To see the other types of publications on this topic, follow the link: RYRO.

Journal articles on the topic 'RYRO'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'RYRO.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Protasi, Feliciano, Alexander Shtifman, Fred J. Julian, and Paul D. Allen. "All three ryanodine receptor isoforms generate rapid cooling responses in muscle cells." American Journal of Physiology-Cell Physiology 286, no. 3 (March 2004): C662—C670. http://dx.doi.org/10.1152/ajpcell.00081.2003.

Full text
Abstract:
The rapid cooling (RC) response in muscle is an increase in cytoplasmic Ca2+concentration ([Ca2+]i) that is probably caused by Ca2+release from the sarcoplasmic reticulum (SR). However, the molecular bases of this response have not been completely elucidated. Three different isoforms of the SR Ca2+release channels, or ryanodine receptors (RyRs), have been isolated (RyR1, RyR2, and RyR3). In the current investigation, the RC response was studied in RyR-null muscle cells (1B5) before and after transduction with HSV-1 virions containing the cDNAs encoding for RyR1, RyR2, or RyR3. Cells were loaded with fluo 4-AM to monitor changes in [Ca2+]iand perfused with either cold (∼0°C), room temperature (RT), or RT buffer containing 40 mM caffeine. Control cells showed no significant response to cold or caffeine, whereas robust Ca2+transients were recorded in response to both RC and caffeine in transduced cells expressing any one of the three RyR isoforms. Our data demonstrate directly that RyRs are responsible for the RC response and that all three isoforms respond in a similar manner. Ca2+release from RyRs is likely caused by a RC-induced conformational change of the channel from the closed to the open state.
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Xiao-Ru, Mo-Jun Lin, Kay-Pong Yip, Loice H. Jeyakumar, Sidney Fleischer, George P. H. Leung, and James S. K. Sham. "Multiple ryanodine receptor subtypes and heterogeneous ryanodine receptor-gated Ca2+ stores in pulmonary arterial smooth muscle cells." American Journal of Physiology-Lung Cellular and Molecular Physiology 289, no. 2 (August 2005): L338—L348. http://dx.doi.org/10.1152/ajplung.00328.2004.

Full text
Abstract:
Ryanodine receptors (RyRs) of pulmonary arterial smooth muscle cells (PASMCs) play important roles in major physiological processes such as hypoxic pulmonary vasoconstriction and perinatal pulmonary vasodilatation. Recent studies show that three subtypes of RyRs are coexpressed and RyR-gated Ca2+ stores are distributed heterogeneously in systemic vascular myocytes. However, the molecular identity and subcellular distribution of RyRs have not been examined in PASMCs. In this study we detected mRNA and proteins of all three subtypes in rat intralobar PASMCs using RT-PCR and Western blot. Quantitative real-time RT-PCR showed that RyR2 mRNA was most abundant, ∼15–20 times more than the other two subtypes. Confocal fluorescence microscopy revealed that RyRs labeled with BODIPY TR-X ryanodine were localized in the peripheral and perinuclear regions and were colocalized with sarcoplasmic reticulum labeled with Fluo-5N. Immunostaining showed that the subsarcolemmal regions exhibited clear signals of RyR1 and RyR2, whereas the perinuclear compartments contained mainly RyR1 and RyR3. Ca2+ sparks were recorded in both regions, and their activities were enhanced by a subthreshold concentration of caffeine or by endothelin-1, indicating functional RyR-gated Ca2+ stores. Moreover, 18% of the perinuclear sparks were prolonged [full duration/half-maximum (FDHM) = 193.3 ± 22.6 ms] with noninactivating kinetics, in sharp contrast to the typical fast inactivating Ca2+ sparks (FDHM = 44.6 ± 3.2 ms) recorded in the same PASMCs. In conclusion, multiple RyR subtypes are expressed differentially in peripheral and perinuclear RyR-gated Ca2+ stores; the molecular complexity and spatial heterogeneity of RyRs may facilitate specific Ca2+ regulation of cellular functions in PASMCs.
APA, Harvard, Vancouver, ISO, and other styles
3

Giannini, G., A. Conti, S. Mammarella, M. Scrobogna, and V. Sorrentino. "The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues." Journal of Cell Biology 128, no. 5 (March 1, 1995): 893–904. http://dx.doi.org/10.1083/jcb.128.5.893.

Full text
Abstract:
Ryanodine receptors (RyRs) are intracellular calcium release channels that participate in controlling cytosolic calcium levels. At variance with the probably ubiquitous inositol 1,4,5-trisphosphate-operated calcium channels (1,4,5-trisphosphate receptors), RyRs have been mainly regarded as the calcium release channels controlling skeletal and cardiac muscle contraction. Increasing evidence has recently suggested that RyRs may be more widely expressed, but this has never been extensively examined. Therefore, we cloned three cDNAs corresponding to murine RyR homologues to carry a comprehensive analysis of their expression in murine tissues. Here, we report that the three genes are expressed in almost all tissues analyzed, where tissue-specific patterns of expression were observed. In the uterus and vas deferens, expression of RyR3 was localized to the smooth muscle component of these organs. In the testis, expression of RyR1 and RyR3 was detected in germ cells. RyR mRNAs were also detected in in vitro-cultured cell lines. RyR1, RyR2, and RyR3 mRNA were detected in the cerebrum and in the cerebellum. In situ analysis revealed a cell type-specific pattern of expression in the different regions of the central nervous system. The differential expression of the three ryanodine receptor genes in the central nervous system was also confirmed using specific antibodies against the respective proteins. This widespread pattern of expression suggests that RyRs may participate in the regulation of intracellular calcium homeostasis in a range of cells wider than previously recognized.
APA, Harvard, Vancouver, ISO, and other styles
4

Tian, Chengju, Caronda J. Moore, Puttappa Dodmane, Chun Hong Shao, Debra J. Romberger, Myron L. Toews, and Keshore R. Bidasee. "Dust from hog confinement facilities impairs Ca2+ mobilization from sarco(endo)plasmic reticulum by inhibiting ryanodine receptors." Journal of Applied Physiology 114, no. 5 (March 1, 2013): 665–74. http://dx.doi.org/10.1152/japplphysiol.00661.2012.

Full text
Abstract:
Individuals working in commercial hog confinement facilities have elevated incidences of headaches, depression, nausea, skeletal muscle weakness, fatigue, gastrointestinal disorders, and cardiovascular diseases, and the molecular mechanisms for these nonrespiratory ailments remain incompletely undefined. A common element underlying these diverse pathophysiologies is perturbation of intracellular Ca2+ homeostasis. This study assessed whether the dust generated inside hog confinement facilities contains compounds that alter Ca2+ mobilization via ryanodine receptors (RyRs), key intracellular channels responsible for mobilizing Ca2+ from internal stores to elicit an array of physiologic functions. Hog barn dust (HBD) was extracted with phosphate-buffered saline, sterile-filtered (0.22 μm), and size-separated using Sephadex G-100 resin. Fractions (F) 1 through 9 (Mw >10,000 Da) had no measurable effects on RyR isoforms. However, F10 through F17, which contained compounds of Mw ≤2,000 Da, modulated the [3H]ryanodine binding to RyR1, RyR2, and RyR3 in a biphasic (Gaussian) manner. The Ki values for F13, the most potent fraction, were 3.8 ± 0.2 μg/ml for RyR1, 0.2 ± 0.01 μg/ml and 19.1 ± 2.8 μg/ml for RyR2 (two binding sites), and 44.9 ± 2.8 μg/ml and 501.6 ± 9.2 μg/ml for RyR3 (two binding sites). In lipid bilayer assays, F13 dose-dependently decreased the open probabilities of RyR1, RyR2, and RyR3. Pretreating differentiated mouse skeletal myotubes (C2C12 cells) with F13 blunted the amplitudes of ryanodine- and K+-induced Ca2+ transients. Because RyRs are present in many cell types, impairment in Ca2+ mobilization from internal stores via these channels is a possible mechanism by which HBD may trigger these seemingly unrelated pathophysiologies.
APA, Harvard, Vancouver, ISO, and other styles
5

Zheng, Yun-Min, Qing-Song Wang, Rakesh Rathore, Wan-Hui Zhang, Joseph E. Mazurkiewicz, Vincenzo Sorrentino, Harold A. Singer, Michael I. Kotlikoff, and Yong-Xiao Wang. "Type-3 Ryanodine Receptors Mediate Hypoxia-, but Not Neurotransmitter-induced Calcium Release and Contraction in Pulmonary Artery Smooth Muscle Cells." Journal of General Physiology 125, no. 4 (March 28, 2005): 427–40. http://dx.doi.org/10.1085/jgp.200409232.

Full text
Abstract:
In this study we examined the expression of RyR subtypes and the role of RyRs in neurotransmitter- and hypoxia-induced Ca2+ release and contraction in pulmonary artery smooth muscle cells (PASMCs). Under perforated patch clamp conditions, maximal activation of RyRs with caffeine or inositol triphosphate receptors (IP3Rs) with noradrenaline induced equivalent increases in [Ca2+]i and Ca2+-activated Cl− currents in freshly isolated rat PASMCs. Following maximal IP3-induced Ca2+ release, neither caffeine nor chloro-m-cresol induced a response, whereas prior application of caffeine or chloro-m-cresol blocked IP3-induced Ca2+ release. In cultured human PASMCs, which lack functional expression of RyRs, caffeine failed to affect ATP-induced increases in [Ca2+]i in the presence and absence of extracellular Ca2+. The RyR antagonists ruthenium red, ryanodine, tetracaine, and dantrolene greatly inhibited submaximal noradrenaline– and hypoxia-induced Ca2+ release and contraction in freshly isolated rat PASMCs, but did not affect ATP-induced Ca2+ release in cultured human PASMCs. Real-time quantitative RT-PCR and immunofluorescence staining indicated similar expression of all three RyR subtypes (RyR1, RyR2, and RyR3) in freshly isolated rat PASMCs. In freshly isolated PASMCs from RyR3 knockout (RyR3−/−) mice, hypoxia-induced, but not submaximal noradrenaline–induced, Ca2+ release and contraction were significantly reduced. Ruthenium red and tetracaine can further inhibit hypoxic increase in [Ca2+]i in RyR3−/− mouse PASMCs. Collectively, our data suggest that (a) RyRs play an important role in submaximal noradrenaline– and hypoxia-induced Ca2+ release and contraction; (b) all three subtype RyRs are expressed; and (c) RyR3 gene knockout significantly inhibits hypoxia-, but not submaximal noradrenaline–induced Ca2+ and contractile responses in PASMCs.
APA, Harvard, Vancouver, ISO, and other styles
6

Vaithianathan, Thirumalini, Damodaran Narayanan, Maria T. Asuncion-Chin, Loice H. Jeyakumar, Jianxi Liu, Sidney Fleischer, Jonathan H. Jaggar, and Alejandro M. Dopico. "Subtype identification and functional characterization of ryanodine receptors in rat cerebral artery myocytes." American Journal of Physiology-Cell Physiology 299, no. 2 (August 2010): C264—C278. http://dx.doi.org/10.1152/ajpcell.00318.2009.

Full text
Abstract:
Ryanodine receptors (RyRs) regulate contractility in resistance-size cerebral artery smooth muscle, yet their molecular identity, subcellular location, and phenotype in this tissue remain unknown. Following rat resistance-size cerebral artery myocyte sarcoplasmic reticulum (SR) purification and incorporation into POPE-POPS-POPC (5:3:2; wt/wt) bilayers, unitary conductances of 110 ± 8, 334 ± 15, and 441 ± 27 pS in symmetric 300 mM Cs+ were usually detected. The most frequent (34/40 bilayers) conductance (334 pS) decreased to ≤100 pS when Cs+ was replaced with Ca2+. The predominant conductance displayed 66 bursts/min with at least three open and three closed states. The steady-state activity (NPo)-voltage curve was bell shaped, with NPo drastically decreasing when voltage was switched from −30 to −40 mV. NPo increased when intracellular calcium (Ca2+i) was raised within 0.1–100 μM to abruptly diminish with higher Ca2+i. Thus maximal activity occurred within the Ca2+i range found in rat cerebral artery myocytes under physiological conditions. NPo was reduced by ruthenium red (80 μM), increased monotonically by caffeine (0.1–5 mM) or ryanodine (0.05–5 μM), and unaffected by heparin (2 mg/ml). This phenotype resembles that of cardiac RyR and recombinant RyR2. RT-PCR detected RyR1, RyR2, and RyR3 transcripts in cerebral artery myocytes. However, real-time PCR indicated that RyR2 was 4 and 1.5 times more abundant than RyR1 and RyR3, respectively. Consistently, Western blotting showed that the RyR2 product was very abundant. Immunofluorescence showed that each RyR isoform distributed differentially among subcellular compartments. In particular, RyR2 was drastically stronger in the subplasmalemma than in other compartments, underscoring the predominance of RyR2 in a compartment where SR is abundant. Consistently, RyR from SR-enriched membranes displayed pharmacological specificity typical of RyR2, being activated by digoxin (1 μM), resistant to dantrolene (100 μM), and shifted to a subconductance by neomycin (100 nM). Therefore, RyR2 is the predominant molecular and functional RyR that is expressed in the SR membrane of rat resistance-size cerebral artery myocytes.
APA, Harvard, Vancouver, ISO, and other styles
7

Meissner, Gerhard. "The structural basis of ryanodine receptor ion channel function." Journal of General Physiology 149, no. 12 (November 9, 2017): 1065–89. http://dx.doi.org/10.1085/jgp.201711878.

Full text
Abstract:
Large-conductance Ca2+ release channels known as ryanodine receptors (RyRs) mediate the release of Ca2+ from an intracellular membrane compartment, the endo/sarcoplasmic reticulum. There are three mammalian RyR isoforms: RyR1 is present in skeletal muscle; RyR2 is in heart muscle; and RyR3 is expressed at low levels in many tissues including brain, smooth muscle, and slow-twitch skeletal muscle. RyRs form large protein complexes comprising four 560-kD RyR subunits, four ∼12-kD FK506-binding proteins, and various accessory proteins including calmodulin, protein kinases, and protein phosphatases. RyRs share ∼70% sequence identity, with the greatest sequence similarity in the C-terminal region that forms the transmembrane, ion-conducting domain comprising ∼500 amino acids. The remaining ∼4,500 amino acids form the large regulatory cytoplasmic “foot” structure. Experimental evidence for Ca2+, ATP, phosphorylation, and redox-sensitive sites in the cytoplasmic structure have been described. Exogenous effectors include the two Ca2+ releasing agents caffeine and ryanodine. Recent work describing the near atomic structures of mammalian skeletal and cardiac muscle RyRs provides a structural basis for the regulation of the RyRs by their multiple effectors.
APA, Harvard, Vancouver, ISO, and other styles
8

Vanterpool, Conwin K., Elaine A. Vanterpool, William J. Pearce, and John N. Buchholz. "Advancing age alters the expression of the ryanodine receptor 3 isoform in adult rat superior cervical ganglia." Journal of Applied Physiology 101, no. 2 (August 2006): 392–400. http://dx.doi.org/10.1152/japplphysiol.00167.2006.

Full text
Abstract:
Sympathetic nerves arising from the superior cervical ganglion (SCG) protect the cerebrovasculature during periods of acute hypertension and may play a role in homeostasis of target organs. The functions of these nerves depend on calcium release triggered by activation of ryanodine receptor (RyR) channels. The function of RyR channels is in part dependent on genetic expression and regulation by numerous protein modulators such as neuronal nitric oxide synthase (nNOS) neurons also found in the SCG. We have shown that release of calcium in SCG cells is altered during late maturation and advancing age. However, the underlying molecular mechanisms that may in part account for these data are elusive. Therefore we used molecular techniques to test the hypothesis that advancing age alters the pattern of genetic expression and/or protein levels of RyRs and their modulation by nNOS in the SCG in F344 rats aged 6, 12, and 24 mo. Surprisingly, ryr1 expression was undetectable in all age groups and ryr2 and ryr3 are the predominantly transcribed isoforms in the adult rat SCG. mRNA and protein levels for RyR2 isoform did not change with advancing age. However, ryr3 mRNA levels increased from 6 to 12 mo and declined from 12 to 24 mo. Similarly, RyR3 receptor protein levels also increased from 6 to 12 mo and declined from 12 to 24 mo. Because nNOS and the phosphorylation of the RyRs have been shown to modulate the function of RyRs, total phosphorylation and nNOS protein levels were analyzed in all age groups. Phosphorylation levels of the RyRs were similar in all age groups. However, nNOS protein levels increased from 6 to 12 mo followed by decline from 12 to 24 mo. These data suggest that advancing age selectively impacts the genetic expression and protein levels of RyR3 as well as modulatory nNOS protein levels. In addition, these data may part provide some insight into the possible changes in the function of RyRs that may occur with the normal aging process.
APA, Harvard, Vancouver, ISO, and other styles
9

Van Petegem, Filip. "The Ryanodine Receptor: Arrhythmias and Muscle Disorders at High Resolution." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C798. http://dx.doi.org/10.1107/s2053273314092018.

Full text
Abstract:
Calcium ions play crucial roles in our bodies, acting as second messengers in multiple signaling pathways. The resting calcium levels in the cytosol are very low, but can increase rapidly and transiently by influx from the extracellular space, or by release from intracellular stores. The Endoplasmic and Sarcoplasmic Reticulum (ER/SR) form major intracellular calcium stores. The `Ryanodine Receptor' (RyR) is a protein that dictates calcium release from the ER/SR. It forms a huge ion channel with a molecular weight exceeding 2 MegaDalton. RyRs are expressed in multiple cell types, but are particularly abundant in cardiac and skeletal muscle, where they are directly involved in excitation-contraction coupling. Three RyR isoforms exist in mammalian species (RyR1, RyR2, RyR3). Mutations in RyR1 and RyR2 have been linked to a number of devastating genetic disorders, including stress-induced cardiac arrhythmias (CPVT), malignant hyperthermia, and central core disease. In the past 5 years we have been solving crystal structures of several RyR domains. Cryo-electron microscopy structures have helped us to build pseudo-atomic models, allowing us to locate these domains in full-length RyRs. Over 80 disease mutations are scattered throughout the structures. The bulk of these affect domain-domain interactions. By comparing the RyR in the open and closed state, we find that some of these interactions are labile: they are disrupted during channel opening. Many disease mutations weaken these interactions, leading to facilitated channel opening, resulting in premature or prolonged release of calcium. In addition, many other disease mutations affect the same labile interactions allosterically. Stabilizing the closed-state domain-domain interactions may therefore be of therapeutic value.
APA, Harvard, Vancouver, ISO, and other styles
10

Marks, A. R. "Intracellular calcium-release channels: regulators of cell life and death." American Journal of Physiology-Heart and Circulatory Physiology 272, no. 2 (February 1, 1997): H597—H605. http://dx.doi.org/10.1152/ajpheart.1997.272.2.h597.

Full text
Abstract:
Intracellular Ca2+-release channels on the sarcoplasmic reticulum of striated muscle [ryanodine receptors (RyRs)] and on the endoplasmic reticulum of almost all types of cells [inositol 1,4,5-trisphosphate receptors (IP3Rs)] comprise a unique family of molecules that are structurally and functionally distinct from all other known ion channels. These channels play crucial roles in Ca2+-mediated signaling that triggers excitation-contraction coupling, T-lymphocyte activation, fertilization, and many other cellular functions. Three forms of RyR have been identified: RyR1, expressed predominantly in skeletal muscle; RyR2, expressed predominantly in cardiac muscle; and RyR3, expressed in specialized muscles and nonmuscle tissues including the brain. RyR channels are tetramers composed of four subunits each with a molecular mass of approximately 560,000 Da. The tetrameric structures of RyR1 and RyR2 are stabilized by a channel-associated protein known as the FK506 binding protein (FKBP). FKBP is the cytosolic receptor for the immunosuppressant drugs FK506 and rapamycin that inhibit the prolyl isomerase activity of FKBP and can dissociate FKBP from RyRs. Rapamycin and FK506 increase the sensitivity of RyRs to agonists such as caffeine and could be a cause of cardiac dysfunction associated with high-dose immunosuppressant therapy by promoting leakage of Ca2+ from the sarcoplasmic reticulum. The role of prolyl isomerase activity of FKBP in regulating RyR function remains uncertain, and several models have been proposed that could explain how the channel is modulated by its association with FKBP. Three forms of IP3Rs (types 1, 2 and 3) have been characterized by cDNA cloning. Most cells have at least one form of IP3R, and many express all three types. Like RyRs, the IP3R channels are tetramers composed of four subunits (approximately 300,000 Da each). IP3R1 function is regulated by at least two major cellular signaling pathways: the second messenger IP3 activates the channel, and phosphorylation by nonreceptor protein tyrosine kinases (e.g., Fyn) increase its open probability. During end-stage human heart failure, RyR2 mRNA and protein are downregulated, whereas IP3R1 is upregulated, suggesting that altered Ca2+-release channel levels may contribute to defects in Ca2+ homeostasis. Cells that are deficient in IP3R1 exhibit defective T cell-receptor signaling and thus cannot be activated by T cell-receptor stimulation. IP3R1-deficient cells are also resistant to induced apoptosis. Thus RyRs and IP3Rs play critical roles in fundamental and diverse signaling phenomena that include excitation-contraction coupling, T-cell activation, and programmed cell death.
APA, Harvard, Vancouver, ISO, and other styles
11

Morrissette, Jeffery, Le Xu, Alexandra Nelson, Gerhard Meissner, and Barbara A. Block. "Characterization of RyR1-slow, a ryanodine receptor specific to slow-twitch skeletal muscle." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 279, no. 5 (November 1, 2000): R1889—R1898. http://dx.doi.org/10.1152/ajpregu.2000.279.5.r1889.

Full text
Abstract:
Two distinct skeletal muscle ryanodine receptors (RyR1s) are expressed in a fiber type–specific manner in fish skeletal muscle (11). In this study, we compare [3H]ryanodine binding and single channel activity of RyR1-slow from fish slow-twitch skeletal muscle with RyR1-fast and RyR3 isolated from fast-twitch skeletal muscle. Scatchard plots indicate that RyR1-slow has a lower affinity for [3H]ryanodine when compared with RyR1-fast. In single channel recordings, RyR1-slow and RyR1-fast had similar slope conductances. However, the maximum open probability (Po) of RyR1-slow was threefold less than the maximum Po of RyR1-fast. Single channel studies also revealed the presence of two populations of RyRs in tuna fast-twitch muscle (RyR1-fast and RyR3). RyR3 had the highest Po of all the RyR channels and displayed less inhibition at millimolar Ca2+. The addition of 5 mM Mg-ATP or 2.5 mM β,γ-methyleneadenosine 5′-triphosphate (AMP-PCP) to the channels increased the Po and [3H]ryanodine binding of both RyR1s but also caused a shift in the Ca2+ dependency curve of RyR1-slow such that Ca2+-dependent inactivation was attenuated. [3H]ryanodine binding data also showed that Mg2+-dependent inhibition of RyR1-slow was reduced in the presence of AMP-PCP. These results indicate differences in the physiological properties of RyRs in fish slow- and fast-twitch skeletal muscle, which may contribute to differences in the way intracellular Ca2+ is regulated in these muscle types.
APA, Harvard, Vancouver, ISO, and other styles
12

OTTINI, Laura, Giovanna MARZIALI, Antonio CONTI, Alexandra CHARLESWORTH, and Vincenzo SORRENTINO. "α and β isoforms of ryanodine receptor from chicken skeletal muscle are the homologues of mammalian RyR1 and RyR3." Biochemical Journal 315, no. 1 (April 1, 1996): 207–16. http://dx.doi.org/10.1042/bj3150207.

Full text
Abstract:
To define the relationship between the two ryanodine receptor (RyR) isoforms present in chicken skeletal muscle, we cloned two groups of cDNAs encoding the chicken homologues of mammalian RyR1 and RyR3. Equivalent amounts of the two chicken isoform mRNAs were detected in thigh and pectoral skeletal muscles. RyR1 and RyR3 mRNAs were co-expressed in testis and cerebellum whereas RyR3 mRNA was expressed also in cerebrum and heart. The full-length sequence of the chicken RyR3 cDNA was established. The RyR3 receptor from chicken had the same general structure as mammalian and amphibian RyRs. The 15089 nt cDNA encoded a 4869-amino-acid-long protein with a molecular mass of 552445. The predicted amino acid sequence of the chicken RyR3 showed 86.9% identity to mammalian RyR3 and 85.6% to frog RyR3. Antibodies specific for chicken RyR1 and RyR3 recognized two different proteins with an apparent molecular mass of about 500 kDa. The two proteins differ slightly in their apparent molecular mass on SDS/PAGE: the protein recognized by antibodies against RyR3 had a higher mobility than the protein recognized by the antiserum against RyR1. Antibodies against RyR1 detected a protein already present in chicken skeletal muscle from 12-day-old embryos and older, while antibodies against RyR3 isoform detected a protein in muscle from only 18-day-old embryos and older. The expression patterns of RyR1 and RyR3 superimpose with those previously reported for the α and the β isoforms respectively. We conclude that α and β isoforms present in chicken skeletal muscle are the homologues of mammalian RyR1 and RyR3.
APA, Harvard, Vancouver, ISO, and other styles
13

Rossi, Daniela, Ilenia Simeoni, Marcella Micheli, Martin Bootman, Peter Lipp, Paul D. Allen, and Vincenzo Sorrentino. "RyR1 and RyR3 isoforms provide distinct intracellular Ca2+signals in HEK 293 cells." Journal of Cell Science 115, no. 12 (June 15, 2002): 2497–504. http://dx.doi.org/10.1242/jcs.115.12.2497.

Full text
Abstract:
Ryanodine receptors (RyRs) are expressed on the endoplasmic reticulum of many cells, where they form intracellular Ca2+-release channels that participate in the generation of intracellular Ca2+ signals. Here we report studies on the intracellular localisation and functional properties of transfected RyR1 or RyR3 channels in HEK 293 cells. Immunofluorescence studies indicated that both RyR1 and RyR3 did not form clusters but were homogeneously distributed throughout the endoplasmic reticulum. Ca2+ release experiments showed that transfected RyR1 and RyR3 channels responded to caffeine, although with different sensitivity,generating a global release of Ca2+ from the entire endoplasmic reticulum. However, video imaging and confocal microscopy analysis revealed that, in RyR3-expressing cells, local spontaneous Ca2+ release events were observed. No such spontaneous activity was observed in RyR1-expressing cells or in control cells. Interestingly, the spontaneous release events observed in RyR3-expressing cells were restricted to one or two regions of the endoplasmic reticulum, suggesting the formation of a further subcellular organisation of RyR3 in Ca2+ release units. These results demonstrate that different RyR isoforms can engage in the generation of distinct intracellular Ca2+ signals in HEK 293 cells.
APA, Harvard, Vancouver, ISO, and other styles
14

Perez, Claudio F., José R. López, and Paul D. Allen. "Expression levels of RyR1 and RyR3 control resting free Ca2+ in skeletal muscle." American Journal of Physiology-Cell Physiology 288, no. 3 (March 2005): C640—C649. http://dx.doi.org/10.1152/ajpcell.00407.2004.

Full text
Abstract:
To better understand the role of the transient expression of ryanodine receptor (RyR) type 3 (RyR3) on Ca2+ homeostasis during the development of skeletal muscle, we have analyzed the effect of expression levels of RyR3 and RyR1 on the overall physiology of cultured myotubes and muscle fibers. Dyspedic myotubes were infected with RyR1 or RyR3 containing virions at 0.2, 0.4, 1.0, and 4.0 moieties of infection (MOI), and analysis of their pattern of expression, caffeine sensitivity, and resting free Ca2+ concentration ([Ca2+]r) was performed. Although increased MOI resulted in increased expression of each receptor isoform, it did not significantly affect the immunopattern of RyRs or the expression levels of calsequestrin, triadin, or FKBP-12. Interestingly, myotubes expressing RyR3 always had significantly higher [Ca2+]r and lower caffeine EC50 than did cells expressing RyR1. Although some of the increased sensitivity of RyR3 to caffeine could be attributed to the higher [Ca2+]r in RyR3-expressing cells, studies of [3H]ryanodine binding demonstrated intrinsic differences in caffeine sensitivity between RyR1 and RyR3. Tibialis anterior (TA) muscle fibers at different stages of postnatal development exhibited a transient increase in [Ca2+]r coordinately with their level of RyR3 expression. Similarly, adult soleus fibers, which also express RyR3, had higher [Ca2+]r than did adult TA fibers, which exclusively express RyR1. These data show that in skeletal muscle, RyR3 increases [Ca2+]r more than RyR1 does at any expression level. These data suggest that the coexpression of RyR1 and RyR3 at different levels may constitute a novel mechanism by which to regulate [Ca2+]r in skeletal muscle.
APA, Harvard, Vancouver, ISO, and other styles
15

CONTI, Antonio, L. GORZA, and Vincenzo SORRENTINO. "Differential distribution of ryanodine receptor type 3 (RyR3) gene product in mammalian skeletal muscles." Biochemical Journal 316, no. 1 (May 15, 1996): 19–23. http://dx.doi.org/10.1042/bj3160019.

Full text
Abstract:
Activation of intracellular Ca2+-release channels/ryanodine receptors (RyRs) is a fundamental step in the regulation of muscle contraction. In mammalian skeletal muscle, Ca2+-release channels containing the type 1 isoform of RyR (RyR1) open to release Ca2+ from the sarcoplasmic reticulum (SR) upon stimulation by the voltage-activated dihydropyridine receptor on the T-tubule/plasma membrane. In addition to RyR1, low levels of the mRNA of the RyR3 isoform have been recently detected in mammalian skeletal muscles. Here we report data on the distribution of the RyR3 gene product in mammalian skeletal muscles. Western-blot analysis of SR of individual muscles indicated that, at variance with the even distribution of the RyR1 isoform, the RyR3 content varies among different muscles, with relatively higher amounts being detected in diaphragm and soleus, and lower levels in abdominal muscles and tibialis anterior. In these muscles RyR3 was localized in the terminal cisternae of the SR. No detectable levels of RyR3 were observed in the extensor digitorum longus. Preferential high content of RyR3 in the diaphragm muscle was observed in several mammalian species. In situ hybridization analysis demonstrated that RyR3 transcripts are not restricted to a specific subset of skeletal-muscle fibres. Differential utilization of the RyR3 isoform in skeletal muscle may be relevant to the modulation of Ca2+ release with respect to specific muscle-contraction properties.
APA, Harvard, Vancouver, ISO, and other styles
16

Jo, Michiko, Andrea N. Trujillo, Ying Yang, and Jerome W. Breslin. "Evidence of functional ryanodine receptors in rat mesenteric collecting lymphatic vessels." American Journal of Physiology-Heart and Circulatory Physiology 317, no. 3 (September 1, 2019): H561—H574. http://dx.doi.org/10.1152/ajpheart.00564.2018.

Full text
Abstract:
In the current study, the potential contributions of ryanodine receptors (RyRs) to intrinsic pumping and responsiveness to substance P (SP) were investigated in isolated rat mesenteric collecting lymphatic vessels. Responses to SP were characterized in lymphatic vessels in the absence or presence of pretreatment with nifedipine to block L-type Ca2+ channels, caffeine to block normal release and uptake of Ca2+ from the sarcoplasmic reticulum, ryanodine to block all RyR isoforms, or dantrolene to more selectively block RyR1 and RyR3. RyR expression and localization in lymphatics was also assessed by quantitative PCR and immunofluorescence confocal microscopy. The results show that SP normally elicits a significant increase in contraction frequency and a decrease in end-diastolic diameter. In the presence of nifedipine, phasic contractions stop, yet subsequent SP treatment still elicits a strong tonic contraction. Caffeine treatment gradually relaxes lymphatics, causing a loss of phasic contractions, and prevents subsequent SP-induced tonic contraction. Ryanodine also gradually diminishes phasic contractions but without causing vessel relaxation and significantly inhibits the SP-induced tonic contraction. Dantrolene treatment did not significantly impair lymphatic contractions nor the response to SP. The mRNA for all RyR isoforms is detectable in isolated lymphatics. RyR2 and RyR3 proteins are found predominantly in the collecting lymphatic smooth muscle layer. Collectively, the data suggest that SP-induced tonic contraction requires both extracellular Ca2+ plus Ca2+ release from internal stores and that RyRs play a role in the normal contractions and responsiveness to SP of rat mesenteric collecting lymphatics. NEW & NOTEWORTHY The mechanisms that govern contractions of lymphatic vessels remain unclear. Tonic contraction of lymphatic vessels caused by substance P was blocked by caffeine, which prevents normal uptake and release of Ca2+ from internal stores, but not nifedipine, which blocks L-type channel-mediated Ca2+ entry. Ryanodine, which also disrupts normal sarcoplasmic reticulum Ca2+ release and reuptake, significantly inhibited substance P-induced tonic contraction. Ryanodine receptors 2 and 3 were detected within the smooth muscle layer of collecting lymphatic vessels.
APA, Harvard, Vancouver, ISO, and other styles
17

MOUTON, Jérôme, Isabelle MARTY, Michel VILLAZ, Anne FELTZ, and Yves MAULET. "Molecular interaction of dihydropyridine receptors with type-1 ryanodine receptors in rat brain." Biochemical Journal 354, no. 3 (March 8, 2001): 597–603. http://dx.doi.org/10.1042/bj3540597.

Full text
Abstract:
In striated muscles, Ca2+ release from internal stores through ryanodine receptor (RyR) channels is triggered by functional coupling to voltage-activated Ca2+ channels known as dihydropyridine receptors (DHPRs) located in the plasma membrane. In skeletal muscle, this occurs by a direct conformational link between the tissue-specific DHPR (Cav1.1) and RyR1, whereas in the heart the signal is carried from the cardiac-type DHPR (Cav1.2) to RyR2 by calcium ions acting as an activator. Subtypes of both channels are expressed in the central nervous system, but their functions and mechanisms of coupling are still poorly understood. We show here that complexes immunoprecipitated from solubilized rat brain membranes with antibodies against DHPR of the Cav1.2 or Cav1.3 subtypes contain RyR. Only type-1 RyR is co-precipitated, although the major brain isoform is RyR2. This suggests that, in neurons, DHPRs could communicate with RyRs by way of a strong molecular interaction and, more generally, that the physical link between DHPR and RyR shown to exist in skeletal muscle can be extended to other tissues.
APA, Harvard, Vancouver, ISO, and other styles
18

Flucher, Bernhard E., Antonio Conti, Hiroshi Takeshima, and Vincenzo Sorrentino. "Type 3 and Type 1 Ryanodine Receptors Are Localized in Triads of the Same Mammalian Skeletal Muscle Fibers." Journal of Cell Biology 146, no. 3 (August 9, 1999): 621–30. http://dx.doi.org/10.1083/jcb.146.3.621.

Full text
Abstract:
The type 3 ryanodine receptor (RyR3) is a ubiquitous calcium release channel that has recently been found in mammalian skeletal muscles. However, in contrast to the skeletal muscle isoform (RyR1), neither the subcellular distribution nor the physiological role of RyR3 are known. Here, we used isoform-specific antibodies to localize RyR3 in muscles of normal and RyR knockout mice. In normal hind limb and diaphragm muscles of young mice, RyR3 was expressed in all fibers where it was codistributed with RyR1 and with the skeletal muscle dihydropyridine receptor. This distribution pattern indicates that RyR3 is localized in the triadic junctions between the transverse tubules and the sarcoplasmic reticulum. During development, RyR3 expression declined rapidly in some fibers whereas other fibers maintained expression of RyR3 into adulthood. Comparing the distribution of RyR3-containing fibers with that of known fiber types did not show a direct correlation. Targeted deletion of the RyR1 or RyR3 gene resulted in the expected loss of the targeted isoform, but had no adverse effects on the expression and localization of the respective other RyR isoform. The localization of RyR3 in skeletal muscle triads, together with RyR1, is consistent with an accessory function of RyR3 in skeletal muscle excitation–contraction coupling.
APA, Harvard, Vancouver, ISO, and other styles
19

Haseeb, Mohsin, and Paul D. Thompson. "The effect of statins on RyR and RyR-associated disease." Journal of Applied Physiology 131, no. 2 (August 1, 2021): 661–71. http://dx.doi.org/10.1152/japplphysiol.01003.2020.

Full text
Abstract:
We sought to review the effects of statins on the ryanodine receptor (RyR) and on RyR-associated diseases, with an emphasis on catecholaminergic polymorphic ventricular tachycardia (CPVT). Statins can affect skeletal muscle and produce statin-associated muscle symptoms (SAMS) but have no adverse effects on cardiac muscle. These contrasting effects may be due to differences in how statins affect the skeletal (RyR1) and cardiac (RyR2) RyR. We searched PubMed to identify English language articles reporting the pathophysiology of the RyR, the effect of statins on RyR function, and on RyR-associated genetic diseases. We selected 150 articles for abstract review, 96 of which provided sufficient information to be included and were reviewed in detail. Fifteen articles highlighted the interaction of statins with the RyR. Nine identified the interaction of statins with RyR1, six addressed the interaction of statins with RyR2, 13 suggested that statins reduce ventricular arrhythmias (VA), and seven suggested that statins increase the risk of malignant hyperthermia (MH). In general, statins increase RyR1 and decrease RyR2 activity. We identified no articles examining the effect of statins on CPVT, a condition often caused by defects in RyR2. Statins appear to increase the risk of MH and decrease the risk of ventricular arrhythmia. The effect of statins on CPVT has not been directly examined, but statins’ reduction in RyR2 function and their apparent reduction in VA suggest that they may be beneficial in this condition.
APA, Harvard, Vancouver, ISO, and other styles
20

Lifshitz, Lawrence M., Jeffrey D. Carmichael, F. Anthony Lai, Vincenzo Sorrentino, Karl Bellvé, Kevin E. Fogarty, and Ronghua ZhuGe. "Spatial organization of RYRs and BK channels underlying the activation of STOCs by Ca2+ sparks in airway myocytes." Journal of General Physiology 138, no. 2 (July 11, 2011): 195–209. http://dx.doi.org/10.1085/jgp.201110626.

Full text
Abstract:
Short-lived, localized Ca2+ events mediate Ca2+ signaling with high efficiency and great fidelity largely as a result of the close proximity between Ca2+-permeable ion channels and their molecular targets. However, in most cases, direct evidence of the spatial relationship between these two types of molecules is lacking, and, thus, mechanistic understanding of local Ca2+ signaling is incomplete. In this study, we use an integrated approach to tackling this issue on a prototypical local Ca2+ signaling system composed of Ca2+ sparks resulting from the opening of ryanodine receptors (RYRs) and spontaneous transient outward currents (STOCs) caused by the opening of Ca2+-activated K+ (BK) channels in airway smooth muscle. Biophysical analyses of STOCs and Ca2+ sparks acquired at 333 Hz demonstrate that these two events are associated closely in time, and approximately eight RYRs open to give rise to a Ca2+ spark, which activates ∼15 BK channels to generate a STOC at 0 mV. Dual immunocytochemistry and 3-D deconvolution at high spatial resolution reveal that both RYRs and BK channels form clusters and RYR1 and RYR2 (but not RYR3) localize near the membrane. Using the spatial relationship between RYRs and BK channels, the spatial-temporal profile of [Ca2+] resulting from Ca2+ sparks, and the kinetic model of BK channels, we estimate that an average Ca2+ spark caused by the opening of a cluster of RYR1 or RYR2 acts on BK channels from two to three clusters that are randomly distributed within an ∼600-nm radius of RYRs. With this spatial organization of RYRs and BK channels, we are able to model BK channel currents with the same salient features as those observed in STOCs across a range of physiological membrane potentials. Thus, this study provides a mechanistic understanding of the activation of STOCs by Ca2+ sparks using explicit knowledge of the spatial relationship between RYRs (the Ca2+ source) and BK channels (the Ca2+ target).
APA, Harvard, Vancouver, ISO, and other styles
21

Chami, Mounia, and Frédéric Checler. "Targeting Post-Translational Remodeling of Ryanodine Receptor: A New Track for Alzheimer's Disease Therapy?" Current Alzheimer Research 17, no. 4 (June 29, 2020): 313–23. http://dx.doi.org/10.2174/1567205017666200225102941.

Full text
Abstract:
Pathologic calcium (Ca2+) signaling linked to Alzheimer’s Disease (AD) involves the intracellular Ca2+ release channels/ryanodine receptors (RyRs). RyRs are macromolecular complexes where the protein-protein interactions between RyRs and several regulatory proteins impact the channel function. Pharmacological and genetic approaches link the destabilization of RyRs macromolecular complexes to several human pathologies including brain disorders. In this review, we discuss our recent data, which demonstrated that enhanced neuronal RyR2-mediated Ca2+ leak in AD is associated with posttranslational modifications (hyperphosphorylation, oxidation, and nitrosylation) leading to RyR2 macromolecular complex remodeling, and dissociation of the stabilizing protein Calstabin2 from the channel. We describe RyR macromolecular complex structure and discuss the molecular mechanisms and signaling cascade underlying neuronal RyR2 remodeling in AD. We provide evidence linking RyR2 dysfunction with β-adrenergic signaling cascade that is altered in AD. RyR2 remodeling in AD leads to histopathological lesions, alteration of synaptic plasticity, learning and memory deficits. Targeting RyR macromolecular complex remodeling should be considered as a new therapeutic window to treat/or prevent AD setting and/or progression.
APA, Harvard, Vancouver, ISO, and other styles
22

Chen, Wenqian, Andrea Koop, Yingjie Liu, Wenting Guo, Jinhong Wei, Ruiwu Wang, David H. MacLennan, Robert T. Dirksen, and Sui Rong Wayne Chen. "Reduced threshold for store overload-induced Ca2+ release is a common defect of RyR1 mutations associated with malignant hyperthermia and central core disease." Biochemical Journal 474, no. 16 (August 7, 2017): 2749–61. http://dx.doi.org/10.1042/bcj20170282.

Full text
Abstract:
Mutations in the skeletal muscle ryanodine receptor (RyR1) cause malignant hyperthermia (MH) and central core disease (CCD), whereas mutations in the cardiac ryanodine receptor (RyR2) lead to catecholaminergic polymorphic ventricular tachycardia (CPVT). Most disease-associated RyR1 and RyR2 mutations are located in the N-terminal, central, and C-terminal regions of the corresponding ryanodine receptor (RyR) isoform. An increasing body of evidence demonstrates that CPVT-associated RyR2 mutations enhance the propensity for spontaneous Ca2+ release during store Ca2+ overload, a process known as store overload-induced Ca2+ release (SOICR). Considering the similar locations of disease-associated RyR1 and RyR2 mutations in the RyR structure, we hypothesize that like CPVT-associated RyR2 mutations, MH/CCD-associated RyR1 mutations also enhance SOICR. To test this hypothesis, we determined the impact on SOICR of 12 MH/CCD-associated RyR1 mutations E2347-del, R2163H, G2434R, R2435L, R2435H, and R2454H located in the central region, and Y4796C, T4826I, L4838V, A4940T, G4943V, and P4973L located in the C-terminal region of the channel. We found that all these RyR1 mutations reduced the threshold for SOICR. Dantrolene, an acute treatment for MH, suppressed SOICR in HEK293 cells expressing the RyR1 mutants R164C, Y523S, R2136H, R2435H, and Y4796C. Interestingly, carvedilol, a commonly used β-blocker that suppresses RyR2-mediated SOICR, also inhibits SOICR in these RyR1 mutant HEK293 cells. Therefore, these results indicate that a reduced SOICR threshold is a common defect of MH/CCD-associated RyR1 mutations, and that carvedilol, like dantrolene, can suppress RyR1-mediated SOICR. Clinical studies of the effectiveness of carvedilol as a long-term treatment for MH/CCD or other RyR1-associated disorders may be warranted.
APA, Harvard, Vancouver, ISO, and other styles
23

Murayama, Takashi, and Yasuo Ogawa. "RyR1 exhibits lower gain of CICR activity than RyR3 in the SR: evidence for selective stabilization of RyR1 channel." American Journal of Physiology-Cell Physiology 287, no. 1 (July 2004): C36—C45. http://dx.doi.org/10.1152/ajpcell.00395.2003.

Full text
Abstract:
We showed that frog α-ryanodine receptor (α-RyR) had a lower gain of Ca2+-induced Ca2+ release (CICR) activity than β-RyR in sarcoplasmic reticulum (SR) vesicles, indicating selective “stabilization” of the former isoform (Murayama T and Ogawa Y. J Biol Chem 276: 2953–2960, 2001). To know whether this is also the case with mammalian RyR1, we determined [3H]ryanodine binding of RyR1 and RyR3 in bovine diaphragm SR vesicles. The value of [3H]ryanodine binding (B) was normalized by the number of maximal binding sites (Bmax), whereby the specific activity of each isoform was expressed. This B/Bmax expression demonstrated that ryanodine binding of individual channels for RyR1 was <15% that for RyR3. Responses to Ca2+, Mg2+, adenine nucleotides, and caffeine were not substantially different between in situ and purified isoforms. These results suggest that the gain of CICR activity of RyR1 is markedly lower than that of RyR3 in mammalian skeletal muscle, indicating selective stabilization of RyR1 as is true of frog α-RyR. The stabilization was partly eliminated by FK506 and partly by solubilization of the vesicles with CHAPS, each of which was additive to the other. In contrast, high salt, which greatly enhances [3H]ryanodine binding, caused only a minor effect on the stabilization of RyR1. None of the T-tubule components, coexisting RyR3, or calmodulin was the cause. The CHAPS-sensitive intra- and intermolecular interactions that are common between mammalian and frog skeletal muscles and the isoform-specific inhibition by FKBP12, which is characteristic of mammals, are likely to be the underlying mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
24

KISELYOV, Kirill, Dong Min SHIN, Nikolay SHCHEYNIKOV, Tomohiro KUROSAKI, and Shmuel MUALLEM. "Regulation of Ca2+-release-activated Ca2+ current (Icrac) by ryanodine receptors in inositol 1,4,5-trisphosphate-receptor-deficient DT40 cells." Biochemical Journal 360, no. 1 (November 8, 2001): 17–22. http://dx.doi.org/10.1042/bj3600017.

Full text
Abstract:
Persistence of capacitative Ca2+ influx in inositol 1,4,5-trisphosphate (IP3) receptor (IP3R)-deficient DT40 cells (DT40IP3R-/−) raises the question of whether gating of Ca2+-release activated Ca2+ current (Icrac) by conformational coupling to Ca2+-release channels is a general mechanism of gating of these channels. In the present work we examined the properties and mechanism of activation of Icrac Ca2+ current in wild-type and DT40IP3R-/− cells. In both cell types passive depletion of internal Ca2+ stores by infusion of EGTA activated a Ca2+ current with similar characteristics and time course. The current was highly Ca2+-selective and showed strong inward rectification, all typical of Icrac. The activator of ryanodine receptor (RyR), cADP-ribose (cADPR), facilitated activation of Icrac, and the inhibitors of the RyRs, 8-N-cADPR, ryanodine and Ruthenium Red, all inhibited Icrac activation in DT40IP3R-/− cells, even after complete depletion of intracellular Ca2+ stores by ionomycin. Wild-type and DT40IP3R-/− cells express RyR isoforms 1 and 3. RyR levels were adapted in DT40IP3R-/− cells to a lower RyR3/RyR1 ratio than in wild-type cells. These results suggest that IP3Rs and RyRs can efficiently gate Icrac in DT40 cells and explain the persistence of Icrac gating by internal stores in the absence of IP3Rs.
APA, Harvard, Vancouver, ISO, and other styles
25

Hollingworth, Stephen, and Stephen M. Baylor. "Comparison of myoplasmic calcium movements during excitation–contraction coupling in frog twitch and mouse fast-twitch muscle fibers." Journal of General Physiology 141, no. 5 (April 29, 2013): 567–83. http://dx.doi.org/10.1085/jgp.201310961.

Full text
Abstract:
Single twitch fibers from frog leg muscles were isolated by dissection and micro-injected with furaptra, a rapidly responding fluorescent Ca2+ indicator. Indicator resting fluorescence (FR) and the change evoked by an action potential (ΔF) were measured at long sarcomere length (16°C); ΔF/FR was scaled to units of ΔfCaD, the change in fraction of the indicator in the Ca2+-bound form. ΔfCaD was simulated with a multicompartment model of the underlying myoplasmic Ca2+ movements, and the results were compared with previous measurements and analyses in mouse fast-twitch fibers. In frog fibers, sarcoplasmic reticulum (SR) Ca2+ release evoked by an action potential appears to be the sum of two components. The time course of the first component is similar to that of the entire Ca2+ release waveform in mouse fibers, whereas that of the second component is severalfold slower; the fractional release amounts are ∼0.8 (first component) and ∼0.2 (second component). Similar results were obtained in frog simulations with a modified model that permitted competition between Mg2+ and Ca2+ for occupancy of the regulatory sites on troponin. An anatomical basis for two release components in frog fibers is the presence of both junctional and parajunctional SR Ca2+ release channels (ryanodine receptors [RyRs]), whereas mouse fibers (usually) have only junctional RyRs. Also, frog fibers have two RyR isoforms, RyRα and RyRβ, whereas the mouse fibers (usually) have only one, RyR1. Our simulations suggest that the second release component in frog fibers functions to supply extra Ca2+ to activate troponin, which, in mouse fibers, is not needed because of the more favorable location of their triadic junctions (near the middle of the thin filament). We speculate that, in general, parajunctional RyRs permit increased myofilament activation in fibers whose triadic junctions are located at the z-line.
APA, Harvard, Vancouver, ISO, and other styles
26

Ji, Guangju, Morris E. Feldman, Kai Su Greene, Vincenzo Sorrentino, Hong-Bo Xin, and Michael I. Kotlikoff. "RYR2 Proteins Contribute to the Formation of Ca2+ Sparks in Smooth Muscle." Journal of General Physiology 123, no. 4 (March 15, 2004): 377–86. http://dx.doi.org/10.1085/jgp.200308999.

Full text
Abstract:
Calcium release through ryanodine receptors (RYR) activates calcium-dependent membrane conductances and plays an important role in excitation-contraction coupling in smooth muscle. The specific RYR isoforms associated with this release in smooth muscle, and the role of RYR-associated proteins such as FK506 binding proteins (FKBPs), has not been clearly established, however. FKBP12.6 proteins interact with RYR2 Ca2+ release channels and the absence of these proteins predictably alters the amplitude and kinetics of RYR2 unitary Ca2+ release events (Ca2+ sparks). To evaluate the role of specific RYR2 and FBKP12.6 proteins in Ca2+ release processes in smooth muscle, we compared spontaneous transient outward currents (STOCs), Ca2+ sparks, Ca2+-induced Ca2+ release, and Ca2+ waves in smooth muscle cells freshly isolated from wild-type, FKBP12.6−/−, and RYR3−/− mouse bladders. Consistent with a role of FKBP12.6 and RYR2 proteins in spontaneous Ca2+ sparks, we show that the frequency, amplitude, and kinetics of spontaneous, transient outward currents (STOCs) and spontaneous Ca2+ sparks are altered in FKBP12.6 deficient myocytes relative to wild-type and RYR3 null cells, which were not significantly different from each other. Ca2+ -induced Ca2+ release was similarly augmented in FKBP12.6−/−, but not in RYR3 null cells relative to wild-type. Finally, Ca2+ wave speed evoked by CICR was not different in RYR3 cells relative to control, indicating that these proteins are not necessary for normal Ca2+ wave propagation. The effect of FKBP12.6 deletion on the frequency, amplitude, and kinetics of spontaneous and evoked Ca2+ sparks in smooth muscle, and the finding of normal Ca2+ sparks and CICR in RYR3 null mice, indicate that Ca2+ release through RYR2 molecules contributes to the formation of spontaneous and evoked Ca2+ sparks, and associated STOCs, in smooth muscle.
APA, Harvard, Vancouver, ISO, and other styles
27

Bultynck, Geert, Daniela Rossi, Geert Callewaert, Ludwig Missiaen, Vincenzo Sorrentino, Jan B. Parys, and Humbert De Smedt. "The Conserved Sites for the FK506-binding Proteins in Ryanodine Receptors and Inositol 1,4,5-Trisphosphate Receptors Are Structurally and Functionally Different." Journal of Biological Chemistry 276, no. 50 (October 11, 2001): 47715–24. http://dx.doi.org/10.1074/jbc.m106573200.

Full text
Abstract:
We compared the interaction of the FK506-binding protein (FKBP) with the type 3 ryanodine receptor (RyR3) and with the type 1 and type 3 inositol 1,4,5-trisphosphate receptor (IP3R1 and IP3R3), using a quantitative GST-FKBP12 and GST-FKBP12.6 affinity assay. We first characterized and mapped the interaction of the FKBPs with the RyR3. GST-FKBP12 as well as GST-FKBP12.6 were able to bind ∼30% of the solubilized RyR3. The interaction was completely abolished by FK506, strengthened by the addition of Mg2+, and weakened in the absence of Ca2+but was not affected by the addition of cyclic ADP-ribose. By using proteolytic mapping and site-directed mutagenesis, we pinpointed Val2322, located in the central modulatory domain of the RyR3, as a critical residue for the interaction of RyR3 with FKBPs. Substitution of Val2322for leucine (as in IP3R1) or isoleucine (as in RyR2) decreased the binding efficiency and shifted the selectivity to FKBP12.6; substitution of Val2322for aspartate completely abolished the FKBP interaction. Importantly, the occurrence of the valylprolyl residue as α-helix breaker was an important determinant of FKBP binding. This secondary structure is conserved among the different RyR isoforms but not in the IP3R isoforms. A chimeric RyR3/IP3R1, containing the core of the FKBP12-binding site of IP3R1 in the RyR3 context, retained this secondary structure and was able to interact with FKBPs. In contrast, IP3Rs did not interact with the FKBP isoforms. This indicates that the primary sequence in combination with the local structural environment plays an important role in targeting the FKBPs to the intracellular Ca2+-release channels. Structural differences in the FKBP-binding site of RyRs and IP3Rs may contribute to the occurrence of a stable interaction between RyR isoforms and FKBPs and to the absence of such interaction with IP3Rs.
APA, Harvard, Vancouver, ISO, and other styles
28

Rousseau, Eric, and Sonia Proteau. "Functional properties of the native type 3 ryanodine receptor Ca2+-release channel from canine diaphragm." Canadian Journal of Physiology and Pharmacology 79, no. 4 (April 1, 2001): 310–19. http://dx.doi.org/10.1139/y00-127.

Full text
Abstract:
mRNA and protein analyses have previously shown that the diaphragm expresses two ryanodine receptor isoforms: RyR1 and RyR3.RyR1 is the main Ca2+-releasing pathway in this muscle type. We now report the conducting, gating, and immunological properties of the native and purified forms of the less abundant RyR3 channel. The conductance of this native Ca2+-release channel was 330 pS in 50 mM/250 mM trans/cis CsCH3SO3. It was activated by Ca2+ concentrations of 1-1000 µM, and did not inactivate at mM concentrations of Ca2+. Both isoforms were purified by either a sucrose density gradient or immunoprecipitation as > 450 kDa proteins on SDS-PAGE. Western blot analysis confirmed the presence of RyR1 and RyR3, which displayed conductances of 740 ± 30 and 800 ± 25 pS, respectively, in 250 mM KCl. We thus provide evidence that one form of the diaphragm SR Ca2+-release channels may be classified as RyR3, with gating properties different from those of the well-characterized RyR1 and RyR2 isoforms.Key words: diaphragm, calcium channel, ryanodine receptors, skeletal muscles, excitation-contraction coupling.
APA, Harvard, Vancouver, ISO, and other styles
29

Oba, Toshiharu, Tatsuya Ishikawa, Takashi Murayama, Yasuo Ogawa, and Mamoru Yamaguchi. "H2O2 and ethanol act synergistically to gate ryanodine receptor/calcium-release channel." American Journal of Physiology-Cell Physiology 279, no. 5 (November 1, 2000): C1366—C1374. http://dx.doi.org/10.1152/ajpcell.2000.279.5.c1366.

Full text
Abstract:
We examined the effect of low concentrations of H2O2 on the Ca2+-release channel/ryanodine receptor (RyR) to determine if H2O2 plays a physiological role in skeletal muscle function. Sarcoplasmic reticulum vesicles from frog skeletal muscle and type 1 RyRs (RyR1) purified from rabbit skeletal muscle were incorporated into lipid bilayers. Channel activity of the frog RyR was not affected by application of 4.4 mM (0.02%) ethanol. Open probability ( P o) of such ethanol-treated RyR channels was markedly increased on subsequent addition of 10 μM H2O2. Increase of H2O2to 100 μM caused a further increase in channel activity. Application of 4.4 mM ethanol to 10 μM H2O2-treated RyRs activated channel activity. Exposure to 10 or 100 μM H2O2 alone, however, failed to increase P o. Synergistic action of ethanol and H2O2 was also observed on the purified RyR1 channel, which was free from FK506 binding protein (FKBP12). H2O2 at 100–500 μM had no effect on purified channel activity. Application of FKBP12 to the purified RyR1 drastically decreased channel activity but did not alter the effects of ethanol and H2O2. These results suggest that H2O2 may play a pathophysiological, but probably not a physiological, role by directly acting on skeletal muscle RyRs in the presence of ethanol.
APA, Harvard, Vancouver, ISO, and other styles
30

BOSE, Diptiman D., Roshanak RAHIMIAN, and David W. THOMAS. "Activation of ryanodine receptors induces calcium influx in a neuroblastoma cell line lacking calcium influx factor activity." Biochemical Journal 386, no. 2 (February 22, 2005): 291–96. http://dx.doi.org/10.1042/bj20040900.

Full text
Abstract:
We have further characterized the Ca2+ signalling properties of the NG115-401L (or 401L) neuroblastoma cell line, which has served as an important cell line for investigating SOC (store-operated channel) influx pathways. These cells possess an unusual Ca2+ signalling phenotype characterized by the absence of Ca2+ influx when Ca2+ stores are depleted by inhibitors of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase). Previous studies found that Ca2+-store depletion does not produce a CIF (Ca2+ influx factor) activity in 401L cells. These observations have prompted the question whether 401L cells possess the signalling machinery that permits non-voltage-gated Ca2+ influx to occur. We tested the hypothesis that ryanodine-sensitive Ca2+ pools and activation of RyRs (ryanodine receptors) constitute a signalling pathway capable of inducing Ca2+ influx in 401L cells. We found that 401L cells express mRNA for RyR1 and RyR2 and that RyR activators induced Ca2+ release. Activation of RyRs robustly couples with Ca2+ influx responses in 401L cells, in sharp contrast with absence of Ca2+ influx when cells are treated with SERCA inhibitors. Thus it is clear that 401L cells, despite lacking depletion-induced Ca2+ influx pathways, express the functional components of a Ca2+ influx pathway under the control of RyR function. These findings further support the importance of the 401L cell line as an important cell phenotype for deciphering Ca2+ influx regulation.
APA, Harvard, Vancouver, ISO, and other styles
31

HAYEK, Salim M., Xinsheng ZHU, Manjunatha B. BHAT, Jiying ZHAO, Hiroshi TAKESHIMA, Hector H. VALDIVIA, and Jianjie MA. "Characterization of a calcium-regulation domain of the skeletal-muscle ryanodine receptor." Biochemical Journal 351, no. 1 (September 26, 2000): 57–65. http://dx.doi.org/10.1042/bj3510057.

Full text
Abstract:
A negatively charged region of the N-terminal portion of the skeletal ryanodine receptor (RyR), located between residues 1872–1923, is involved in Ca 2+-dependent regulation of the Ca2+-release channel. This region is divergent between the skeletal (RyR1) and cardiac (RyR2) isoforms of the channel, and is known as D3. Ca2+ exerts important regulatory functions on the RyR, being involved in both activation and inactivation functions of the channel, i.e. the effects occurring at micromolar and millimolar Ca2+ concentrations respectively. To characterize the role of D3 in the Ca2+-dependent regulation of the Ca2+-release channel, we studied the functional consequences of deleting the D3 region from RyR1 (∆D3-RyR1) using a heterologous expression system, [3H]ryanodine binding assays and single-channel recordings in lipid bilayers. Deletion of the D3 region selectively affected Ca2+-dependent regulation of RyR1, but did not alter [3H]ryanodine binding or the effect of other modulators on the RyR. Compared with full-length RyR1 (wt-RyR1), the Ca2+-dependence curve of ∆D3-RyR1 is broader, reflecting increased sensitivity to Ca2+ activation and decreased sensitivity to Ca2+ inactivation. In addition, ∆D3-RyR1 was more resistant to inhibition by Mg2+. Comparison of the effect of caffeine on wt-RyR1 and ∆D3-RyR1 suggested that D3 is an important region of RyR that participates in Ca2+-dependent activation and inactivation of the Ca2+-release channel.
APA, Harvard, Vancouver, ISO, and other styles
32

Iyer, Kavita A., Yifan Hu, Ashok R. Nayak, Nagomi Kurebayashi, Takashi Murayama, and Montserrat Samsó. "Structural mechanism of two gain-of-function cardiac and skeletal RyR mutations at an equivalent site by cryo-EM." Science Advances 6, no. 31 (July 2020): eabb2964. http://dx.doi.org/10.1126/sciadv.abb2964.

Full text
Abstract:
Mutations in ryanodine receptors (RyRs), intracellular Ca2+ channels, are associated with deadly disorders. Despite abundant functional studies, the molecular mechanism of RyR malfunction remains elusive. We studied two single-point mutations at an equivalent site in the skeletal (RyR1 R164C) and cardiac (RyR2 R176Q) isoforms using ryanodine binding, Ca2+ imaging, and cryo–electron microscopy (cryo-EM) of the full-length protein. Loss of the positive charge had greater effect on the skeletal isoform, mediated via distortion of a salt bridge network, a molecular latch inducing rotation of a cytoplasmic domain, and partial progression to open-state traits of the large cytoplasmic assembly accompanied by alteration of the Ca2+ binding site, which concur with the major “hyperactive” feature of the mutated channel. Our cryo-EM studies demonstrated the allosteric effect of a mutation situated ~85 Å away from the pore and identified an isoform-specific structural effect.
APA, Harvard, Vancouver, ISO, and other styles
33

Martin, Cécile, Jean-Marc Hyvelin, Karen E. Chapman, Roger Marthan, Richard H. Ashley, and Jean-Pierre Savineau. "Pregnant rat myometrial cells show heterogeneous ryanodine- and caffeine-sensitive calcium stores." American Journal of Physiology-Cell Physiology 277, no. 2 (August 1, 1999): C243—C252. http://dx.doi.org/10.1152/ajpcell.1999.277.2.c243.

Full text
Abstract:
Intracellular Ca2+ release channels such as ryanodine receptors play crucial roles in the Ca2+-mediated signaling that triggers excitation-contraction coupling in muscles. Although the existence and the role of these channels are well characterized in skeletal and cardiac muscles, their existence in smooth muscles, and more particularly in the myometrium, is very controversial. We have now clearly demonstrated the expression of ryanodine receptor Ca2+ release channels in rat myometrial smooth muscle, and for the first time, intracellular Ca2+ concentration experiments with indo 1 on single myometrial cells have revealed the existence of a functional ryanodine- and caffeine-sensitive Ca2+ release mechanism in 30% of rat myometrial cells. RT-PCR and RNase protection assay on whole myometrial smooth muscle demonstrate the existence of all three ryr mRNAs in the myometrium: ryr3 mRNA is the predominant subtype, with much lower levels of expression for ryr1 and ryr2 mRNAs, suggesting that the ryanodine Ca2+ release mechanism in rat myometrium is largely encoded by ryr3. Moreover, using intracellular Ca2+ concentration measurements and RNase protection assays, we have demonstrated that the expression, the percentage of cells responding to ryanodine, and the function of these channels are not modified during pregnancy.
APA, Harvard, Vancouver, ISO, and other styles
34

PAUL-PLETZER, Kalanethee, Takeshi YAMAMOTO, Noriaki IKEMOTO, Leslie S. JIMENEZ, Hiromi MORIMOTO, Philip G. WILLIAMS, Jianjie MA, and Jerome PARNESS. "Probing a putative dantrolene-binding site on the cardiac ryanodine receptor." Biochemical Journal 387, no. 3 (April 26, 2005): 905–9. http://dx.doi.org/10.1042/bj20041336.

Full text
Abstract:
Dantrolene is an inhibitor of intracellular Ca2+ release from skeletal muscle SR (sarcoplasmic reticulum). Direct photoaffinity labelling experiments using [3H]azidodantrolene and synthetic domain peptides have demonstrated that this drug targets amino acids 590–609 [termed DP1 (domain peptide 1)] of RyR1 (ryanodine receptor 1), the skeletal muscle RyR isoform. Although the identical sequence exists in the cardiac isoform, RyR2 (residues 601–620), specific labelling of RyR2 by dantrolene has not been demonstrated, even though some functional studies show protective effects of dantrolene on heart function. Here we test whether dantrolene-active domains exist within RyR2 and if so, whether this domain can be modulated. We show that elongated DP1 sequences from RyR1 (DP1-2s; residues 590–628) and RyR2 (DP1-2c; residues 601–639) can be specifically photolabelled by [3H]azidodantrolene. Monoclonal anti-RyR1 antibody, whose epitope is the DP1 region, can recognize RyR1 but not RyR2 in Western blot and immunoprecipitation assays, yet it recognizes both DP1-2c and DP1-2s. This suggests that although the RyR2 sequence has an intrinsic capacity to bind dantrolene in vitro, this site may be poorly accessible in the native channel protein. To examine whether it is possible to modulate this site, we measured binding of [3H]dantrolene to cardiac SR as a function of free Ca2+. We found that ≥10 mM EGTA increased [3H]dantrolene binding to RyR2 by ∼2-fold. The data suggest that the dantrolene-binding site on RyR2 is conformationally sensitive. This site may be a potential therapeutic target in cardiovascular diseases sensitive to dysfunctional intracellular Ca2+ release.
APA, Harvard, Vancouver, ISO, and other styles
35

BULTYNCK, Geert, Patrick DE SMET, Daniela ROSSI, Geert CALLEWAERT, Ludwig MISSIAEN, Vincenzo SORRENTINO, Humbert DE SMEDT, and Jan B. PARYS. "Characterization and mapping of the 12kDa FK506-binding protein (FKBP12)-binding site on different isoforms of the ryanodine receptor and of the inositol 1,4,5-trisphosphate receptor." Biochemical Journal 354, no. 2 (February 22, 2001): 413–22. http://dx.doi.org/10.1042/bj3540413.

Full text
Abstract:
We investigated the interaction of the 12kDa FK506-binding protein (FKBP12) with two ryanodine-receptor isoforms (RyR1 and RyR3) and with two myo-inositol 1,4,5-trisphosphate (IP3) receptor isoforms (IP3R1 and IP3R3). Using glutathione S-transferase (GST)-FKBP12 affinity chromatography, we could efficiently extract RyR1 (42±7% of the solubilized RyR1) from terminal cisternae of skeletal muscle as well as RyR3 (32±4% of the solubilized RyR3) from RyR3-overexpressing HEK-293 cells. These interactions were completely abolished by FK506 (20µM) but were largely unaffected by RyR-channel modulators. In contrast, neither IP3R1 nor IP3R3 from various sources, including rabbit cerebellum, A7r5 smooth-muscle cells and IP3R-overexpressing Sf9 insect cells from Spodoptera frugiperda, were retained on the GST-FKBP12 matrix. Moreover, immunoprecipitation experiments indicated a high-affinity interaction of FKBP12 with RyR1 but not with IP3R1. In order to determine the FKBP12-binding site, we fragmented both RyR1 and IP3R1 by limited proteolysis. We obtained a 45kDa fragment of RyR1 that bound to the GST-FKBP12 matrix, indicating that it retained all requirements for FKBP12 binding. This fragment was identified by its interaction with antibody m34C and must therefore contain its epitope (amino acids 2756–2803). However, no fragment of IP3R1 was retained on the column. These molecular data are in agreement with the lack of correlation between FKBP12 and IP3R1 expression in various cell types. The observation that FKBP12 did not affect IP3-induced Ca2+ release but reduced caffeine-induced Ca2+ release also indicated that mature IP3R1 and IP3R3, in contrast to RyR1 and RyR3, did not display a specific, high-affinity interaction with FKBP12.
APA, Harvard, Vancouver, ISO, and other styles
36

Murayama, Takashi, Toshiharu Oba, Shigeki Kobayashi, Noriaki Ikemoto, and Yasuo Ogawa. "Postulated role of interdomain interactions within the type 1 ryanodine receptor in the low gain of Ca2+-induced Ca2+ release activity of mammalian skeletal muscle sarcoplasmic reticulum." American Journal of Physiology-Cell Physiology 288, no. 6 (June 2005): C1222—C1230. http://dx.doi.org/10.1152/ajpcell.00415.2004.

Full text
Abstract:
Ryanodine receptor (RyR) type 1 (RyR1) exhibits a markedly lower gain of Ca2+-induced Ca2+ release (CICR) activity than RyR type 3 (RyR3) in the sarcoplasmic reticulum (SR) of mammalian skeletal muscle (selective stabilization of the RyR1 channel), and this reduction in the gain is largely eliminated using 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). We have investigated whether the hypothesized interdomain interactions within RyR1 are involved in the selective stabilization of the channel using [3H]ryanodine binding, single-channel recordings, and Ca2+ release from the SR vesicles. Like CHAPS, domain peptide 4 (DP4, a synthetic peptide corresponding to the Leu2442-Pro2477 region of RyR1), which seems to destabilize the interdomain interactions, markedly stimulated RyR1 but not RyR3. Their activating effects were saturable and nonadditive. Dantrolene, a potent inhibitor of RyR1 used to treat malignant hyperthermia, reversed the effects of DP4 or CHAPS in an identical manner. These findings indicate that RyR1 is activated by DP4 and CHAPS through a common mechanism that is probably mediated by the interdomain interactions. DP4 greatly increased [3H]ryanodine binding to RyR1 with only minor alterations in the sensitivity to endogenous CICR modulators (Ca2+, Mg2+, and adenine nucleotide). However, DP4 sensitized RyR1 four- to six-fold to caffeine in the caffeine-induced Ca2+ release. Thus the gain of CICR activity critically determines the magnitude and threshold of Ca2+ release by drugs such as caffeine. These findings suggest that the low CICR gain of RyR1 is important in normal Ca2+ handling in skeletal muscle and that perturbation of this state may result in muscle diseases such as malignant hyperthermia.
APA, Harvard, Vancouver, ISO, and other styles
37

Craps, J., C. Wilvers, V. Joris, B. De Jongh, J. Vanderstraeten, I. Lobysheva, J. L. Balligand, et al. "Involvement of Nitric Oxide in Iodine Deficiency-Induced Microvascular Remodeling in the Thyroid Gland: Role of Nitric Oxide Synthase 3 and Ryanodine Receptors." Endocrinology 156, no. 2 (November 18, 2014): 707–20. http://dx.doi.org/10.1210/en.2014-1729.

Full text
Abstract:
Iodine deficiency (ID) induces microvascular changes in the thyroid gland via a TSH-independent reactive oxygen species-hypoxia inducible factor (HIF)-1α-vascular endothelial growth factor (VEGF) pathway. The involvement of nitric oxide (NO) in this pathway and the role of calcium (Ca2+) and of ryanodine receptors (RYRs) in NO synthase 3 (NOS3) activation were investigated in a murine model of goitrogenesis and in 3 in vitro models of ID, including primary cultures of human thyrocytes. ID activated NOS3 and the production of NO in thyrocytes in vitro and increased the thyroid blood flow in vivo. Using bevacizumab (a blocking antibody against VEGF-A) in mice, it appeared that NOS3 is activated upstream of VEGF-A. L-nitroarginine methyl ester (a NOS inhibitor) blocked the ID-induced increase in thyroid blood flow in vivo and NO production in vitro, as well as ID-induced VEGF-A mRNA and HIF-1α expression in vitro, whereas S-nitroso-acetyl-penicillamine (a NO donor) did the opposite. Ca2+ is involved in this pathway as intracellular Ca2+ flux increased after ID, and thapsigargin activated NOS3 and increased VEGF-A mRNA expression. Two of the 3 known mammalian RYR isoforms (RYR1 and RYR2) were shown to be expressed in thyrocytes. RYR inhibition using ryanodine at 10μM decreased ID-induced NOS3 activation, HIF-1α, and VEGF-A expression, whereas RYR activation with ryanodine at 1nM increased NOS3 activation and VEGF-A mRNA expression. In conclusion, during the early phase of TSH-independent ID-induced microvascular activation, ID sequentially activates RYRs and NOS3, thereby supporting ID-induced activation of the NO/HIF-1α/VEGF-A pathway in thyrocytes.
APA, Harvard, Vancouver, ISO, and other styles
38

O-Uchi, Jin, Bong Sook Jhun, Stephen Hurst, Sara Bisetto, Polina Gross, Ming Chen, Sarah Kettlewell, et al. "Overexpression of ryanodine receptor type 1 enhances mitochondrial fragmentation and Ca2+-induced ATP production in cardiac H9c2 myoblasts." American Journal of Physiology-Heart and Circulatory Physiology 305, no. 12 (December 15, 2013): H1736—H1751. http://dx.doi.org/10.1152/ajpheart.00094.2013.

Full text
Abstract:
Ca+ influx to mitochondria is an important trigger for both mitochondrial dynamics and ATP generation in various cell types, including cardiac cells. Mitochondrial Ca2+ influx is mainly mediated by the mitochondrial Ca2+ uniporter (MCU). Growing evidence also indicates that mitochondrial Ca2+ influx mechanisms are regulated not solely by MCU but also by multiple channels/transporters. We have previously reported that skeletal muscle-type ryanodine receptor (RyR) type 1 (RyR1), which expressed at the mitochondrial inner membrane, serves as an additional Ca2+ uptake pathway in cardiomyocytes. However, it is still unclear which mitochondrial Ca2+ influx mechanism is the dominant regulator of mitochondrial morphology/dynamics and energetics in cardiomyocytes. To investigate the role of mitochondrial RyR1 in the regulation of mitochondrial morphology/function in cardiac cells, RyR1 was transiently or stably overexpressed in cardiac H9c2 myoblasts. We found that overexpressed RyR1 was partially localized in mitochondria as observed using both immunoblots of mitochondrial fractionation and confocal microscopy, whereas RyR2, the main RyR isoform in the cardiac sarcoplasmic reticulum, did not show any expression at mitochondria. Interestingly, overexpression of RyR1 but not MCU or RyR2 resulted in mitochondrial fragmentation. These fragmented mitochondria showed bigger and sustained mitochondrial Ca2+ transients compared with basal tubular mitochondria. In addition, RyR1-overexpressing cells had a higher mitochondrial ATP concentration under basal conditions and showed more ATP production in response to cytosolic Ca2+ elevation compared with nontransfected cells as observed by a matrix-targeted ATP biosensor. These results indicate that RyR1 possesses a mitochondrial targeting/retention signal and modulates mitochondrial morphology and Ca2+-induced ATP production in cardiac H9c2 myoblasts.
APA, Harvard, Vancouver, ISO, and other styles
39

Wang, Yong-Xiao, Yun-Min Zheng, Qi-Bing Mei, Qinq-Song Wang, Mei Lin Collier, Sidney Fleischer, Hong-Bo Xin, and Michael I. Kotlikoff. "FKBP12.6 and cADPR regulation of Ca2+ release in smooth muscle cells." American Journal of Physiology-Cell Physiology 286, no. 3 (March 2004): C538—C546. http://dx.doi.org/10.1152/ajpcell.00106.2003.

Full text
Abstract:
Intracellular Ca2+ release through ryanodine receptors (RyRs) plays important roles in smooth muscle excitation-contraction coupling, but the underlying regulatory mechanisms are poorly understood. Here we show that FK506 binding protein of 12.6 kDa (FKBP12.6) associates with and regulates type 2 RyRs (RyR2) in tracheal smooth muscle. FKBP12.6 binds to RyR2 but not other RyR or inositol 1,4,5-trisphosphate receptors, and FKBP12, known to bind to and modulate skeletal RyRs, does not associate with RyR2. When dialyzed into tracheal myocytes, cyclic ADP-ribose (cADPR) alters spontaneous Ca2+ release at lower concentrations and produces macroscopic Ca2+ release at higher concentrations; neurotransmitter-evoked Ca2+ release is also augmented by cADPR. These actions are mediated through FKBP12.6 because they are inhibited by molar excess of recombinant FKBP12.6 and are not observed in myocytes from FKBP12.6-knockout mice. We also report that force development in FKBP12.6-null mice, observed as a decrease in the concentration/tension relationship of isolated trachealis segments, is impaired. Taken together, these findings point to an important role of the FKBP12.6/RyR2 complex in stochastic (spontaneous) and receptor-mediated Ca2+ release in smooth muscle.
APA, Harvard, Vancouver, ISO, and other styles
40

AWAD, Suad S., Heather K. LAMB, Joanna M. MORGAN, William DUNLOP, and James I. GILLESPIE. "Differential expression of ryanodine receptor RyR2 mRNA in the non-pregnant and pregnant human myometrium." Biochemical Journal 322, no. 3 (March 15, 1997): 777–83. http://dx.doi.org/10.1042/bj3220777.

Full text
Abstract:
We describe here the expression of the ryanodine receptor isoforms RyR2 and RyR3 in human non-pregnant and pregnant (non-labouring) myometrium, and in isolated cultured myometrial cells. The mRNA encoding the RyR3 isoform was found in both non-pregnant and pregnant myometrial tissue samples; however, the mRNA for RyR2 was found only in pregnant samples. It can be speculated that the appearance of this additional isoform in the pregnant myometrium may increase the ability of this tissue to contract at term. Control of expression of the RyR2 gene may therefore be another example of an up-regulated signalling system in pregnancy. Although the mRNA for RyR3 was expressed in cultured myometrial cells, the mRNA for RyR2 could not be detected. Thus cultured myometrial cells appear to be similar to the non-pregnant myometrium. The cytokine transforming growth factor β (TGF-β) has been reported to alter RyR mRNA expression in many cell types. After treatment with TGF-β, both RyR2 and RyR3 mRNAs could be detected in cultured myometrial cells. These observations support the idea that the expression of the RyR2 isoform is up-regulated both in pregnancy and in TGF-β-treated cultured myometrial cells. Using measurements of 45Ca2+ release, we have further demonstrated that cultured human myometrial cells show a significant augmentation of both the Ca2+-induced Ca2+ release (CICR) mechanism and ryanodine-induced Ca2+ release after treatment with TGF-β. Additionally, caffeine was able to induce Ca2+ release and sensitize the CICR mechanism to ryanodine. Thus we suggest that the appearance of RyR2 mRNA leads to the expression of this receptor/channel protein with identifiable pharmacological characteristics. These results are discussed in the context of the potential role of gene activation in the process of maturation of the human myometrium during pregnancy.
APA, Harvard, Vancouver, ISO, and other styles
41

Ríos, Eduardo, Dirk Gillespie, and Clara Franzini-Armstrong. "The binding interactions that maintain excitation–contraction coupling junctions in skeletal muscle." Journal of General Physiology 151, no. 4 (February 6, 2019): 593–605. http://dx.doi.org/10.1085/jgp.201812268.

Full text
Abstract:
Calcium for contraction of skeletal muscles is released via tetrameric ryanodine receptor (RYR1) channels of the sarcoplasmic reticulum (SR), which are assembled in ordered arrays called couplons at junctions where the SR abuts T tubules or plasmalemma. Voltage-gated Ca2+ (CaV1.1) channels, found in tubules or plasmalemma, form symmetric complexes called CaV tetrads that associate with and activate underlying RYR tetramers during membrane depolarization by conveying a conformational change. Intriguingly, CaV tetrads regularly skip every other RYR tetramer within the array; therefore, the RYRs underlying tetrads (named V), but not the voltage sensor–lacking (C) RYRs, should be activated by depolarization. Here we hypothesize that the checkerboard association is maintained solely by reversible binary interactions between CaVs and RYRs and test this hypothesis using a quantitative model of the energies that govern CaV1.1–RYR1 binding, which are assumed to depend on number and location of bound CaVs. A Monte Carlo simulation generates large statistical samples and distributions of state variables that can be compared with quantitative features in freeze-fracture images of couplons from various sources. This analysis reveals two necessary model features: (1) the energy of a tetramer must have wells at low and high occupation by CaVs, so that CaVs positively cooperate in binding RYR (an allosteric effect), and (2) a large energy penalty results when two CaVs bind simultaneously to adjacent RYR protomers in adjacent tetramers (a steric clash). Under the hypothesis, V and C channels will eventually reverse roles. Role reversal justifies the presence of sensor-lacking C channels, as a structural and functional reserve for control of muscle contraction.
APA, Harvard, Vancouver, ISO, and other styles
42

Essin, Kirill, and Maik Gollasch. "Role of Ryanodine Receptor Subtypes in Initiation and Formation of Calcium Sparks in Arterial Smooth Muscle: Comparison with Striated Muscle." Journal of Biomedicine and Biotechnology 2009 (2009): 1–15. http://dx.doi.org/10.1155/2009/135249.

Full text
Abstract:
Calcium sparks represent local, rapid, and transient calcium release events from a cluster of ryanodine receptors (RyRs) in the sarcoplasmic reticulum. In arterial smooth muscle cells (SMCs), calcium sparks activate calcium-dependent potassium channels causing decrease in the global intracellular[Ca2+]and oppose vasoconstriction. This is in contrast to cardiac and skeletal muscle, where spatial and temporal summation of calcium sparks leads to global increases in intracellular[Ca2+]and myocyte contraction. We summarize the present data on local RyR calcium signaling in arterial SMCs in comparison to striated muscle and muscle-specific differences in coupling between L-type calcium channels and RyRs. Accordingly, arterial SMCCav1.2L-type channels regulate intracellular calcium stores content, which in turn modulates calcium efflux though RyRs. Downregulation of RyR2 up to a certain degree is compensated by increased SR calcium content to normalize calcium sparks. This indirect coupling betweenCav1.2and RyR in arterial SMCs is opposite to striated muscle, where triggering of calcium sparks is controlled by rapid and direct cross-talk betweenCav1.1/Cav1.2L-type channels and RyRs. We discuss the role of RyR isoforms in initiation and formation of calcium sparks in SMCs and their possible molecular binding partners and regulators, which differ compared to striated muscle.
APA, Harvard, Vancouver, ISO, and other styles
43

Gomez, Angela C., Timothy W. Holford, and Naohiro Yamaguchi. "Malignant hyperthermia-associated mutations in the S2-S3 cytoplasmic loop of type 1 ryanodine receptor calcium channel impair calcium-dependent inactivation." American Journal of Physiology-Cell Physiology 311, no. 5 (November 1, 2016): C749—C757. http://dx.doi.org/10.1152/ajpcell.00134.2016.

Full text
Abstract:
Channel activities of skeletal muscle ryanodine receptor (RyR1) are activated by micromolar Ca2+ and inactivated by higher (∼1 mM) Ca2+. To gain insight into a mechanism underlying Ca2+-dependent inactivation of RyR1 and its relationship with skeletal muscle diseases, we constructed nine recombinant RyR1 mutants carrying malignant hyperthermia or centronuclear myopathy-associated mutations and determined RyR1 channel activities by [3H]ryanodine binding assay. These mutations are localized in or near the RyR1 domains which are responsible for Ca2+-dependent inactivation of RyR1. Four RyR1 mutations (F4732D, G4733E, R4736W, and R4736Q) in the cytoplasmic loop between the S2 and S3 transmembrane segments (S2–S3 loop) greatly reduced Ca2+-dependent channel inactivation. Activities of these mutant channels were suppressed at 10–100 μM Ca2+, and the suppressions were relieved by 1 mM Mg2+. The Ca2+- and Mg2+-dependent regulation of S2–S3 loop RyR1 mutants are similar to those of the cardiac isoform of RyR (RyR2) rather than wild-type RyR1. Two mutations (T4825I and H4832Y) in the S4–S5 cytoplasmic loop increased Ca2+ affinities for channel activation and decreased Ca2+ affinities for inactivation, but impairment of Ca2+-dependent inactivation was not as prominent as those of S2–S3 loop mutants. Three mutations (T4082M, S4113L, and N4120Y) in the EF-hand domain showed essentially the same Ca2+-dependent channel regulation as that of wild-type RyR1. The results suggest that nine RyR1 mutants associated with skeletal muscle diseases were differently regulated by Ca2+ and Mg2+. Four malignant hyperthermia-associated RyR1 mutations in the S2–S3 loop conferred RyR2-type Ca2+- and Mg2+-dependent channel regulation.
APA, Harvard, Vancouver, ISO, and other styles
44

Dahan, Diana, Thomas Ducret, Jean-François Quignard, Roger Marthan, Jean-Pierre Savineau, and Eric Estève. "Implication of the ryanodine receptor in TRPV4-induced calcium response in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats." American Journal of Physiology-Lung Cellular and Molecular Physiology 303, no. 9 (November 1, 2012): L824—L833. http://dx.doi.org/10.1152/ajplung.00244.2011.

Full text
Abstract:
There is a growing body of evidence indicating that transient receptor potential (TRP) channels are implicated in calcium signaling and various cellular functions in the pulmonary vasculature. The aim of this study was to investigate the expression, functional role, and coupling to reticulum calcium channels of the type 4 vanilloid TRP subfamily (TRPV4) in the pulmonary artery from both normoxic (Nx) and chronically hypoxic (CH) rats. Activation of TRPV4 with the specific agonist 4α-phorbol-12,13-didecanoate (4α-PDD, 5 μM) increased the intracellular calcium concentration ([Ca2+]i). This effect was significantly reduced by a high concentration of ryanodine (100 μM) or chronic caffeine (5 mM) that blocked ryanodine receptor (RyR) but was insensitive to xestospongin C (10 μM), an inositol trisphosphate receptor antagonist. Inhibition of RyR1 and RyR3 only with 10 μM of dantrolene did not attenuate the 4α-PDD-induced [Ca2+]i increase. Western blotting experiments revealed the expression of TRPV4 and RyR2 with an increase in both receptors in pulmonary arteries from CH rats vs. Nx rats. Accordingly, the 4α-PDD-activated current, measured with patch-clamp technique, was increased in pulmonary artery smooth muscle cells (PASMC) from CH rats vs. Nx rats. 4α-PDD increased isometric tension in artery rings, and this response was also potentiated under chronic hypoxia conditions. 4α-PDD-induced calcium response, current, and contraction were all inhibited by the selective TRPV4 blocker HC-067047. Collectively, our findings provide evidence of the interplay between TRPV4 and RyR2 in the Ca2+ release mechanism and contraction in PASMC. This study provides new insights onto the complex calcium signaling in PASMC and point out the importance of the TRPV4-RyR2 signaling pathway under hypoxic conditions that may lead to pulmonary hypertension.
APA, Harvard, Vancouver, ISO, and other styles
45

FITZSIMMONS, Timothy J., Ilya GUKOVSKY, James A. McROBERTS, Edward RODRIGUEZ, F. Anthony LAI, and Stephen J. PANDOL. "Multiple isoforms of the ryanodine receptor are expressed in rat pancreatic acinar cells." Biochemical Journal 351, no. 1 (September 26, 2000): 265–71. http://dx.doi.org/10.1042/bj3510265.

Full text
Abstract:
Regulation of cytosolic Ca2+ is important for a variety of cell functions. The ryanodine receptor (RyR) is a Ca2+ channel that conducts Ca2+ from internal pools to the cytoplasm. To demonstrate the presence of the RyR in the pancreatic acinar cell, we performed reverse transcriptase (RT)-PCR, Western blot, immunocytochemistry and microscopic Ca2+-release measurements on these cells. RT-PCR showed the presence of mRNA for RyR isoforms 1, 2 and 3 in both rat pancreas and dispersed pancreatic acini. Furthermore, mRNA expression for RyR isoforms 1 and 2 was demonstrated by RT-PCR in individual pancreatic acinar cells selected under the microscope. Western-blot analysis of acinar cell immunoprecipitates, using antibodies against RyR1 and RyR2, showed a high-molecular-mass (> 250kDa) protein band that was much less intense when immunoprecipitated in the presence of RyR peptide. Functionally, permeablized acinar cells stimulated with the RyR activator, palmitoyl-CoA, released Ca2+ from both basolateral and apical regions. These data show that pancreatic acinar cells express multiple isoforms of the RyR and that there are functional receptors throughout the cell.
APA, Harvard, Vancouver, ISO, and other styles
46

Kong, Huihui, Peter P. Jones, Andrea Koop, Lin Zhang, Henry J. Duff, and S. R. Wayne Chen. "Caffeine induces Ca2+ release by reducing the threshold for luminal Ca2+ activation of the ryanodine receptor." Biochemical Journal 414, no. 3 (August 27, 2008): 441–52. http://dx.doi.org/10.1042/bj20080489.

Full text
Abstract:
Caffeine has long been used as a pharmacological probe for studying RyR (ryanodine receptor)-mediated Ca2+ release and cardiac arrhythmias. However, the precise mechanism by which caffeine activates RyRs is elusive. In the present study, we investigated the effects of caffeine on spontaneous Ca2+ release and on the response of single RyR2 (cardiac RyR) channels to luminal or cytosolic Ca2+. We found that HEK-293 cells (human embryonic kidney cells) expressing RyR2 displayed partial or ‘quantal’ Ca2+ release in response to repetitive additions of submaximal concentrations of caffeine. This quantal Ca2+ release was abolished by ryanodine. Monitoring of endoplasmic reticulum luminal Ca2+ revealed that caffeine reduced the luminal Ca2+ threshold at which spontaneous Ca2+ release occurs. Interestingly, spontaneous Ca2+ release in the form of Ca2+ oscillations persisted in the presence of 10 mM caffeine, and was diminished by ryanodine, demonstrating that unlike ryanodine, caffeine, even at high concentrations, does not hold the channel open. At the single-channel level, caffeine markedly reduced the threshold for luminal Ca2+ activation, but had little effect on the threshold for cytosolic Ca2+ activation, indicating that the major action of caffeine is to reduce the luminal, but not the cytosolic, Ca2+ activation threshold. Furthermore, as with caffeine, the clinically relevant, pro-arrhythmic methylxanthines aminophylline and theophylline potentiated luminal Ca2+ activation of RyR2, and increased the propensity for spontaneous Ca2+ release, mimicking the effects of disease-linked RyR2 mutations. Collectively, our results demonstrate that caffeine triggers Ca2+ release by reducing the threshold for luminal Ca2+ activation of RyR2, and suggest that disease-linked RyR2 mutations and RyR2-interacting pro-arrhythmic agents may share the same arrhythmogenic mechanism.
APA, Harvard, Vancouver, ISO, and other styles
47

Altafaj, Xavier, Julien France, Janos Almassy, Istvan Jona, Daniela Rossi, Vincenzo Sorrentino, Kamel Mabrouk, Michel De Waard, and Michel Ronjat. "Maurocalcine interacts with the cardiac ryanodine receptor without inducing channel modification." Biochemical Journal 406, no. 2 (August 13, 2007): 309–15. http://dx.doi.org/10.1042/bj20070453.

Full text
Abstract:
We have previously shown that MCa (maurocalcine), a toxin from the venom of the scorpion Maurus palmatus, binds to RyR1 (type 1 ryanodine receptor) and induces strong modifications of its gating behaviour. In the present study, we investigated the ability of MCa to bind to and modify the gating process of cardiac RyR2. By performing pull-down experiments we show that MCa interacts directly with RyR2 with an apparent affinity of 150 nM. By expressing different domains of RyR2 in vitro, we show that MCa binds to two domains of RyR2, which are homologous with those previously identified on RyR1. The effect of MCa binding to RyR2 was then evaluated by three different approaches: (i) [3H]ryanodine binding experiments, showing a very weak effect of MCa (up to 1 μM), (ii) Ca2+ release measurements from cardiac sarcoplasmic reticulum vesicles, showing that MCa up to 1 μM is unable to induce Ca2+ release, and (iii) single-channel recordings, showing that MCa has no effect on the open probability or on the RyR2 channel conductance level. Long-lasting opening events of RyR2 were observed in the presence of MCa only when the ionic current direction was opposite to the physiological direction, i.e. from the cytoplasmic face of RyR2 to its luminal face. Therefore, despite the conserved MCa binding ability of RyR1 and RyR2, functional studies show that, in contrast with what is observed with RyR1, MCa does not affect the gating properties of RyR2. These results highlight a different role of the MCa-binding domains in the gating process of RyR1 and RyR2.
APA, Harvard, Vancouver, ISO, and other styles
48

O'Brien, Fiona, Elisa Venturi, and Rebecca Sitsapesan. "The ryanodine receptor provides high throughput Ca2+-release but is precisely regulated by networks of associated proteins: a focus on proteins relevant to phosphorylation." Biochemical Society Transactions 43, no. 3 (June 1, 2015): 426–33. http://dx.doi.org/10.1042/bst20140297.

Full text
Abstract:
Once opened, ryanodine receptors (RyR) are efficient pathways for the release of Ca2+ from the endoplasmic/sarcoplasmic reticulum (ER/SR). The precise nature of the Ca2+-release event, however, requires fine-tuning for the specific process and type of cell involved. For example, the spatial organization of RyRs, the luminal [Ca2+] and the influence of soluble regulators that fluctuate under physiological and pathophysiological control mechanisms, all affect the amplitude and duration of RyR Ca2+ fluxes. Various proteins are docked tightly to the huge bulky structure of RyR and there is growing evidence that, together, they provide a sophisticated and integrated system for regulating RyR channel gating. This review focuses on those proteins that are relevant to phosphorylation of RyR channels with particular reference to the cardiac isoform of RyR (RyR2). How phosphorylation of RyR affects channel activity and whether proteins such as the FK-506 binding proteins (FKBP12 and FKBP12.6) are involved, have been highly controversial subjects for more than a decade. But that is expected given the large number of participating proteins, the relevance of phosphorylation in heart failure and inherited arrhythmic diseases, and the frustrations of predicting relationships between structure and function before the advent of a high resolution structure of RyR.
APA, Harvard, Vancouver, ISO, and other styles
49

Mattei, M. G., G. Giannini, F. Moscatelli, and V. Sorrentino. "Chromosomal Localization of Murine Ryanodine Receptor Genes RYR1, RYR2, and RYR3 by in Situ Hybridization." Genomics 22, no. 1 (July 1994): 202–4. http://dx.doi.org/10.1006/geno.1994.1362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wasserstrom, J. Andrew, Leslie A. Wasserstrom, Andrew J. Lokuta, James E. Kelly, Sireen T. Reddy, and Andrew J. Frank. "Activation of cardiac ryanodine receptors by the calcium channel agonist FPL-64176." American Journal of Physiology-Heart and Circulatory Physiology 283, no. 1 (July 1, 2002): H331—H338. http://dx.doi.org/10.1152/ajpheart.00788.2001.

Full text
Abstract:
We investigated the possibility that the Ca2+ channel agonist FPL-64176 (FPL) might also activate the cardiac sarcoplasmic reticulum (SR) Ca2+ release channel ryanodine receptor (RyR). The effects of FPL were tested on single channel activity of purified and crude vesicular RyR (RyR2) isolated from human and dog hearts using the planar lipid bilayer technique. FPL (100–200 μM) increased single channel open probability ( P o) when added to the cytoplasmic side of the channel ( P o = 0.070 ± 0.021 in control RyR2; 0.378 ± 0.086 in 150 μM FPL, n = 9, P < 0.01) by prolonging open times and decreasing closed times without changing current magnitude. FPL had no effect on P o when added to the trans (luminal) side of the bilayer ( P o = 0.079 ± 0.036 in control and 0.103 ± 0.066 in FPL, n = 4, no significant difference). The bell-shaped [Ca2+] dependence of [3H]ryanodine binding and of P o was altered by FPL, suggesting that the mechanism by which FPL increases channel activity is by an increase in Ca2+-induced activation at low [Ca2+] (without a change in threshold) and suppression of Ca2+-induced inactivation at high [Ca2+]. However, the fact that inactivation was restored at elevated [Ca2+] suggests a competitive interaction between Ca2+ and FPL on inactivation. FPL had no effect on RyR skeletal channels (RyR1), where P o was 0.039 ± 0.005 in control versus 0.030 ± 0.006 in 150 μM FPL (no significant difference). These results suggest that, in addition to its ability to activate the L-type Ca2+channels, FPL activates cardiac RyR2 primarily by reducing the Ca2+ sensitivity of inactivation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography