, Likun Si, Yongyun Liu, and Lusi Gao. "Research on the prediction model of micro-milling surface roughness of Inconel718 based on SVM." Industrial Lubrication and Tribology 68, no. 2 (2016): 206–11. http://dx.doi.org/10.1108/ilt-06-2015-0079.
Full textMolinero-Pérez, Noelia, Laura Montalbán-Domingo, Amalia Sanz-Benlloch, and Tatiana García-Segura. "Dual Model for International Roughness Index Classification and Prediction." Infrastructures 10, no. 1 (2025): 23. https://doi.org/10.3390/infrastructures10010023.
Full textLee, Hyeon-Uk, Chang-Jae Chun, and Jae-Mo Kang. "Causality-Driven Efficient Feature Selection for Deep-Learning-Based Surface Roughness Prediction in Milling Machines." Mathematics 11, no. 22 (2023): 4682. http://dx.doi.org/10.3390/math11224682.
Full textNajm, Sherwan Mohammed, and Imre Paniti. "Predict the Effects of Forming Tool Characteristics on Surface Roughness of Aluminum Foil Components Formed by SPIF Using ANN and SVR." International Journal of Precision Engineering and Manufacturing 22, no. 1 (2020): 13–26. http://dx.doi.org/10.1007/s12541-020-00434-5.
Full textGao, Shang, Haoxiang Wang, Han Huang, Zhigang Dong, and Renke Kang. "Predictive models for the surface roughness and subsurface damage depth of semiconductor materials in precision grinding." International Journal of Extreme Manufacturing 7, no. 3 (2025): 035103. https://doi.org/10.1088/2631-7990/adae67.
Full textChen, Yuan Ling, Bao Lei Zhang, Wei Ren Long, and Hua Xu. "Research on Surface Roughness Prediction Model for High-Speed Milling Inclined Plane of Hardened Steel." Advanced Materials Research 97-101 (March 2010): 2044–48. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.2044.
Full textZhang, Qing, Song Zhang, Jia Man, and Bin Zhao. "Effect Analysis and ANN Prediction of Surface Roughness in End Milling AISI H13 Steel." Materials Science Forum 800-801 (July 2014): 590–95. http://dx.doi.org/10.4028/www.scientific.net/msf.800-801.590.
Full textKim, Dong Woo, Young Jae Shin, Kyoung Taik Park, Eung Sug Lee, Jong Hyun Lee, and Myeong Woo Cho. "Prediction of Surface Roughness in High Speed Milling Process Using the Artificial Neural Networks." Key Engineering Materials 364-366 (December 2007): 713–18. http://dx.doi.org/10.4028/www.scientific.net/kem.364-366.713.
Full textHerwan, Jonny, Seisuke Kano, Oleg Ryabov, Hiroyuki Sawada, Nagayoshi Kasashima, and Takashi Misaka. "Predicting Surface Roughness of Dry Cut Grey Cast Iron Based on Cutting Parameters and Vibration Signals from Different Sensor Positions in CNC Turning." International Journal of Automation Technology 14, no. 2 (2020): 217–28. http://dx.doi.org/10.20965/ijat.2020.p0217.
Full textLi, Guo, Zheng Liangrui, and Feng Lang. "Intelligent prediction of surface roughness of PSZ ceramic grinding based on correlation analysis and CNN-BiLSTM neural network." Scientific Insights and Discoveries Review 4 (October 14, 2024): 313–22. http://dx.doi.org/10.59782/sidr.v4i1.154.
Full textZhang, Ming, X. Q. Yang, and Bo Zhao. "On-Line Prediction Model of Ultrasonic Polishing Surface Roughness." Key Engineering Materials 455 (December 2010): 539–43. http://dx.doi.org/10.4028/www.scientific.net/kem.455.539.
Full textShi, Chaoyu, Bohao Chen, Yao Shi, and Jun Zha. "Surface Roughness Prediction of Bearing Ring Precision Grinding Based on Feature Extraction." Applied Sciences 15, no. 11 (2025): 6027. https://doi.org/10.3390/app15116027.
Full textHu, Zewen, Tao Wang, Hongcai Chen, Kanjian Zhang, and Haikun Wei. "Improved prediction of surface roughness in grinding process: a cascade of theoretical model and regularized extreme learning machine." Journal of Instrumentation 20, no. 06 (2025): P06008. https://doi.org/10.1088/1748-0221/20/06/p06008.
Full textLi, Qinghua, Chunlu Ma, Chunyu Wang, Zhengxi Lu, and Shihong Zhang. "Application of Combined Prediction Model in Surface Roughness Prediction." Journal of Nanoelectronics and Optoelectronics 17, no. 11 (2022): 1511–16. http://dx.doi.org/10.1166/jno.2022.3335.
Full textHweju, Zvikomborero, Fundiswa Kopi, and Khaled Abou-El-Hossein. "Statistical evaluation of PMMA surface roughness." Journal of Physics: Conference Series 2313, no. 1 (2022): 012030. http://dx.doi.org/10.1088/1742-6596/2313/1/012030.
Full textZhang, Yan, Yashuang Zhang, Liaoyuan Zhang, Wenhui Li, Xiuhong Li, and Kun Shan. "The Development and Experimental Validation of a Surface Roughness Prediction Model for the Vertical Vibratory Finishing of Blisks." Coatings 15, no. 6 (2025): 634. https://doi.org/10.3390/coatings15060634.
Full textLiu, Xubao, Yuhang Pan, Ying Yan, Yonghao Wang, and Ping Zhou. "Adaptive BP Network Prediction Method for Ground Surface Roughness with High-Dimensional Parameters." Mathematics 10, no. 15 (2022): 2788. http://dx.doi.org/10.3390/math10152788.
Full textLing, Le, Xuejian Zhang, Xiaobing Hu, et al. "Research on Spraying Quality Prediction Algorithm for Automated Robot Spraying Based on KHPO-ELM Neural Network." Machines 12, no. 2 (2024): 100. http://dx.doi.org/10.3390/machines12020100.
Full textHu, Jin Ping, Yan Li, and Jing Chong Zhang. "Surface Roughness Prediction of High Speed Milling Based on Back Propagation Artificial Neural Network." Advanced Materials Research 201-203 (February 2011): 696–99. http://dx.doi.org/10.4028/www.scientific.net/amr.201-203.696.
Full textZhang, Wenhe. "Surface Roughness Prediction with Machine Learning." Journal of Physics: Conference Series 1856, no. 1 (2021): 012040. http://dx.doi.org/10.1088/1742-6596/1856/1/012040.
Full textAhmed, Siddig E., and Mohammed B. Saad. "Prediction of Natural Channel Hydraulic Roughness." Journal of Irrigation and Drainage Engineering 118, no. 4 (1992): 632–39. http://dx.doi.org/10.1061/(asce)0733-9437(1992)118:4(632).
Full textDenkena, B., A. Abrão, A. Krödel, and K. Meyer. "Analytic roughness prediction by deep rolling." Production Engineering 14, no. 3 (2020): 345–54. http://dx.doi.org/10.1007/s11740-020-00961-0.
Full textUkar, E., A. Lamikiz, S. Martínez, I. Tabernero, and L. N. López de Lacalle. "Roughness prediction on laser polished surfaces." Journal of Materials Processing Technology 212, no. 6 (2012): 1305–13. http://dx.doi.org/10.1016/j.jmatprotec.2012.01.007.
Full textSakamoto, Ryo, Ryutaro Tanaka, Isaí Espinoza Torres, Israel Martínez Ramírez, Katsuhiko Sekiya, and Keiji Yamada. "Prediction of Surface Roughness Components in Turning with Single Point Tool—Measurement of Tool Edge Contour and Prediction of its Position During Cutting—." International Journal of Automation Technology 18, no. 3 (2024): 382–89. http://dx.doi.org/10.20965/ijat.2024.p0382.
Full textDing, Ning, Long Shan Wang, and Guang Fu Li. "Study of Intelligent Prediction Control of Surface Roughness in Grinding." Key Engineering Materials 329 (January 2007): 93–98. http://dx.doi.org/10.4028/www.scientific.net/kem.329.93.
Full textCheng, Rong Kai, Yun Huang, and Yao Huang. "Experimental Research on the Predictive Model for Surface Roughness of Titanium Alloy in Abrasive Belt Grinding." Advanced Materials Research 716 (July 2013): 443–48. http://dx.doi.org/10.4028/www.scientific.net/amr.716.443.
Full textWang, Jing He, Shen Dong, H. X. Wang, Ming Jun Chen, Wen Jun Zong, and L. J. Zhang. "Forecasting of Surface Roughness and Cutting Force in Single Point Diamond Turning for KDP Crystal." Key Engineering Materials 339 (May 2007): 78–83. http://dx.doi.org/10.4028/www.scientific.net/kem.339.78.
Full textLin, Wan-Ju, Shih-Hsuan Lo, Hong-Tsu Young, and Che-Lun Hung. "Evaluation of Deep Learning Neural Networks for Surface Roughness Prediction Using Vibration Signal Analysis." Applied Sciences 9, no. 7 (2019): 1462. http://dx.doi.org/10.3390/app9071462.
Full textWu, Tian-Yau, and Chi-Chen Lin. "Optimization of Machining Parameters in Milling Process of Inconel 718 under Surface Roughness Constraints." Applied Sciences 11, no. 5 (2021): 2137. http://dx.doi.org/10.3390/app11052137.
Full textVencovský, Václav. "Roughness Prediction Based on a Model of Cochlear Hydrodynamics." Archives of Acoustics 41, no. 2 (2016): 189–201. http://dx.doi.org/10.1515/aoa-2016-0019.
Full textGuo, Xiong Hua, Mao Fu Liu, and Chang Rong Zhao. "Surface Roughness Prediction in Precision Surface Grinding of Nano-Ceramic Coating Based on Improved ANFIS." Applied Mechanics and Materials 44-47 (December 2010): 2293–98. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.2293.
Full textYU, J., Y. NAMBA, and M. SHIOKAWA. "FRACTAL ROUGHNESS CHARACTERIZATION OF SUPER-GROUND Mn-Zn FERRITE SINGLE CRYSTALS." Fractals 04, no. 02 (1996): 205–11. http://dx.doi.org/10.1142/s0218348x96000285.
Full textLi, Shilong, Xiaolei Yang, and Yu Lv. "Predictive capability of the logarithmic law for roughness-modeled large-eddy simulation of turbulent channel flows with rough walls." Physics of Fluids 34, no. 8 (2022): 085112. http://dx.doi.org/10.1063/5.0098611.
Full textHuiping, Zhang, Zhang Hongxia, and Lai Yinan. "Surface Roughness and Residual Stresses of High Speed Turning 300 M Ultrahigh Strength Steel." Advances in Mechanical Engineering 6 (January 1, 2014): 859207. http://dx.doi.org/10.1155/2014/859207.
Full textWang, Yahui, Yiwei Wang, Lianyu Zheng, and Jian Zhou. "Online Surface Roughness Prediction for Assembly Interfaces of Vertical Tail Integrating Tool Wear under Variable Cutting Parameters." Sensors 22, no. 5 (2022): 1991. http://dx.doi.org/10.3390/s22051991.
Full textVidakis, Nectarios, Markos Petousis, Nikolaos Vaxevanidis, and John Kechagias. "Surface Roughness Investigation of Poly-Jet 3D Printing." Mathematics 8, no. 10 (2020): 1758. http://dx.doi.org/10.3390/math8101758.
Full textTangjitsitcharoen, Somkiat, and Angsumalin Senjuntichai. "Intelligent Monitoring and Prediction of Surface Roughness in Ball-End Milling Process." Applied Mechanics and Materials 121-126 (October 2011): 2059–63. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.2059.
Full textCui, Pengcheng, Zhanqiang Liu, Xinglin Yao, and Yukui Cai. "Effect of Ball Burnishing Pressure on Surface Roughness by Low Plasticity Burnishing Inconel 718 Pre-Turned Surface." Materials 15, no. 22 (2022): 8067. http://dx.doi.org/10.3390/ma15228067.
Full text