To see the other types of publications on this topic, follow the link: Rster resonance energy transfer.

Journal articles on the topic 'Rster resonance energy transfer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Rster resonance energy transfer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Huebner, Christopher F., Ryan D. Roeder, and Stephen H. Foulger. "Nanoparticle Electroluminescence: Controlling Emission Color Through Förster Resonance Energy Transfer in Hybrid Particles." Advanced Functional Materials 19, no. 22 (2009): 3604–9. http://dx.doi.org/10.1002/adfm.200900473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ha, Chu Viet, J. C. Brochon, and Tran Hong Nhung. "Influence of Surface Plasmon Resonance on Fluorescence Emission of Dye-doped Nanoparticles." Communications in Physics 24, no. 3S2 (2016): 121–29. http://dx.doi.org/10.15625/0868-3166/24/3s2/5057.

Full text
Abstract:
The influence of the surface plasmon of gold nanoparticles on the optical properties of the fluorescent nanoparticles in aqueous solution have been investigated. The fluorescence of nanoparticles can be enhanced or quenched in the presence of gold nanoparticles depending on the domination of energy transfer mechanisms: radiating surface plasmon coupling emission or F\"{o}rster energy transfer from fluorescent particles to gold particles, which exciting absorbing plasmon. The fluorescence enhancement or quenching is attributed to the increase or decrease of radiative recombination rates, respec
APA, Harvard, Vancouver, ISO, and other styles
3

Hee, Wan Shen, Kiyotaka Sasagawa, Aiki Kameyama, et al. "Lens-free Dual-color Fluorescent CMOS Image Sensor for F?rster Resonance Energy Transfer Imaging." Sensors and Materials 31, no. 8 (2019): 2579. http://dx.doi.org/10.18494/sam.2019.2358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Xin, Pengtao Sheng, Liping Zhou, Xi Tong, Lei Shi, and Qingyun Cai. "Fluorescence immunoassay of octachlorostyrene based on Fo¨rster resonance energy transfer between CdTe quantum dots and rhodamine B." Biosensors and Bioelectronics 60 (October 2014): 52–56. http://dx.doi.org/10.1016/j.bios.2014.03.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

PILLAI, Sreenadh Sasidharan, Hiroshi YUKAWA, Daisuke ONOSHIMA, Vasudevanpillai BIJU, and Yoshinobu BABA. "Förster Resonance Energy Transfer Mediated Photoluminescence Quenching in Stoichiometrically Assembled CdSe/ZnS Quantum Dot-Peptide Labeled Black Hole Quencher Conjugates for Matrix Metalloproteinase-2 Sensing." Analytical Sciences 33, no. 2 (2017): 137–42. http://dx.doi.org/10.2116/analsci.33.137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thomas, P., M. M�ller, R. Eichmann, T. Meier, T. Stroucken, and A. Knorr. "Microscopic Foundation of the F�rster Excitonic Energy Transfer Process." physica status solidi (b) 230, no. 1 (2002): 25–29. http://dx.doi.org/10.1002/1521-3951(200203)230:1<25::aid-pssb25>3.0.co;2-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Selvin, Paul R., Tariq M. Rana, and John E. Hearst. "Luminescence Resonance Energy Transfer." Journal of the American Chemical Society 116, no. 13 (1994): 6029–30. http://dx.doi.org/10.1021/ja00092a088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Clegg, Robert M. "Fluorescence resonance energy transfer." Current Opinion in Biotechnology 6, no. 1 (1995): 103–10. http://dx.doi.org/10.1016/0958-1669(95)80016-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hsu, Liang-Yan, Wendu Ding, and George C. Schatz. "Plasmon-Coupled Resonance Energy Transfer." Journal of Physical Chemistry Letters 8, no. 10 (2017): 2357–67. http://dx.doi.org/10.1021/acs.jpclett.7b00526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Allcock, Philip, Robert D. Jenkins, and David L. Andrews. "Laser assisted resonance energy transfer." Chemical Physics Letters 301, no. 3-4 (1999): 228–34. http://dx.doi.org/10.1016/s0009-2614(98)01427-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Selvin, P. R. "Lanthanide-based resonance energy transfer." IEEE Journal of Selected Topics in Quantum Electronics 2, no. 4 (1996): 1077–87. http://dx.doi.org/10.1109/2944.577339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Stenz, Melanie L., and Ammasi Periasamy. "Fluorescence Resonance Energy Transfer Microscopy." Microscopy Today 8, no. 3 (2000): 10–13. http://dx.doi.org/10.1017/s1551929500061034.

Full text
Abstract:
Fluorescence is a property of certain fluorophores, which allows them to absorb light at one wavelength and emit the light at another, longer wavelength. This fluorescence can be used as a tool to study the interactions of numerous components within a cell. With the use of fluorescent probes, proteins or other cellular matter can be specifically labeled in a fixed or live cell. This allows scientists to closely monitor microscopic cellular functions in order to gain a greater understanding of living biological processes.Fluorescence Resonance Energy Transfer (FRET) imaging microscopy is an imp
APA, Harvard, Vancouver, ISO, and other styles
13

Birch, D. J. S., and O. J. Rolinski. "Fluorescence resonance energy transfer sensors." Research on Chemical Intermediates 27, no. 4-5 (2001): 425–46. http://dx.doi.org/10.1163/156856701104202084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

McVey, Mary, Douglas Ramsay, Elaine Kellett, et al. "Monitoring Receptor Oligomerization Using Time-resolved Fluorescence Resonance Energy Transfer and Bioluminescence Resonance Energy Transfer." Journal of Biological Chemistry 276, no. 17 (2001): 14092–99. http://dx.doi.org/10.1074/jbc.m008902200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sekatskii, S. K., and K. K. Pukhov. "Coherent Cooperative Fluorescence Resonance Energy Transfer." Оптика и спектроскопия 117, no. 6 (2014): 902–6. http://dx.doi.org/10.7868/s0030403414120216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mattheyses, Alexa L., Adam D. Hoppe, and Daniel Axelrod. "Polarized Fluorescence Resonance Energy Transfer Microscopy." Biophysical Journal 87, no. 4 (2004): 2787–97. http://dx.doi.org/10.1529/biophysj.103.036194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wu, Miao, and W. Russ Algar. "Concentric Förster Resonance Energy Transfer Imaging." Analytical Chemistry 87, no. 16 (2015): 8078–83. http://dx.doi.org/10.1021/acs.analchem.5b01946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Maniadis, P., and S. Aubry. "Targeted energy transfer by Fermi resonance." Physica D: Nonlinear Phenomena 202, no. 3-4 (2005): 200–217. http://dx.doi.org/10.1016/j.physd.2005.02.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zhao, Lei, Tian Ming, Lei Shao, Huanjun Chen, and Jianfang Wang. "Plasmon-Controlled Förster Resonance Energy Transfer." Journal of Physical Chemistry C 116, no. 14 (2012): 8287–96. http://dx.doi.org/10.1021/jp300916a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Jang, Seogjoo, Yuan-Chung Cheng, David R. Reichman, and Joel D. Eaves. "Theory of coherent resonance energy transfer." Journal of Chemical Physics 129, no. 10 (2008): 101104. http://dx.doi.org/10.1063/1.2977974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sekatskii, S. K., and K. K. Pukhov. "Coherent cooperative fluorescence resonance energy transfer." Optics and Spectroscopy 117, no. 6 (2014): 875–79. http://dx.doi.org/10.1134/s0030400x14120212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lim, James, Mark Tame, Ki Hyuk Yee, Joong-Sung Lee, and Jinhyoung Lee. "Phonon-induced dynamic resonance energy transfer." New Journal of Physics 16, no. 5 (2014): 053018. http://dx.doi.org/10.1088/1367-2630/16/5/053018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Dewey, T. Gregory. "Fluorescence resonance energy transfer on fractals." Accounts of Chemical Research 25, no. 4 (1992): 195–200. http://dx.doi.org/10.1021/ar00016a004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Jenkins, Robert D., Gareth J. Daniels, and David L. Andrews. "Quantum pathways for resonance energy transfer." Journal of Chemical Physics 120, no. 24 (2004): 11442–48. http://dx.doi.org/10.1063/1.1742697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Andrews, D. L., C. Curutchet, and G. D. Scholes. "Resonance energy transfer: Beyond the limits." Laser & Photonics Reviews 5, no. 1 (2010): 114–23. http://dx.doi.org/10.1002/lpor.201000004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ha, Taekjip. "Single-Molecule Fluorescence Resonance Energy Transfer." Methods 25, no. 1 (2001): 78–86. http://dx.doi.org/10.1006/meth.2001.1217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wu, P. G., and L. Brand. "Resonance Energy Transfer: Methods and Applications." Analytical Biochemistry 218, no. 1 (1994): 1–13. http://dx.doi.org/10.1006/abio.1994.1134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zong, Huan, Xinxin Wang, Xijiao Mu, Jingang Wang, and Mengtao Sun. "Plasmon‐Enhanced Fluorescence Resonance Energy Transfer." Chemical Record 19, no. 5 (2019): 818–42. http://dx.doi.org/10.1002/tcr.201800181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wang, Yu. "Förster resonance energy transfer photoacoustic microscopy." Journal of Biomedical Optics 17, no. 8 (2012): 086007. http://dx.doi.org/10.1117/1.jbo.17.8.086007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Abrantes, P. P., D. Szilard, F. S. S. Rosa, and C. Farina. "Resonance energy transfer at percolation transition." Modern Physics Letters A 35, no. 03 (2020): 2040022. http://dx.doi.org/10.1142/s0217732320400222.

Full text
Abstract:
We compute the resonance energy transfer (RET) in a system composed of two quantum emitters near a host dielectric matrix in which metallic inclusions are inserted until the medium undergoes a dielectric-metal transition at percolation. We show that there is no peak in the RET rate at percolation, in contrast to what happens with the spontaneous emission rate of an emitter near the same critical medium. This result suggests that RET does not strongly correlate with the local density of states.
APA, Harvard, Vancouver, ISO, and other styles
31

Farinha, J. P. S., and J. M. G. Martinho. "Resonance Energy Transfer in Polymer Nanodomains." Journal of Physical Chemistry C 112, no. 29 (2008): 10591–601. http://dx.doi.org/10.1021/jp8016437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Allcock, Philip, and David L. Andrews. "Two-photon fluorescence: Resonance energy transfer." Journal of Chemical Physics 108, no. 8 (1998): 3089–95. http://dx.doi.org/10.1063/1.475706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Jee, Ah-Young, and Minyung Lee. "Deformation-enhanced fluorescence resonance energy transfer." Chemical Physics Letters 501, no. 4-6 (2011): 287–91. http://dx.doi.org/10.1016/j.cplett.2010.11.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

GE Li-xin, 葛立新, 高淑梅 GAO Shu-mei, and 吕思斌 L Si-bin. "Spectrum Resonance Energy Transfer and Energy Analysis of Resorption." ACTA PHOTONICA SINICA 40, no. 10 (2011): 1500–1504. http://dx.doi.org/10.3788/gzxb20114010.1500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Li, Jiangtian, Scott K. Cushing, Fanke Meng, Tess R. Senty, Alan D. Bristow, and Nianqiang Wu. "Plasmon-induced resonance energy transfer for solar energy conversion." Nature Photonics 9, no. 9 (2015): 601–7. http://dx.doi.org/10.1038/nphoton.2015.142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yusop, Y. "Resonance Coupling Technique for Wireless Energy Transfer." IOSR Journal of Electrical and Electronics Engineering 2, no. 5 (2012): 50–54. http://dx.doi.org/10.9790/1676-0255054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Swathi, R. S., and K. L. Sebastian. "Distance dependence of fluorescence resonance energy transfer." Journal of Chemical Sciences 121, no. 5 (2009): 777–87. http://dx.doi.org/10.1007/s12039-009-0092-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Getz, Elise Burmeister, Roger Cooke, and Paul R. Selvin. "Luminescence Resonance Energy Transfer Measurements in Myosin." Biophysical Journal 74, no. 5 (1998): 2451–58. http://dx.doi.org/10.1016/s0006-3495(98)77953-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Jenkins, Robert D., and David L. Andrews. "Twin-donor systems for resonance energy transfer." Chemical Physics Letters 301, no. 3-4 (1999): 235–40. http://dx.doi.org/10.1016/s0009-2614(99)00007-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Roth, Diane J., Mazhar E. Nasir, Pavel Ginzburg, et al. "Förster Resonance Energy Transfer inside Hyperbolic Metamaterials." ACS Photonics 5, no. 11 (2018): 4594–603. http://dx.doi.org/10.1021/acsphotonics.8b01083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Stepashkina, A. S., D. M. Samosvat, O. P. Chikalova-Luzina, and G. G. Zegrya. "Nonradiative resonance energy transfer between quantum dots." Journal of Physics: Conference Series 461 (August 28, 2013): 012001. http://dx.doi.org/10.1088/1742-6596/461/1/012001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Selvin, P. R. "Correction To "Lanthanide-based Resonance Energy Transfer"." IEEE Journal of Selected Topics in Quantum Electronics 3, no. 4 (1997): 1119. http://dx.doi.org/10.1109/jstqe.1997.649551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Rolinski, Olaf J., and David J. S. Birch. "Nonextensive kinetics of fluorescence resonance energy transfer." Journal of Chemical Physics 129, no. 14 (2008): 144507. http://dx.doi.org/10.1063/1.2990651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Andrews, David L., and Jamie M. Leeder. "Resonance energy transfer: When a dipole fails." Journal of Chemical Physics 130, no. 18 (2009): 184504. http://dx.doi.org/10.1063/1.3131168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Daniels, Gareth J., Robert D. Jenkins, David S. Bradshaw, and David L. Andrews. "Resonance energy transfer: The unified theory revisited." Journal of Chemical Physics 119, no. 4 (2003): 2264–74. http://dx.doi.org/10.1063/1.1579677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kurdoglyan, M. S. "Resonance intermolecular energy transfer near semiconductor nanoparticles." Optics and Spectroscopy 91, no. 4 (2001): 609–12. http://dx.doi.org/10.1134/1.1412680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Li, Xuelian, Shelton Matthews, and Punit Kohli. "Fluorescence Resonance Energy Transfer in Polydiacetylene Liposomes." Journal of Physical Chemistry B 112, no. 42 (2008): 13263–72. http://dx.doi.org/10.1021/jp804640p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Markvart, T., and R. Greef. "Polaron-exciton model of resonance energy transfer." Journal of Chemical Physics 121, no. 13 (2004): 6401–5. http://dx.doi.org/10.1063/1.1786575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bhuckory, Shashi, Joshua C. Kays, and Allison M. Dennis. "In Vivo Biosensing Using Resonance Energy Transfer." Biosensors 9, no. 2 (2019): 76. http://dx.doi.org/10.3390/bios9020076.

Full text
Abstract:
Solution-phase and intracellular biosensing has substantially enhanced our understanding of molecular processes foundational to biology and pathology. Optical methods are favored because of the low cost of probes and instrumentation. While chromatographic methods are helpful, fluorescent biosensing further increases sensitivity and can be more effective in complex media. Resonance energy transfer (RET)-based sensors have been developed to use fluorescence, bioluminescence, or chemiluminescence (FRET, BRET, or CRET, respectively) as an energy donor, yielding changes in emission spectra, lifetim
APA, Harvard, Vancouver, ISO, and other styles
50

Nowacka, Maria, Anna Kowalewska, Damian Plażuk, and Tomasz Makowski. "Hybrid polysilsesquioxanes for fluorescence resonance energy transfer." Dyes and Pigments 170 (November 2019): 107622. http://dx.doi.org/10.1016/j.dyepig.2019.107622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!