Academic literature on the topic 'RPA [Approximation phase aléatoire]'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'RPA [Approximation phase aléatoire].'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "RPA [Approximation phase aléatoire]"
FETTER, A. L., C. B. HANNA, and R. B. LAUGHLIN. "ANYONS AND SUPERCONDUCTIVITY: RANDOM PHASE APPROXIMATION." International Journal of Modern Physics B 05, no. 16n17 (October 1991): 2751–90. http://dx.doi.org/10.1142/s0217979291001097.
Full textKHVESHCHENKO, D. V., and IAN I. KOGAN. "ANYON SUPERCONDUCTIVITY BEYOND THE RANDOM PHASE APPROXIMATION." International Journal of Modern Physics B 05, no. 14 (August 20, 1991): 2355–83. http://dx.doi.org/10.1142/s0217979291000924.
Full textDUKELSKY, J., and P. SCHUCK. "VARIATIONAL RANDOM PHASE APPROXIMATION FOR THE ANHARMONIC OSCILLATOR." Modern Physics Letters A 06, no. 26 (August 30, 1991): 2429–35. http://dx.doi.org/10.1142/s0217732391002852.
Full textTerasaki, J., A. Smetana, F. Šimkovic, and M. I. Krivoruchenko. "Reproduction of exact solutions of Lipkin model by nonlinear higher random-phase approximation." International Journal of Modern Physics E 26, no. 10 (October 2017): 1750062. http://dx.doi.org/10.1142/s0218301317500628.
Full textZhang, Min-Ye, Zhi-Hao Cui, and Hong Jiang. "Relative stability of FeS2polymorphs with the random phase approximation approach." Journal of Materials Chemistry A 6, no. 15 (2018): 6606–16. http://dx.doi.org/10.1039/c8ta00759d.
Full textJOHNSON, CALVIN W., and IONEL STETCU. "SHORTCUTS TO NUCLEAR STRUCTURE: LESSONS IN HARTREE–FOCK, RPA, AND THE NO-CORE SHELL MODEL." International Journal of Modern Physics E 14, no. 01 (February 2005): 57–65. http://dx.doi.org/10.1142/s0218301305002771.
Full textTaqi, Ali H., R. A. Radhi, and Adil M. Hussein. "Low excitations of 16O using generalized density matrix random phase approximation GDRPA." International Journal of Modern Physics E 23, no. 08 (August 2014): 1450038. http://dx.doi.org/10.1142/s0218301314500384.
Full textFan, J. D., and Y. M. Malozovsky. "Electron correlation effects beyond the random phase approximation." International Journal of Modern Physics B 30, no. 13 (May 19, 2016): 1642006. http://dx.doi.org/10.1142/s0217979216420066.
Full textMARIANO, A. "THE NUMBER SELF-CONSISTENT RENORMALIZED RANDOM PHASE APPROXIMATION." International Journal of Modern Physics B 20, no. 30n31 (December 20, 2006): 5334–37. http://dx.doi.org/10.1142/s0217979206036442.
Full textAVDEENKOV, A. V., D. S. KOSOV, and A. I. VDOVIN. "RENORMALIZED RPA AT FINITE TEMPERATURE." Modern Physics Letters A 11, no. 10 (March 28, 1996): 853–59. http://dx.doi.org/10.1142/s0217732396000850.
Full textDissertations / Theses on the topic "RPA [Approximation phase aléatoire]"
Perez, Florent. "Plasmons dans un potentiel unidimensionnel : étude par spectroscopie Raman de fils quantiques gravés." Paris 6, 1998. http://www.theses.fr/1998PA066724.
Full textRabhi, Aziz. "Approximation des phases aléatoires self-consistante dans l'étude de la superfluidité des systèmes fermioniques." Phd thesis, Université Claude Bernard - Lyon I, 2002. http://tel.archives-ouvertes.fr/tel-00003303.
Full textNous présentons la méthode SCRPA pour la description de la superfluidité dans les systèmes de fermions en utilisant sa version Quasi-particule (SCQRPA). Une étude détaillée de la transition de phase normale/superfluide ainsi que une discussion du mode mou qui enclenche la brisure de symétrie nombre de particules sont présentées. Comme application, nous avons traité le modèle d'appariement à deux niveaux qui est un modèle exactement soluble. Des bons résultats sont obtenus en comparaison avec les résultats exacts. La nature du mode spurieux dans la SCQRPA est identifiée. Une forte réduction de la fluctuation du nombre total de particules dans la SCQRPA par rapport à la méthode BCS est établie. La transition de la phase superfluide à la phase normale est soigneusement étudiée. Une nouvelle méthode de calcul des nombres d'occupation est présentée.
Le succès de la méthode SCQRPA est aussi présent dans le cas d'un modèle mélangeant fermions en bosons tel que le modèle de Da-Providencia-Schütte. Il subsiste cependant un problème concernant le mode spurieux qui doit être encore approfondi.
Dans le cas du modèle de la séniorité, on montre que la méthode SCQRPA permet d'une manière naturelle de restaurer la symétrie (nombre de particules) brisée au niveau de l'approximation de champ moyen. Ceci est réalisé par l'introduction d'un second paramètre de Lagrange qui fixe la variance de l'opérateur de symétrie à zéro. Cette caractéristique importante de la méthode SCQRPA est signalée pour la première fois.
Hansen, Hubert. "Méthodes non-perturbatives en théorie quantique des champs : au-delà du champ moyen, l'approximation de la phase aléatoire." Phd thesis, Université Claude Bernard - Lyon I, 2002. http://tel.archives-ouvertes.fr/tel-00003814.
Full textEn se plaçant au-delà du champ moyen où seules sont prises en compte les corrélations entre une particule et un potentiel "moyen" à un corps, la RPA va permettre de rajouter dans le calcul de l'état fondamental des corrélations entre particules.
Afin de mettre en place le formalisme, on applique la RPA, sons différentes formes (standard, renormalisée, en termes de fonctions de Green), à l'une des plus simples théories des champs en interaction, la théorie scalaire lambda x phi^4. On montre qu'il se produit une transition de phase due à une brisure dynamique de symétrie dont le paramètre critique se rapproche des résultats obtenus sur réseaux et par la technique des "clusters". Les résultats sont aussi présentés à température finie pour le champ moyen.
On étudie également un modèle effectif réaliste de la transition de phase chirale, le modèle sigma-linéaire et on montre que le théorème de Goldstone est restauré, contrairement à l'approximation gaussienne.
Enfin pour éclaircir quelques points de la RPA et, aller au-delà des corrélations obtenues dans la forme renormalisée, on considère l'oscillateur anharmonique en mécanique quantique, en introduisant les corrélations minimales au-delà du champ moyen et on montre que les corrélations RPA améliorent grandement le résultat obtenu en champ moyen.
Mussard, Bastien. "Modélisation quantochimiques des forces de dispersion de London par la méthode des phases aléatoires (RPA) : développements méthodologiques." Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0292/document.
Full textIn this thesis are shown developments in the random phase approximation (RPA) in the context of range-separated theories. We present advances in the formalism of the RPA in general, and particularly in the "dielectric matrix" formulation of RPA, which is explored in details. We show a summary of a work on the RPA equations with localized orbitals, especially developments of the virtual localized orbitals that are the "projected oscillatory orbitals" (POO). A program has been written to calculate functions such as the exchange hole, the response function, etc... on real space grid (parallelepipedic or of the "DFT" type) ; some of those visualizations are shown here. In the real space, we offer an adaptation of the effective energy denominator approximation (EED), originally developed in the reciprocal space in solid physics. The analytical gradients of the RPA correlation energies in the context of range separation has been derived. The formalism developed here with a Lagrangian allows an all-in-one derivation of the short- and long-range terms that emerge in the expressions of the gradient. These terms show interesting parallels. Geometry optimizations at the RSH-dRPA-I and RSH-SOSEX levels on a set of 16 molecules are shown, as well as calculations and visualizations of correlated densities at the RSH-dRPA-I level
Claudot, Julien. "Développements et applications de méthodes pour la description de l’énergie de corrélation dans les molécules et les solides." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0073/document.
Full textCommonly used density functionals have encountered a spectacular success in the modelling of physical, chemical or biological systems. However, they have proven to be unsuitable to describe some situations, such as London’s dispersion forces or strong correlation behaviour. In this thesis, we have been interested in recent developments in the formulation of the correlation energy from the adiabatic connection fluctuation dissipation theorem, to overcome these problems. In particular, different implementations of methods beyond the random phase approximation, which allow to take into account the exchange contribution in the computation of the correlation energy, have been compared. Then, in order to drastically decrease the numerical complexity, an orthogonalization procedure of the vectors used to represent the dielectric matrix has been developed. Then these approaches were applied to the calculation of the binding energy of small molecular complexes. The formulation of the correlation energy of the Møller-Plesset perturbation theory within the dielectric matrix context is also presented and tested. In parallel, calculations using numerically efficient semi-empirical methods were conducted over three molecular sets in order to test their performances regarding the binding energies by comparing them to reference values available in the literature
Sengupta, Niladri. "Going beyond the Random Phase Approximation: A systematic assessment of structural phase transitions and interlayer binding energies." Diss., Temple University Libraries, 2018. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/513054.
Full textPh.D.
The Random Phase Approximation and beyond Random Phase Approximation methods based on Adiabatic Connection Fluctuation Dissipation Theorem (ACFD) are tested for structural phase transitions of different groups of materials, including metal to metal, metal to semiconductor, semiconductor to semiconductor transitions. Also the performance assessment of semilocal density functionals with or without empirical long range dispersion corrections has been explored for the same cases. We have investigated the structural phase transitions of three broad group of materials, semi- conductor to metal transitions involving two symmetric structures, semiconductor to metal and wide bandgap semiconductor to semiconductor transitions involving at least one lower symmetric structure and lastly special cases comprising metal to metal transitions and transitions between energetically very close structural phases. The first group contains Si (diamond → β-tin), Ge (diamond → β-tin) and SiC (zinc blende → rocksalt), second group contains GaAs (zinc blende → cmcm) and SiO 2 (quartz → stishovite) and third group contains Pb (fcc → hcp), C(graphite → diamond) and BN (cubic → hexagonal) respectively. We have found that the difference in behavior of exchange and correlation in semilocal functionals and ACFD methods is striking. For the former, the exchange potential and energy often comprise the majority of the binding described by density functional approximations, and the addition of the correlation energy and potential often induce only a (relatively) small shift from the exchange- only results. For the ACFD, however, non self-consistent EXX typically underbinds by a considerable degree resulting in wildly inaccurate results. Thus the addition of correlation leads to very large shifts in the exchange-only results, in direct contrast to semilocal correlation. This difference in behavior is directly linked to the non-local nature of the EXX, and even though the exchange-only starting point is often nowhere close to experiment, the non-local correlation from the ACFD corrects this deficiency and yields the missing binding needed to produce accurate results. Thus we find the ACFD approach to be vital in the validation of semilocal results and recommend its use in materials where experimental results cannot be straightforwardly compared to other approximate electronic structure calculations. Utilizing the second-order approximation to Random Phase Approximation renormalized (RPAr) many-body perturbation theory for the interacting density-density response function, we have used a so-called higher-order terms (HOT) approximation for the correlation energy. In combination with the first-order RPAr correction, the HOT method faithfully captures the infinite- order correlation for a given exchange-correlation kernel, yielding errors of the total correlation energy on the order of 1% or less for most systems. For exchange-like kernels, our new method has the further benefit that the coupling-strength integration can be completely eliminated resulting in a modest reduction in computational cost compared to the traditional approach. When the correlation energy is accurately reproduced by the HOT approximation, structural properties and energy differences are also accurately reproduced, as confirmed by finding interlayer binding energies of several periodic solids and compared that to some molecular systems along with some phase transition parameters of SiC. Energy differences involving fragmentation have proved to be challenging for the HOT method, however, due to errors that do not cancel between a composite system and its constituent pieces which has been verified in our work as well.
Temple University--Theses
Barillier-Pertuisel, Xavier. "Études de systèmes bosoniques et de mélanges boson-fermion à l'aide de l'Approximation des Phases Aléatoires." Paris 11, 2008. http://www.theses.fr/2008PA112371.
Full textOne of the recent and exciting aspects in the fields of cold atoms is the study of Bose-Fermi mixtures. Several boson-fermion mixtures have been realized and their properties have been theoretically studied using for instance Mean Field approximation or Quantum Monte Carlo (QMC) methods. The latter gives us exact results for one dimensional system. RPA, historically developed for fermions, is tested on a bosonic model, the anharmonic oscillator, to check its pertinence on non trivial bosonic systems. It's applied on the Richardson Model where trapped bosonic atoms can create bound states (diatomic molecules). Then RPA is applied to Bose Fermi mixtures located on a 1D optical lattice. In our work we consider BF pairing in a discrete environment of bosons and fully spin-polarized fermions. The system is modeled by a 1D Bose-Fermi Hubbard Hamiltonian with attractive BF interaction. One of the interests of such a system is to check th validity and limits of T-matrix approach, previously employed int he 3D case, by comparing with QMC results. We discuss the T-matrix approximation applied to a BF mixture for a discrete number of sites and show results obtained for the ground state energy, the excitation energies and occupation numbers. We discuss the continuous case underlining the appearance of a stable weak coupling BF pairing mode. This Cooper-pair-like mode exists at any small value of the interaction due to the presence of a Fermi surface
Moghrabi, Kassem. "Beyond-mean-field corrections and effective interactions in the nuclear many-body problem." Phd thesis, Paris 11, 2013. http://tel.archives-ouvertes.fr/tel-00908607.
Full textJemai, Mohsen. "Approximation des phases aleatoires self-consistante. Applications a des systemes de fermions fortement correles." Phd thesis, Université Paris Sud - Paris XI, 2004. http://tel.archives-ouvertes.fr/tel-00006530.
Full textVast, Nathalie. "Etude ab initio des propriétés physiques des matériaux." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2009. http://tel.archives-ouvertes.fr/tel-00440923.
Full textBooks on the topic "RPA [Approximation phase aléatoire]"
Horing, Norman J. Morgenstern. Random Phase Approximation Plasma Phenomenology, Semiclassical and Hydrodynamic Models; Electrodynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0010.
Full textMorawetz, Klaus. Approximations for the Selfenergy. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0010.
Full textHoring, Norman J. Morgenstern. Non-Equilibrium Green’s Functions: Variational Relations and Approximations for Particle Interactions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0009.
Full textBook chapters on the topic "RPA [Approximation phase aléatoire]"
Fai, Lukong Cornelius. "Random Phase Approximation (RPA)." In Quantum Field Theory, 133–74. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9780429196942-7.
Full textSchirmer, Jochen. "Random-Phase Approximation (RPA)." In Lecture Notes in Chemistry, 223–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93602-4_15.
Full text"Random Phase Approximation (RPA)." In Greensche Funktionen in Festkörper- und Vielteilchenphysik, 162–227. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603387.ch7.
Full textBoothroyd, Andrew T. "Magnetic Excitations." In Principles of Neutron Scattering from Condensed Matter, 257–310. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198862314.003.0008.
Full textConference papers on the topic "RPA [Approximation phase aléatoire]"
Fiddy, Michael A., Hossein Alisafaee, and Raphael Tsu. "Designing low index metamaterials and the random phase approximation (RPA)." In 2014 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2014. http://dx.doi.org/10.1109/iceaa.2014.6903859.
Full text