Journal articles on the topic 'Rumen fermentation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Rumen fermentation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Purcell, Peter James, Tommy M. Boland, Martin O'Brien, and Pádraig O'Kiely. "In vitro rumen methane output of forb species sampled in spring and summer." Agricultural and Food Science 21, no. 2 (2012): 83–90. http://dx.doi.org/10.23986/afsci.4811.
Full textNAGARAJA, T. G., S. J. GALITZER, D. L. HARMON, and S. M. DENNIS. "EFFECT OF LASALOCID, MONENSIN AND THIOPEPTIN ON LACTATE PRODUCTION FROM IN VITRO RUMEN FERMENTATION OF STARCH." Canadian Journal of Animal Science 66, no. 1 (1986): 129–39. http://dx.doi.org/10.4141/cjas86-014.
Full textArya, Anjali, PM Lunagariya, RJ Modi, and YG Patel. "Rumen fermentation." International Journal of Veterinary Sciences and Animal Husbandry 9, no. 5 (2024): 09–12. http://dx.doi.org/10.22271/veterinary.2024.v9.i5a.1639.
Full textMoningkey, Sony A. E., R. A. V. Tuturoong, and I. D. R. Lumenta. "PEMANFAATAN ISI RUMEN TERFERMENTASI CELLULOMONAS Sp SEBAGAI CAMPURAN PAKAN KOMPLIT TERNAK KELINCI." ZOOTEC 40, no. 1 (2020): 352. http://dx.doi.org/10.35792/zot.40.1.2020.28245.
Full textJalč, D., and M. Čertík. "Effect of microbial oil, monensin and fumarate on rumen fermentation in artificial rumen." Czech Journal of Animal Science 50, No. 10 (2011): 467–72. http://dx.doi.org/10.17221/4238-cjas.
Full textBanik, B. K., Z. Durmic, W. Erskine, K. Ghamkhar, and C. Revell. "In vitro ruminal fermentation characteristics and methane production differ in selected key pasture species in Australia." Crop and Pasture Science 64, no. 9 (2013): 935. http://dx.doi.org/10.1071/cp13149.
Full textRarumangkay, Jeni. "PENGARUH FERMENTASI ISI RUMEN SAPI DENGAN Trichoderma viride TERHADAP ENERGI METABOLIS PADA AYAM BROILER." ZOOTEC 35, no. 2 (2015): 312. http://dx.doi.org/10.35792/zot.35.2.2015.8569.
Full textNagadi, S., M. Herrero, and N. S. Jessop. "Effect of frequency of ovine ruminal sampling on microbial activity and substrate fermentation." Proceedings of the British Society of Animal Science 1999 (1999): 154. http://dx.doi.org/10.1017/s1752756200003094.
Full textWalker, Charles E., James S. Drouillard, and Tiruvoor G. Nagaraja. "Optaflexx1 affects rumen fermentation." Kansas Agricultural Experiment Station Research Reports, no. 1 (January 1, 2007): 88–90. http://dx.doi.org/10.4148/2378-5977.1536.
Full textCastillo-González, AR, ME Burrola-Barraza, J. Domínguez-Viveros, and A. Chávez-Martínez. "Rumen microorganisms and fermentation." Archivos de medicina veterinaria 46, no. 3 (2014): 349–61. http://dx.doi.org/10.4067/s0301-732x2014000300003.
Full textBagheri, M., G. R. Ghorbani, H. R. Rahmani, and M. Khorvash. "Effect of yeast and mannan-oligosaccharides on in vitro fermentation of different substrates." Proceedings of the British Society of Animal Science 2009 (April 2009): 91. http://dx.doi.org/10.1017/s1752756200029306.
Full textWilk, Martyna, Ewa Pecka-Kiełb, Jerzy Pastuszak, Muhammad Umair Asghar, and Laura Mól. "Effects of Copper Sulfate and Encapsulated Copper Addition on In Vitro Rumen Fermentation and Methane Production." Agriculture 12, no. 11 (2022): 1943. http://dx.doi.org/10.3390/agriculture12111943.
Full textNewbold, C. J., R. J. Wallace, and I. M. Nevison. "Influence of ionophores on in vitro fermentation by rumen fluid from sheep receiving yeast culture (Yeasacc; YC)." Proceedings of the British Society of Animal Production (1972) 1991 (March 1991): 78. http://dx.doi.org/10.1017/s0308229600020286.
Full textCandyrine, S. C. L., M. F. Jahromi, M. Ebrahimi, J. B. Liang, Y. M. Goh, and N. Abdullah. "In vitro rumen fermentation characteristics of goat and sheep supplemented with polyunsaturated fatty acids." Animal Production Science 57, no. 8 (2017): 1607. http://dx.doi.org/10.1071/an15684.
Full textLi, Jinhui, Hui Yan, Jiaxin Chen, et al. "Correlation of Ruminal Fermentation Parameters and Rumen Bacterial Community by Comparing Those of the Goat, Sheep, and Cow In Vitro." Fermentation 8, no. 9 (2022): 427. http://dx.doi.org/10.3390/fermentation8090427.
Full textWang, Liyan, Shoukun Ji, Hui Yan, et al. "Dose-Response of Fruit Oligosaccharides on Rumen Fermentation Parameters, CH4 Emission and Skatole Content In Vitro." Fermentation 9, no. 5 (2023): 428. http://dx.doi.org/10.3390/fermentation9050428.
Full textUngerfeld, Emilio M., M. Fernanda Aedo, Emilio D. Martínez, and Marcelo Saldivia. "Inhibiting Methanogenesis in Rumen Batch Cultures Did Not Increase the Recovery of Metabolic Hydrogen in Microbial Amino Acids." Microorganisms 7, no. 5 (2019): 115. http://dx.doi.org/10.3390/microorganisms7050115.
Full textDewi, Wuryani Kusuma, Limbang Kustiawan Nuswantara, and Surono Surono. "Digestibility of Coconut Coir Fiber Fermented by Buffalo Rumen Fluid Microbes in Vitro." Jurnal Agripet 25, no. 1 (2025): 95–100. https://doi.org/10.17969/agripet.v25i1.30112.
Full textHesni, V., A. Taghizadeh, H. Paya, H. Janmohamadi, G. A. Moghadam, and N. Pirani. "Effect of monensin and lasalocid on rumen fermentation in sheep." Proceedings of the British Society of Animal Science 2007 (April 2007): 221. http://dx.doi.org/10.1017/s1752756200021244.
Full textYANG, H. J., H. ZHUANG, X. K. MENG, D. F. ZHANG, and B. H. CAO. "Effect of melamine onin vitrorumen microbial growth, methane production and fermentation of Chinese wild rye hay and maize meal in binary mixtures." Journal of Agricultural Science 152, no. 4 (2013): 686–96. http://dx.doi.org/10.1017/s0021859613000725.
Full textWang, Xinjie, Jianzhao Zhou, Runjie Jiang, et al. "Development of an Alternative In Vitro Rumen Fermentation Prediction Model." Animals 14, no. 2 (2024): 289. http://dx.doi.org/10.3390/ani14020289.
Full textYu, Jiangkun, Liyuan Cai, Jiacai Zhang, et al. "Effects of Thymol Supplementation on Goat Rumen Fermentation and Rumen Microbiota In Vitro." Microorganisms 8, no. 8 (2020): 1160. http://dx.doi.org/10.3390/microorganisms8081160.
Full textVigh, Antal, Adriana Criste, Kévin Gragnic, Léa Moquet, and Christine Gerard. "Ruminal Solubility and Bioavailability of Inorganic Trace Mineral Sources and Effects on Fermentation Activity Measured in Vitro." Agriculture 13, no. 4 (2023): 879. http://dx.doi.org/10.3390/agriculture13040879.
Full textQiu, Xinjun, Xiaoli Qin, Liming Chen, et al. "Serum Biochemical Parameters, Rumen Fermentation, and Rumen Bacterial Communities Are Partly Driven by the Breed and Sex of Cattle When Fed High-Grain Diet." Microorganisms 10, no. 2 (2022): 323. http://dx.doi.org/10.3390/microorganisms10020323.
Full textHuang, Jianzhi, Yueyun Sheng, Pengfei Xue, et al. "Patterns of Spatial Variation in Rumen Microbiology, Histomorphology, and Fermentation Parameters in Tarim wapiti (Cervus elaphus yarkandensis)." Microorganisms 12, no. 1 (2024): 216. http://dx.doi.org/10.3390/microorganisms12010216.
Full textCone, J. W., and M. A. M. Rodrigues. "Protein fermentation characteristics in rumen fluid determined with the gas production technique." Proceedings of the British Society of Animal Science 2009 (April 2009): 192. http://dx.doi.org/10.1017/s1752756200030313.
Full textRinttilä, Teemu, Colm A. Moran, and Juha Apajalahti. "DHA-Rich Aurantiochytrium Biomass, a Novel Dietary Supplement, Resists Degradation by Rumen Microbiota without Disrupting Microbial Activity." Applied Microbiology 2, no. 1 (2022): 53–72. http://dx.doi.org/10.3390/applmicrobiol2010004.
Full textMunyiva, Brenda, and Wahu Oyaya. "Effect of Rumen Fluid Dosage and Fermentation Time on Dissolved Protein Levels of Vegetable Waste Silage for Vannamei Shrimp Feed." International Journal Papier Advance and Scientific Review 2, no. 2 (2021): 20–24. http://dx.doi.org/10.47667/ijpasr.v2i2.110.
Full textGuo, Wei, Jolet K. van Niekerk, Mi Zhou, and Michael A. Steele. "PSIX-32 Assessment of Mucosa-associated Microbiota in the Colon and Rumen of Dairy Calves Fed High Plane of Milk and during Weaning Transition." Journal of Animal Science 98, Supplement_4 (2020): 311. http://dx.doi.org/10.1093/jas/skaa278.554.
Full textCalsamiglia, S., P. Cardozo, A. Ferret, and A. Bach. "Changes in rumen microbial fermentation during acidosis are due to a combined effects of fermentation substrate and pH." Proceedings of the British Society of Animal Science 2007 (April 2007): 21. http://dx.doi.org/10.1017/s1752756200019244.
Full textGuo, Yanxia, Faiz-ul Hassan, Mengwei Li, et al. "Effect of Sodium Nitrate and Cysteamine on In Vitro Ruminal Fermentation, Amino Acid Metabolism and Microbiota in Buffalo." Microorganisms 10, no. 10 (2022): 2038. http://dx.doi.org/10.3390/microorganisms10102038.
Full textQian, Wenxi, ZhiPeng Li, Weiping Ao, Guangyong Zhao, Guangyu Li, and JianPing Wu. "Bacterial community composition and fermentation in the rumen of Xinjiang brown cattle (Bos taurus), Tarim red deer (Cervus elaphus yarkandensis), and Karakul sheep (Ovis aries)." Canadian Journal of Microbiology 63, no. 5 (2017): 375–83. http://dx.doi.org/10.1139/cjm-2016-0596.
Full textDurix, Andrée, C. Jean-Blain, H. P. Sallmann, and J. P. Jouany. "Use of a semicontinuous culture system (RUSITEC) to study the metabolism of ethanol in the rumen and its effects on ruminal digestion." Canadian Journal of Animal Science 71, no. 1 (1991): 115–23. http://dx.doi.org/10.4141/cjas91-013.
Full textIsmartoyo, Ismartoyo, Rohmiyatul Islamiyati, and Muhammad Rusdy. "Rumen Fermentation of Local Grasses Feed to Native Goat." Hasanuddin Journal of Animal Science (HAJAS) 5, no. 1 (2024): 28–35. http://dx.doi.org/10.20956/hajas.v5i1.24777.
Full textOuda, J. O., C. J. Newbold, S. Lopez, et al. "The effect of acrylate and fumarate on fermentation and methane production in the rumen simulating fermentor (Rusitec)." Proceedings of the British Society of Animal Science 1999 (1999): 37. http://dx.doi.org/10.1017/s1752756200001927.
Full textDhakal, Rajan, André Luis Alves Neves, Rumakanta Sapkota, Prabhat Khanal, and Hanne Helene Hansen. "Prokaryote Composition and Structure of Rumen Fluid before and after In Vitro Rumen Fermentation." Fermentation 10, no. 2 (2024): 108. http://dx.doi.org/10.3390/fermentation10020108.
Full textTKALCIC, SUZANA, CATHY A. BROWN, BARRY G. HARMON, et al. "Effects of Diet on Rumen Proliferation and Fecal Shedding of Escherichia coli O157:H7 in Calves." Journal of Food Protection 63, no. 12 (2000): 1630–36. http://dx.doi.org/10.4315/0362-028x-63.12.1630.
Full textFakhri, S., A. R. Moss, D. I. Givens, and E. Owen. "Comparison of four in vitro gas production methods to study rumen fermentation kinetics of starch rich feeds." Proceedings of the British Society of Animal Science 1997 (1997): 196. http://dx.doi.org/10.1017/s1752756200596379.
Full textHussain, A., and E. L. Miller. "Effect of supplementation of sucrose and lactose with sodium bicarbonate on rumen metabolism and microbial protein synthesis in sheep." Proceedings of the British Society of Animal Science 1999 (1999): 28. http://dx.doi.org/10.1017/s1752756200001836.
Full textAstuti, W. D., Y. Widyastuti, E. Wina, S. Suharti, R. Ridwan, and K. G. Wiryawan. "Survival of Lactobacillus plantarumU40 on the in vitro rumen fermentation quantified with real-time PCR." Journal of the Indonesian Tropical Animal Agriculture 43, no. 2 (2018): 184. http://dx.doi.org/10.14710/jitaa.43.2.184-192.
Full textCIESLAK, A., P. ZMORA, A. STOCHMAL, et al. "Rumen antimethanogenic effect ofSaponaria officinalisL. phytochemicalsin vitro." Journal of Agricultural Science 152, no. 6 (2014): 981–93. http://dx.doi.org/10.1017/s0021859614000239.
Full textWei, Xiao, Kehui Ouyang, Tanghui Long, Zuogui Liu, Yanjiao Li, and Qinghua Qiu. "Dynamic Variations in Rumen Fermentation Characteristics and Bacterial Community Composition during In Vitro Fermentation." Fermentation 8, no. 6 (2022): 276. http://dx.doi.org/10.3390/fermentation8060276.
Full textWu, Yinglian, Chong Jiao, Qiyu Diao, and Yan Tu. "Effect of Dietary and Age Changes on Ruminal Microbial Diversity in Holstein Calves." Microorganisms 12, no. 1 (2023): 12. http://dx.doi.org/10.3390/microorganisms12010012.
Full textLi, Qin, Yan Tu, Tao Ma, et al. "Effects of Two Feeding Patterns on Growth Performance, Rumen Fermentation Parameters, and Bacterial Community Composition in Yak Calves." Microorganisms 11, no. 3 (2023): 576. http://dx.doi.org/10.3390/microorganisms11030576.
Full textNewbold, C. J., and R. J. Wallace. "The effect of yeast and distillery by-products on the fermentation in the rumen simulation technique (rusitec)." Proceedings of the British Society of Animal Production (1972) 1992 (March 1992): 210. http://dx.doi.org/10.1017/s0308229600023199.
Full textRabee, Alaa Emara, Khalid Z. Kewan, Hassan M. El Shaer, Mebarek Lamara, and Ebrahim A. Sabra. "Effect of olive and date palm by-products on rumen methanogenic community in Barki sheep." AIMS Microbiology 8, no. 1 (2022): 26–41. http://dx.doi.org/10.3934/microbiol.2022003.
Full textKingston-Smith, Alison H., Joan E. Edwards, Sharon A. Huws, Eun J. Kim, and Michael Abberton. "Plant-based strategies towards minimising ‘livestock's long shadow’." Proceedings of the Nutrition Society 69, no. 4 (2010): 613–20. http://dx.doi.org/10.1017/s0029665110001953.
Full textNueraihemaiti, Gulinizier, Xiangdong Huo, Huiying Zhang, et al. "Effect of Diet Supplementation with Two Yeast Cultures on Rumen Fermentation Parameters and Microbiota of Fattening Sheep In Vitro." Microorganisms 13, no. 3 (2025): 550. https://doi.org/10.3390/microorganisms13030550.
Full textXue, Ligang, Shuyi Zhou, Dan Wang, Fangyu Zhang, Junfeng Li, and Liyuan Cai. "The Low Dose of Saccharomyces cerevisiae Is Beneficial for Rumen Fermentation (Both In Vivo and In Vitro) and the Growth Performance of Heat-Stressed Goats." Microorganisms 10, no. 10 (2022): 1877. http://dx.doi.org/10.3390/microorganisms10101877.
Full textMantovani, Hilario. "90 Microbiome-Derived Bioactive Molecules to Reduce Enteric Methane Emissions." Journal of Animal Science 101, Supplement_2 (2023): 234–35. http://dx.doi.org/10.1093/jas/skad341.264.
Full text