Academic literature on the topic 'Rydberg atom'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rydberg atom.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Rydberg atom"
Deiß, Markus, Shinsuke Haze, and Johannes Hecker Denschlag. "Long-Range Atom–Ion Rydberg Molecule: A Novel Molecular Binding Mechanism." Atoms 9, no. 2 (June 21, 2021): 34. http://dx.doi.org/10.3390/atoms9020034.
Full textJoe, Yong S., Vanik E. Mkrtchian, and Sun H. Lee. "Artificial Rydberg atom." Physics Letters A 373, no. 10 (March 2009): 976–81. http://dx.doi.org/10.1016/j.physleta.2009.01.010.
Full textPillet, P., R. Kachru, N. H. Tran, W. W. Smith, and T. F. Gallagher. "Radiative Rydberg-atom–Rydberg-atom collisions in the strong-field regime." Physical Review A 36, no. 3 (August 1, 1987): 1132–47. http://dx.doi.org/10.1103/physreva.36.1132.
Full textJiao, Yuechun, Liping Hao, Jiabei Fan, Jingxu Bai, Jianming Zhao, and Suotang Jia. "Autoionization of Ultracold Cesium Rydberg Atom in 37D5/2 State." Photonics 9, no. 5 (May 17, 2022): 352. http://dx.doi.org/10.3390/photonics9050352.
Full textHuang Wei, Liang Zhen-Tao, Du Yan-Xiong, Yan Hui, and Zhu Shi-Liang. "Rydberg-atom-based electrometry." Acta Physica Sinica 64, no. 16 (2015): 160702. http://dx.doi.org/10.7498/aps.64.160702.
Full textAgrawal, A. "Rydberg atom in gravity." Journal of Physics: Conference Series 484 (March 5, 2014): 012051. http://dx.doi.org/10.1088/1742-6596/484/1/012051.
Full textAdams, C. S., J. D. Pritchard, and J. P. Shaffer. "Rydberg atom quantum technologies." Journal of Physics B: Atomic, Molecular and Optical Physics 53, no. 1 (December 3, 2019): 012002. http://dx.doi.org/10.1088/1361-6455/ab52ef.
Full textWang, Dehua, Shaohao Cheng, Qiang Chen, and Zhaohang Chen. "DC field microscopy of Rydberg Li atoms." Canadian Journal of Physics 94, no. 6 (June 2016): 548–57. http://dx.doi.org/10.1139/cjp-2015-0791.
Full textZhang, Lida, Valentin Walther, Klaus Mølmer, and Thomas Pohl. "Photon-photon interactions in Rydberg-atom arrays." Quantum 6 (March 30, 2022): 674. http://dx.doi.org/10.22331/q-2022-03-30-674.
Full textWang, De-Hua, Xin-Yue Sun, and Tong Shi. "Photoionization microscopy of the Rydberg Rb atom under a continuous infrared radiation laser field." Canadian Journal of Chemistry 98, no. 1 (January 2020): 24–33. http://dx.doi.org/10.1139/cjc-2019-0267.
Full textDissertations / Theses on the topic "Rydberg atom"
Kash, Michael Mason. "Rydberg atom diamagnetism." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/14367.
Full textRibeiro, Sofia. "Atom-surface interactions with Rydberg atoms : an application to hybrid systems." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/24166.
Full textNguyen, Thanh Long. "Study of dipole-dipole interaction between Rydberg atoms : toward quantum simulation with Rydberg atoms." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066695/document.
Full textQuantum simulation offers a highly promising way to understand large correlated quantum systems, and many experimental platforms are now being developed. Rydberg atoms are especially appealing thanks to their strong and short-range dipole-dipole interaction. In our setup, we prepare and manipulate ensembles of Rydberg atoms excited from an ultracold atomic cloud magnetically trapped above a superconducting chip. The dynamics of the Rydberg excitation can be controlled through the laser excitation process. The many-body atomic interaction energy spectrum is then directly measured through microwave spectroscopy. This thesis develops a rigorous Monte Carlo model that provides an insight into the excitation process. Using this model, we discuss a possibility to explore quantum simulations of energy transport in a 1D chain of low angular momentum Rydberg atoms. Furthermore, we propose an innovative platform for quantum simulations. It relies on a groundbreaking approach, based on laser-trapped ensemble of extremely long-lived, strongly interacting circular Rydberg atoms. We present intensive numerical results as well as discuss a wide range of problems that can be addressed with the proposed model
Schmid, Thomas [Verfasser]. "Rydberg Molecules for Ultracold Ion-Atom Scattering / Thomas Schmid." München : Verlag Dr. Hut, 2019. http://d-nb.info/1196415536/34.
Full textLu, Jun. "Classical trajectory Monte Carlo simulation of ion-Rydberg atom collisions." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=968439713.
Full textLiu, Ivan Chen-Hsiu. "Ultracold Rydberg Atoms in Structured and Disordered Environments." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1231945394343-32656.
Full textHenkel, Nils. "Rydberg-dressed Bose-Einstein condensates." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-130499.
Full textQadiri, Rafay Hasan. "H (Rydberg) atom photofragment translational spectroscopy of unsaturated hydride molecules." Thesis, University of Bristol, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.411071.
Full textAbdussalam, Wildan. "Dynamics of Rydberg atom lattices in the presence of noise and dissipation." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-227485.
Full textLiu, Ivan Chen-Hsiu. "Ultracold Rydberg Atoms in Structured and Disordered Environments." Doctoral thesis, Technische Universität Dresden, 2008. https://tud.qucosa.de/id/qucosa%3A23624.
Full textBooks on the topic "Rydberg atom"
Kremid, Ali M. Rydberg atoms in microwave cavity quantum electrodynamics: Theories of the one atom micromaser. Manchester: UMIST, 1997.
Find full textR, Taylor C. The use of a high-Rydberg lithium beam and a fine mesh target to probe atom-surface interactions. 1987.
Find full textR, Taylor C. The use of a high-Rydberg lithium beam and a fine mesh target to probe atom-surface interactions. 1987.
Find full textGiorgi, Javier B. Surface aligned photochemistry. Photolysis of HX (X=Cl,Br,I, SH) adsorbed on LiF(001), studied by Rydberg-atom time-of-flight spectroscopy. Dept of Chemistry, University of Toronto, 1999.
Find full textOKS. Advances Physics Rydberg Atoms Molecul. Institute of Physics Publishing, 2021.
Find full textOKS. Advances Physics Rydberg Atoms Molecul. Institute of Physics Publishing, 2022.
Find full textBook chapters on the topic "Rydberg atom"
Pritchard, Jonathan D. "Rydberg Atom Interactions." In Cooperative Optical Non-Linearity in a Blockaded Rydberg Ensemble, 27–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29712-0_3.
Full textSadeghpour, Hossein. "Ultracold Rydberg Atom–Atom Interaction." In Springer Handbook of Atomic, Molecular, and Optical Physics, 795–803. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-73893-8_54.
Full textGross, M., J. Hare, P. Goy, and S. Haroche. "Precision RF Spectroscopy of Circular Rydberg Atoms." In The Hydrogen Atom, 134–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-88421-4_13.
Full textPritchard, Jonathan D. "Atom-Light Interactions." In Cooperative Optical Non-Linearity in a Blockaded Rydberg Ensemble, 37–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29712-0_4.
Full textYamamoto, K., M. Tada, Y. Kishimoto, M. Shibata, K. Kominato, T. Ooishi, S. Yamada, et al. "The Rydberg-Atom-Cavity Axion Search." In Dark Matter in Astro- and Particle Physics, 638–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56643-1_61.
Full textLebedev, Vladimir S., and Israel L. Beigman. "Classical and Quantum Description of Rydberg Atom." In Physics of Highly Excited Atoms and Ions, 11–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72175-5_2.
Full textHoogenraad, J. H., and L. D. Noordam. "Stepwise Decay in the Photoionization of Rydberg Atoms." In Super-Intense Laser-Atom Physics, 269–78. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-7963-2_23.
Full textWójcik, A., and R. Parzyński. "Stability Windows in Ionization Via Rydberg States." In Super-Intense Laser-Atom Physics IV, 55–64. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0261-9_6.
Full textAllegrini, M., F. Biraben, B. Cagnac, J. C. Garreau, and L. Julien. "Doppler-Free Two-Photon Spectroscopy of Hydrogen Rydberg States: Remeasurement of R∞." In The Hydrogen Atom, 49–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-88421-4_5.
Full textWade, Christopher G. "Atomic Structure and Atom-Light Interactions." In Terahertz Wave Detection and Imaging with a Hot Rydberg Vapour, 9–18. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94908-6_2.
Full textConference papers on the topic "Rydberg atom"
Sandidge, Georgia, Gabriel Santamaria-Botello, and Zoya Popovic. "Tunable Sensitivity Enhancement of a Rydberg-Atom Electrometer." In 2024 Conference on Precision Electromagnetic Measurements (CPEM), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/cpem61406.2024.10646113.
Full textYong, Fuyou, and Yang Yang. "Electric Field Measurement Method Based on Rydberg Atom." In 2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/irmmw-thz60956.2024.10697822.
Full textPrajapati, Nikunjkumar, Alexandra Artusio-Glimpse, Samuel Berweger, Matthew T. Simons, Noah Schlossberger, Dangka Shylla, William Watterson, Dixith Manchaiah, and Christopher L. Holloway. "Rydberg Atom Electrometry: Recent Sensitivity and Bandwidth Improvements." In 2024 International Symposium on Electromagnetic Compatibility – EMC Europe, 323–28. IEEE, 2024. http://dx.doi.org/10.1109/emceurope59828.2024.10722127.
Full textKurzyna, Stanisław, Bartosz Niewelt, Mateusz Mazelanik, Wojciech Wasilewski, and Michał Parniak. "Extending the lifetime of collective Rydberg qubits." In Quantum 2.0, QTh2A.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qth2a.3.
Full textPrajapati, Nikunjkumar, Samuel Berweger, Andrew P. Rotunno, Alexandra B. Artusio-Glimpse, Noah Schlossberger, Dangka Shylla, William J. Watterson, Matthew T. Simons, and Christopher L. Holloway. "Enhancing Bandwidth and Sensitivity of Rydberg Atom Based Sensors." In 2024 IEEE INC-USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), 372. IEEE, 2024. http://dx.doi.org/10.23919/inc-usnc-ursi61303.2024.10632408.
Full textKübler, Harald, Stephanie Bohaichuk, Florian Christaller, Vijin Venu, Matthias Schmidt, Chang Liu, and James Shaffer. "Colinear Three Photon Approach to Rydberg Atom-Based Sensors." In 2024 IEEE INC-USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), 01. IEEE, 2024. http://dx.doi.org/10.23919/inc-usnc-ursi61303.2024.10632529.
Full textBehary, Robert, Nicolas DeStefano, Irina Novikova, Eugeniy Mikhailov, Seth Aubin, Todd Averett, Saeed Pegahan, Kevin Su, Alexandre Camsonne, and Shukui Zhang. "Development of a Rydberg Atom-based Charged Particle Beam Tracker." In CLEO: Applications and Technology, JW2A.94. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jw2a.94.
Full textSchumacher, Lena, Jan Lowinski, Félix Hoffet, and Hugues de Riedmatten. "Towards Atomic Rydberg Ensembles as Quantum Network Nodes." In Quantum 2.0, QTh3A.40. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qth3a.40.
Full textBorówka, Sebasian, Wiktor Krokosz, Wojciech Wasilewski, Mateusz Mazelanik, and Michał Parniak. "Upconverting microwave and terahertz radiation using Rydberg atoms." In CLEO: Fundamental Science, FTu4L.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.ftu4l.2.
Full textParniak, Michal P. "Rydberg-atom transducer for sensitive detection of microwaves and mm-waves." In Quantum Technologies for Defence and Security, edited by Giacomo Sorelli, Sara Ducci, and Sylvain Schwartz, 15. SPIE, 2024. http://dx.doi.org/10.1117/12.3038033.
Full textReports on the topic "Rydberg atom"
Raithel, Georg. Interactions of Cold Rydberg Atoms in a High-Magnetic-Field Atom Trap - Final Report. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1015766.
Full textBiedermann, Grant, and Michael Martin. CPHASE gate with Rydberg atoms. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1814077.
Full textMarcassa, Luis G. Anisotropic Interactions between Cold Rydberg Atoms. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ada627619.
Full textMartin, Michael. Quantum information science with Rydberg atoms. Office of Scientific and Technical Information (OSTI), November 2020. http://dx.doi.org/10.2172/1711350.
Full textJones, Robert R. Information Storage and Processing in Rydberg Atoms. Fort Belvoir, VA: Defense Technical Information Center, December 2008. http://dx.doi.org/10.21236/ada496451.
Full textGallagher, Thomas F. Optical/Millimeter-Wave Double-Resonance Spectroscopy of Rydberg Atoms. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada427191.
Full textRevelle, Melissa, Michael Joseph Martin, and Grant Biedermann. A platform for quantum information and large-scale entanglement with Rydberg atoms in programmable optical potentials. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1493463.
Full text