Academic literature on the topic 'Saccharomyces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Saccharomyces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Saccharomyces"
Vaštík, Peter, Daniela Šmogrovičová, Valentína Kafková, Pavol Sulo, Katarína Furdíková, and Ivan Špánik. "Production and characterisation of non-alcoholic beer using special yeast." KVASNY PRUMYSL 66, no. 5 (October 15, 2020): 336–44. http://dx.doi.org/10.18832/kp2019.66.336.
Full textWee, Hyun-Jeong, Sae-Byuk Lee, Kyu-Taek Choi, Ji-Yeon Ham, Soo-Hwan Yeo, and Heui-Dong Park. "Characteristics of freeze-concentrated apple cider fermented using mixed culture of non-Saccharomyces and Saccharomyces cerevisiae Fermivin." Korean Journal of Food Preservation 25, no. 6 (October 30, 2018): 730–41. http://dx.doi.org/10.11002/kjfp.2018.25.6.730.
Full textEllis, Daniel J., Edward D. Kerr, Gerhard Schenk, and Benjamin L. Schulz. "Metabolomics of Non-Saccharomyces Yeasts in Fermented Beverages." Beverages 8, no. 3 (July 20, 2022): 41. http://dx.doi.org/10.3390/beverages8030041.
Full textTHAMMASITTIRONG, SUTTICHA NA-RANONG, THADA CHAMDUANG, UMAPORN PHONROD, and KLANARONG SRIROTH. "Ethanol Production Potential of Ethanol-Tolerant Saccharomyces and Non-Saccharomyces Yeasts." Polish Journal of Microbiology 61, no. 3 (2012): 219–21. http://dx.doi.org/10.33073/pjm-2012-029.
Full textMarinov, Luka, Ana Jeromel, Ivana Tomaz, Darko Preiner, and Ana Marija Jagatić Korenika. "Učinak sekvencijalne fermentacije s kvascima Lachancea thermotelerans i Torulaspora delbrueckii na kemijski sastav vina ´Malvazija istarska´." Glasnik zaštite bilja 44, no. 4 (July 12, 2021): 56–66. http://dx.doi.org/10.31727/gzb.44.4.8.
Full textFloch, Martin H. "Saccharomyces." Journal of Clinical Gastroenterology 36, no. 1 (January 2003): 5–6. http://dx.doi.org/10.1097/00004836-200301000-00003.
Full textBarnett, James A. "Saccharomyces." Trends in Biotechnology 10 (1992): 103–4. http://dx.doi.org/10.1016/0167-7799(92)90184-w.
Full textWiseman, Helen. "Saccharomyces." FEBS Letters 316, no. 2 (January 25, 1993): 201–2. http://dx.doi.org/10.1016/0014-5793(93)81223-m.
Full textMcFarland, L. V. "Saccharomyces boulardii Is Not Saccharomyces cerevisiae." Clinical Infectious Diseases 22, no. 1 (January 1, 1996): 200–201. http://dx.doi.org/10.1093/clinids/22.1.200.
Full textNaumov, G. I., S. A. James, E. S. Naumova, E. J. Louis, and I. N. Roberts. "Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae." International Journal of Systematic and Evolutionary Microbiology 50, no. 5 (September 1, 2000): 1931–42. http://dx.doi.org/10.1099/00207713-50-5-1931.
Full textDissertations / Theses on the topic "Saccharomyces"
Wirth, Bénédicte. "Dynamique et évolution d'ORFs dupliquées chez les levures hémiascomycètes : Etude de la famille multigénique DUP." Université Louis Pasteur (Strasbourg) (1971-2008), 2006. http://www.theses.fr/2006STR13070.
Full textVázquez, González Jennifer. "Antioxidant effect of melatonin on Saccharomyces and non-Saccharomyces wine yeasts." Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/461155.
Full textLa melatonina (N-acetil-5 metoxytryptamine) que se sintetiza a partir del triptófano, se forma durante la fermentación alcohólica, no obstante su papel en la levadura es desconocido. Este estudio utilizó especies de Saccharomyces y no Saccharomyces para evaluar los posibles efectos antioxidantes de la melatonina. Se evaluó la resistencia al H2O2, la producción de especies reactivas de oxígeno, la peroxidación lipídica, la actividad catalasa y la composición lipídica (ácidos grasos, fosfolípidos y esteroles) tanto en levaduras de Saccharomyces como no-Saccharomyces. Además, en S. cerevisiae se evaluó el contenido de glutatión reducido y oxidado, se cuantificó la melatonina endógena y se realizó un ensayo transcriptómico. Los resultados mostraron que las levaduras que contienen ácidos grasos insaturados como los ácidos linoleico o linolénico son más tolerantes al estrés oxidativo. Por otra parte, la suplementación con melatonina facilitó que las células hicieran frente a posibles estreses futuros. Sin embargo, cuando las células fueron sometidas a estrés oxidativo inducido por H2O2, la melatonina pudo mitigar parcialmente el daño celular reduciendo la producción de ROS, la peroxidación de lípidos y el glutatión oxidado a la vez que aumentaba el glutatión reducido y la viabilidad celular. El analisis de transcriptómica demostró que la melatonina es capaz de modular la respuesta al estrés oxidativo a nivel transcripcional. Los resultados demuestran que la melatonina puede actuar como antioxidante tanto en levaduras Saccharomyces como no-Saccharomyces.
Melatonin (N-acetyl-5 methoxytryptamine) which is synthesized from tryptophan, is formed during alcoholic fermentation, though its role in yeast is unknown. This study employed Saccharomyces and non-Saccharomyces species to evaluate the possible antioxidant effects of melatonin. Resistance to H2O2, reactive oxygen species, lipid peroxidation, catalase activity and lipid composition (fatty acids, phospholipids and sterols) were evaluated in both Saccharomyces and non-Saccharomyces yeasts. Furthermore, cell viability, reduced and oxidized glutathione levels, endogenous melatonin levels as well as transcriptomics study were assessed in S. cerevisiae. Results showed that non-Saccharomyces yeast containing unsaturated fatty acids such as linoleic or linolenic acids are more tolerant to oxidative stress. Melatonin supplementation enables cells to resist better further stresses. However, when cells were subjected to oxidative stress induced by H2O2, melatonin was able to partially mitigate cell damage by decreasing ROS production, lipid peroxidation and oxidized glutathione and increasing reduced glutathione and viability. Transcriptomics assays showed that melatonin is able to modulate the oxidative stress response at transcriptional level. The findings demonstrate that melatonin can act as antioxidant in both Saccharomyces and non-Saccharomyces yeasts.
Serra, Audrey. "Production d'hybrides saccharomyces cerevisiae x saccharomyces uvarum : contraintes physiologiques et procédé." Toulouse, INPT, 2004. http://www.theses.fr/2004INPT006G.
Full textJames, Allan. "A genetic analysis of sulfate transporters in Saccharomyces cerevisiae and Saccharomyces pastorianus." Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/1525.
Full textSchorling, Stefan. "Ceramidsynthese in Saccharomyces cerevisiae." Diss., lmu, 2001. http://nbn-resolving.de/urn:nbn:de:bvb:19-3658.
Full textDeans, Karen. "Ageing of Saccharomyces cerevisiae." Thesis, Heriot-Watt University, 1997. http://hdl.handle.net/10399/663.
Full textMessias, Susana Isabel Serra. "Caraterização dos polissacarídeos da parede celular das leveduras Saccharomyces cerevisiae e Saccharomyces pastorianus." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/17874.
Full textA indústria cervejeira usa diferentes espécies de leveduras Saccharomyces para a produção de cerveja. As leveduras são normalmente reutilizadas em 3-7 ciclos fermentativos e em seguida, são descartadas, sendo designado como levedura excedentária da cerveja (BSY). A BSY é um dos maiores subprodutos resultantes da indústria cervejeira e é fonte de polissacarídeos, nomeadamente glucanas, manoproteínas e quitina, provenientes da parede celular. No presente trabalho foram analisados os polissacarídeos das leveduras S. cerevisiae com 1 e 3 ciclos fermentativos e S. pastorianus com 2 e 6 ciclos fermentativos. Os polissacarídeos da parede celular das leveduras foram extraídos sequencialmente recorrendo à extração com água a 100 ºC e à extração aquosa assistida por micro-ondas (MWE) a 180 ºC. A extração com água quente permitiu extrair os polissacarídeos da superfície da parede celular que, no caso da S. cerevisiae, são constituídos essencialmente por resíduos de glucose em ligação (1→4) e, no caso da S. pastorianus são constituídos por resíduos de manose em ligação terminal, (1→2)-Man e (1→2,6)-Man. Os extratos solúveis da MWE, de S. cerevisiae são ricos em (1→4)-Glc e os da S. pastorianus são ricos em (1→2)-Man e (1→2,6)-Man. O resíduo insolúvel é composto por (1→4) e (1→3) glucanas. Os resíduos de glucose em ligação (1→4) foram sensíveis à hidrólise com α-amilase e com celulase, permitindo inferir a presença de resíduos com configuração anomérica α e β. Por microscopia eletrónica de varrimento verificou-se que a estrutura tridimensional das leveduras se mantém no resíduo após extração aquosa dos polissacarídeos. Uma potencial valorização deste resíduo poderá ser como microcápsula para a incorporação de compostos bioativos na área alimentar ou clínica. A levedura excedentária da cerveja apresenta grande variabilidade dependendo da estirpe/espécie da levedura e ainda do número de ciclos fermentativos a que está sujeita. Os extratos solúveis de MWE de S. cerevisiae são fonte de glucose em ligação (1→3), quando provenientes de um baixo número de reutilizações, e/ou ligação (1→4), se provenientes de um elevado número de reutilizações. As S. pastorianus são fonte de manoproteínas.
Beer industry uses different Saccharomyces yeast species, which are reused during 3-7 fermentative cycles. When discarded, they are named brewer’s spent yeast (BSY). BSY is one of the major by-products resultant of brewery industry and it is a source of glucan, mannoprotein and chitin components of yeast cell wall polysaccharides. In the present work, the cell wall polysaccharides of S. cerevisiae with 1 and 3 fermentative cycles and S. pastorianus with 2 and 6 fermentative cycles were analyzed. Cell wall polysaccharides were sequentially extracted with water at 100 ° C and with microwave assisted water extraction (MWE) at 180 ° C. The hot water extraction allowed to obtain the cell wall surface polysaccharides. Extracted S. cerevisiae polysaccharides were mainly constituted by (1→4) linked glucose and S. pastorianus ones were constituted by terminally-linked mannose, (1→2)-Man and (1→2,6)-Man. S. cerevisiae MWE extracts were enriched in (1→4)-Glc while MWE extracts of S. pastorianus were rich in (1→2)-Man e (1→2,6)-Man. The insoluble residue was composed mainly of (1→ 4) and (1→ 3) glucan. The (1→4) linked glucose was hydrolysed by amylase and cellulase, allowing to infer the presence of α and β anomeric configurations. The residue that remain after the extraction of the polysaccharides was found by scanning electron microscopy, to maintain the three dimensional structure of the yeast. This residue can be valued as a microcapsule for the incorporation of bioactive compounds in food or clinical applications. Depending on the number of yeast reutilizations, MWE extracts of S. cerevisiae are a source of (1→3)-glucans or (1→4)-glucans, while MWE extracts of S. pastorianus are a source of mannoproteins. As BSY showed a high variability depending on the yeasts strain/ species and reutilization, able to be recovered by MWE.
Ericson, Elke. "High-resolution phenomics to decode : yeast stress physiology /." Göteborg : Göteborg University, Dept. of Cell and Molecular Biology, Faculty of Science, 2006. http://www.loc.gov/catdir/toc/fy0707/2006436807.html.
Full textEriksson, Peter. "Identification of the two GPD isogenes of saccharomyces cerevisiae and characterization of their response to hyper-osmotic stress." Göteborg : Chalmers Reproservice, 1996. http://catalog.hathitrust.org/api/volumes/oclc/38202006.html.
Full textSoden, Alison. "The fermentation properties of non-Saccharomyces wine yeasts and their interaction with Saccharomyces cerevisiae /." Title page, contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phs679.pdf.
Full textErrata slip inserted on back end-paper. Thesis (Ph.D.)--University of Adelaide, Dept. of Horticulture, Viticulture and Oenology, 1999. Bibliography: leaves 106-125.
Books on the topic "Saccharomyces"
Tuite, Michael F., and Stephen G. Oliver, eds. Saccharomyces. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8.
Full textGrivell, L. A., ed. Molecular Biology of Saccharomyces. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2504-8.
Full textA, Grivell L., ed. Molecular biology of saccharomyces. Dordrecht: Kluwer Academic Publishers, 1992.
Find full textMojzita, Dominik. Thiamine-related regulation of metabolism and gene expression in the yeast Saccharomyces cerevisiae. Göteborg: Dept. of Cellular and Molecular Biology, Göteborg University, 2007.
Find full textPettersson, Nina. Functional analysis of aquaporins Saccharomyces cerevisae. Göteborg: Department of Cell and Molecular Biology, Göteborg University, 2005.
Find full textPettersson, Nina. Functional analysis of aquaporins Saccharomyces cerevisae. Göteborg: Department of Cell and Molecular Biology, Göteborg University, 2005.
Find full textSträssle, Christoph A. Modell zur Spontansynchronisation von Saccharomyces cerevisiae. [s.l.]: [s.n.], 1988.
Find full textMortimer, Robert K. Genetic map of Saccharomyces cerevisiae: (as of November 1984). [Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory], 1985.
Find full textWingler, Laura Michele. Harnessing Saccharomyces cerevisiae Genetics for Cell Engineering. [New York, N.Y.?]: [publisher not identified], 2011.
Find full textSmart, Christopher Andrew. Biotransformations of ketoximes by saccharomyces cerevisiae NCYC 1765. [s.l.]: typescript, 1995.
Find full textBook chapters on the topic "Saccharomyces"
Tuite, Michael F., and Stephen G. Oliver. "Introduction." In Saccharomyces, 1–3. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_1.
Full textKreutzfeldt, C., and W. Witt. "Structural Biochemistry." In Saccharomyces, 5–58. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_2.
Full textDickinson, J. R. "Metabolism and Biosynthesis." In Saccharomyces, 59–100. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_3.
Full textWickner, R. B. "Methods in Classical Genetics." In Saccharomyces, 101–47. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_4.
Full textKingsman, A. J., E. J. Mellor, M. J. Dobson, and S. M. Kingsman. "Recombinant DNA Techniques." In Saccharomyces, 149–67. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_5.
Full textTuite, Michael F. "Expression of Heterologous Genes." In Saccharomyces, 169–212. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_6.
Full textOliver, Stephen G. "“Classical” Yeast Biotechnology." In Saccharomyces, 213–48. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_7.
Full textMatthews, T. M., and C. Webb. "Culture Systems." In Saccharomyces, 249–82. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_8.
Full textTuite, Michael F., and Stephen G. Oliver. "Biochemical Techniques." In Saccharomyces, 283–320. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_9.
Full textChen, Xinhua, and Ciarán P. Kelly. "Saccharomyces spp." In Therapeutic Microbiology, 51–60. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815462.ch5.
Full textConference papers on the topic "Saccharomyces"
Heath, Allison P., Lydia Kavraki, and Gabor Balazsi. "Bipolarity of the Saccharomyces Cerevisiae Genome." In 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2008. http://dx.doi.org/10.1109/icbbe.2008.84.
Full textGabrovšek, Ana, Nika Tašler, Rigoberto Barrios-Francisco, and Marko Jeran. "Impact of a Saccharin Higher Homolog on Saccharomyces cerevisiae." In Socratic Lectures 7. University of Lubljana Press, 2022. http://dx.doi.org/10.55295/psl.2022.d15.
Full text"Bioethanol Generation Through the Fermentation Process of Pineapple and Black Grape Utilizing Saccharomyces cerevisiae and Saccharomyces bayanus." In 4th International Conference Eco-Innovation in Science, Engineering, and Technology. Galaxy Science, 2023. http://dx.doi.org/10.11594/nstp.2023.3609.
Full textPinguli, Luljeta, Ilirjan Malollari, Anisa Dhroso, Hasime Manaj, and Dhurata Premtis. "A Comparative Study of Batch Fermentation Performance of Saccharomyces carlsbengensis and Saccharomyces cerevisiae based on Kinetic Parameters." In University for Business and Technology International Conference. Pristina, Kosovo: University for Business and Technology, 2018. http://dx.doi.org/10.33107/ubt-ic.2018.159.
Full textYang, Yueying, Di Liu, and Jun Meng. "Module of cellular networks in saccharomyces cerevisiae." In 2012 IEEE 6th International Conference on Systems Biology (ISB). IEEE, 2012. http://dx.doi.org/10.1109/isb.2012.6314133.
Full textRagothaman Avanasi Narasimhan, Ganti S Murthy, and Christopher Beatty. "Hemicellulose fermentation by industrial yeast Saccharomyces cerevisiae." In 2010 Pittsburgh, Pennsylvania, June 20 - June 23, 2010. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2010. http://dx.doi.org/10.13031/2013.29920.
Full textБорисенко, О. А. "Влияние холодного охмеления на дрожжи Saccharomyces cerevisiae." In Наука России: Цели и задачи. НИЦ "LJournal", 2021. http://dx.doi.org/10.18411/sr-10-06-2021-39.
Full textYang, Chenyu, and Yilin Li. "Gene Editing of Saccharomyces Cerevisiae Using CRISPR." In International Conference on Biotechnology and Biomedicine. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0012021800003633.
Full textLobodina, E. V., E. A. Al-Nakib, and A. O. Avakimyan. "Morphotypic assessment of autochthonous strains of Saccharomyces and non-Saccharomyces yeast on grape varieties Dostoinyy Anapo-Taman zone of viticulture." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.152.
Full textDong, Limin, Zhuo Diao, Juan Du, Zhao Jiang, Qingjuan Meng, and Ying Zhang. "Mechanism of Cu(II) Biosorption by Saccharomyces Cerevisiae." In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5163036.
Full textReports on the topic "Saccharomyces"
DeLoache, William, Zachary Russ, Jennifer Samson, and John Dueber. Repurposing the Saccharomyces cerevisiae peroxisome for compartmentalizing multi-enzyme pathways. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1394729.
Full textCampbell, Chelsea, Cullen Horstmann, Kyoungtae Kim, and Alan Kennedy. Saccharomyces cerevisiae (Budding Yeast); Standard Operating Procedure Series : Toxicology (T). Engineer Research and Development Center (U.S.), August 2019. http://dx.doi.org/10.21079/11681/33688.
Full textBusche, R. M., C. D. Scott, B. H. Davison, and L. R. Lynd. The ultimate ethanol: Technoeconomic evaluation of ethanol manufacture, comparing yeast vs Zymomonas bacterium fermentations. [Zymomonas mobilis:a5; Saccharomyces cerevisiae:a6]. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/5138781.
Full textTurner, Joshua, Lizabeth Thomas, and Sarah Kennedy. Structural Analysis of a New Saccharomyces cerevisiae α-glucosidase Homology Model and Identification of Potential Inhibitor Enzyme Docking Sites. Journal of Young Investigators, October 2020. http://dx.doi.org/10.22186/jyi.38.4.27-33.
Full textAlexandar, Irina, Diana Zasheva, and Nikolay Kaloyanov. Antimicrobial Activity of New Molecular Complexes of 1,10‑Phenanthroline and 5‑Amino‑1,10‑Phenanthroline on Escherichia coli and Saccharomyces cerevisiae Strains. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2019. http://dx.doi.org/10.7546/crabs.2019.01.10.
Full textZhao, Chun. Suppressors (scsl-scs7) of CSG2, a Gene Required by Saccharomyces cerevisiae for Growth in Media Containing 10 mMCa(2+), Identify Genes Required for Sphingolipid Biosynthesis. Fort Belvoir, VA: Defense Technical Information Center, June 1994. http://dx.doi.org/10.21236/ad1011395.
Full textLuther, Jamie, Holly Goodson, and Clint Arnett. Development of a genetic memory platform for detection of metals in water : use of mRNA and protein destabilization elements as a means to control autoinduction from the CUP1 promoter of Saccharomyces cerevisiae. Construction Engineering Research Laboratory (U.S.), June 2018. http://dx.doi.org/10.21079/11681/27275.
Full textShapira, Roni, Judith Grizzle, Nachman Paster, Mark Pines, and Chamindrani Mendis-Handagama. Novel Approach to Mycotoxin Detoxification in Farm Animals Using Probiotics Added to Feed Stuffs. United States Department of Agriculture, May 2010. http://dx.doi.org/10.32747/2010.7592115.bard.
Full textZhou, Ting, Roni Shapira, Peter Pauls, Nachman Paster, and Mark Pines. Biological Detoxification of the Mycotoxin Deoxynivalenol (DON) to Improve Safety of Animal Feed and Food. United States Department of Agriculture, July 2010. http://dx.doi.org/10.32747/2010.7613885.bard.
Full textIrudayaraj, Joseph, Ze'ev Schmilovitch, Amos Mizrach, Giora Kritzman, and Chitrita DebRoy. Rapid detection of food borne pathogens and non-pathogens in fresh produce using FT-IRS and raman spectroscopy. United States Department of Agriculture, October 2004. http://dx.doi.org/10.32747/2004.7587221.bard.
Full text