Academic literature on the topic 'Saccharomyces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Saccharomyces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Saccharomyces"

1

Vaštík, Peter, Daniela Šmogrovičová, Valentína Kafková, Pavol Sulo, Katarína Furdíková, and Ivan Špánik. "Production and characterisation of non-alcoholic beer using special yeast." KVASNY PRUMYSL 66, no. 5 (October 15, 2020): 336–44. http://dx.doi.org/10.18832/kp2019.66.336.

Full text
Abstract:
Non-Saccharomyces yeast strains Saccharomycodes ludwigii, Schizosaccharomyces pombe, Lachancea fermentati and Pichia angusta together with a hybrid yeast strain cross-bred between genetically modified Saccharomyces cerevisiae W303-1A G418R and Saccharomyces eubayanus as well as the parent yeasts of the hybrid were studied for potential use for non-alcoholic beer production. The hybrid yeast, its Saccharomyces cerevisiae W303-1A G418R parent and Saccharomycodes ludwigii were not able to metabolise maltose during Durham tube tests. Schizosaccharomyces pombe, Lachancea fermentati and Pichia angusta metabolised maltose, however, showed limited ethanol production. Parameters, volatile and non-volatile organic compounds of beers produced by the studied yeast were analysed and compared to a beer produced by bottom fermented brewer’s yeast Saccharomyces pastorianus.
APA, Harvard, Vancouver, ISO, and other styles
2

Wee, Hyun-Jeong, Sae-Byuk Lee, Kyu-Taek Choi, Ji-Yeon Ham, Soo-Hwan Yeo, and Heui-Dong Park. "Characteristics of freeze-concentrated apple cider fermented using mixed culture of non-Saccharomyces and Saccharomyces cerevisiae Fermivin." Korean Journal of Food Preservation 25, no. 6 (October 30, 2018): 730–41. http://dx.doi.org/10.11002/kjfp.2018.25.6.730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ellis, Daniel J., Edward D. Kerr, Gerhard Schenk, and Benjamin L. Schulz. "Metabolomics of Non-Saccharomyces Yeasts in Fermented Beverages." Beverages 8, no. 3 (July 20, 2022): 41. http://dx.doi.org/10.3390/beverages8030041.

Full text
Abstract:
Fermented beverages have been consumed for millennia and today support a global industry producing diverse products. Saccharomyces yeasts currently dominate the fermented beverage industry, but consumer demands for alternative products with a variety of sensory profiles and actual or perceived health benefits are driving the diversification and use of non-Saccharomyces yeasts. The diversity of flavours, aromas, and other sensory characteristics that can be obtained by using non-Saccharomyces yeasts in fermentation is, in large part, due to the diverse secondary metabolites they produce compared to conventional Saccharomyces yeast. Here, we review the use of metabolomic analyses of non-Saccharomyces yeasts to explore their impact on the sensory characteristics of fermented beverages. We highlight several key species currently used in the industry, including Brettanomyces, Torulaspora, Lachancea, and Saccharomycodes, and emphasize the future potential for the use of non-Saccharomyces yeasts in the production of diverse fermented beverages.
APA, Harvard, Vancouver, ISO, and other styles
4

THAMMASITTIRONG, SUTTICHA NA-RANONG, THADA CHAMDUANG, UMAPORN PHONROD, and KLANARONG SRIROTH. "Ethanol Production Potential of Ethanol-Tolerant Saccharomyces and Non-Saccharomyces Yeasts." Polish Journal of Microbiology 61, no. 3 (2012): 219–21. http://dx.doi.org/10.33073/pjm-2012-029.

Full text
Abstract:
Four ethanologenic ethanol-tolerant yeast strains, Saccharomyces cerevisiae (ATKU132), Saccharomycodes ludwigii (ATKU47), and Issatchenkia orientalis (ATKU5-60 and ATKU5-70), were isolated by an enrichment technique in yeast extract peptone dextrose (YPD) medium supplemented with 10% (v/v) ethanol at 30°C. Among non-Saccharomyces yeasts, Sd. ludwigii ATKU47 exhibited the highest ethanol-tolerance and ethanol production, which was similar to S. cerevisiae ATKU132. The maximum range of ethanol concentrations produced at 37°C by S. cerevisiae ATKU132 and Sd. ludwigii ATKU47 from an initial D-glucose concentration of 20% (w/v) and 28% (w/v) sugarcane molasses were 9.46-9.82% (w/v) and 8.07-8.32% (w/v), respectively.
APA, Harvard, Vancouver, ISO, and other styles
5

Marinov, Luka, Ana Jeromel, Ivana Tomaz, Darko Preiner, and Ana Marija Jagatić Korenika. "Učinak sekvencijalne fermentacije s kvascima Lachancea thermotelerans i Torulaspora delbrueckii na kemijski sastav vina ´Malvazija istarska´." Glasnik zaštite bilja 44, no. 4 (July 12, 2021): 56–66. http://dx.doi.org/10.31727/gzb.44.4.8.

Full text
Abstract:
Suočavajući se sa sve drastičnijim utjecajem klimatskih čimbenika na kemijski sastav grožđa, enologija traži i proučava nove metode u tehnologiji proizvodnje vina, posebice bijelih, kako bi se očuvale primarne arome te postigla ravnoteža između alkoholne jakosti i ukupne kiselosti. Kao jedno od rješenja nudi se primjena ne- Saccharomyces kvasaca. U ovom istraživanju analiziran je utjecaj sekvencijalne inokulacije komercijalnih sojeva Torulospora delbrueckii i Lachancea thermotolerans sa sojem kvasca Saccharomycem cerevisiae na vino ´Malvazija istarska´. Istraživanje je obuhvatilo inokulacije mošta s ne-Saccharomyces kvascima, a 48 h kasnije i sa sojem S. cerevisae te kontrolnu varijantu isključivo sa S. cerevisae. Ne-Saccharomyces kvasci utjecali su značajno na koncentraciju alkohola, mliječne kiseline te pH vrijednost. Fermentacija sa S. cerevisiae utjecala je na višu koncentraciju ukupnih aromatskih spojeva u vinu. Intenziteti boje i mirisa najbolje su ocijenjeni u kontrolnom uzorku, a metodom redoslijeda najbolje je rangirana ´Malvazija´ iz tretmana T. delbrueckii/ S. cerevisiae.
APA, Harvard, Vancouver, ISO, and other styles
6

Floch, Martin H. "Saccharomyces." Journal of Clinical Gastroenterology 36, no. 1 (January 2003): 5–6. http://dx.doi.org/10.1097/00004836-200301000-00003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barnett, James A. "Saccharomyces." Trends in Biotechnology 10 (1992): 103–4. http://dx.doi.org/10.1016/0167-7799(92)90184-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wiseman, Helen. "Saccharomyces." FEBS Letters 316, no. 2 (January 25, 1993): 201–2. http://dx.doi.org/10.1016/0014-5793(93)81223-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

McFarland, L. V. "Saccharomyces boulardii Is Not Saccharomyces cerevisiae." Clinical Infectious Diseases 22, no. 1 (January 1, 1996): 200–201. http://dx.doi.org/10.1093/clinids/22.1.200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Naumov, G. I., S. A. James, E. S. Naumova, E. J. Louis, and I. N. Roberts. "Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae." International Journal of Systematic and Evolutionary Microbiology 50, no. 5 (September 1, 2000): 1931–42. http://dx.doi.org/10.1099/00207713-50-5-1931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Saccharomyces"

1

Wirth, Bénédicte. "Dynamique et évolution d'ORFs dupliquées chez les levures hémiascomycètes : Etude de la famille multigénique DUP." Université Louis Pasteur (Strasbourg) (1971-2008), 2006. http://www.theses.fr/2006STR13070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vázquez, González Jennifer. "Antioxidant effect of melatonin on Saccharomyces and non-Saccharomyces wine yeasts." Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/461155.

Full text
Abstract:
La melatonina (N-acetil-5 metoxytryptamine) que es sintetitza a partir de triptòfan, es forma durant la fermentació alcohòlica, no obstant el seu paper en el llevat és desconegut. Aquest estudi va utilitzar espècies de Saccharomyces i no Saccharomyces per avaluar els possibles efectes antioxidants de melatonina. Es va avaluar la resistència al H2O2, la producció d’espècies reactives d'oxigen, la peroxidació lipídica, l'activitat catalasa i a la composició lipídica (àcids grassos, fosfolípids i esterols) tant en llevats de Saccharomyces com no-Saccharomyces. A més, a S. cerevisiae es va avaluar el contingut de glutatió reduït i oxidat, es va quantificar la melatonina endògena i es va realitzar un assaig transcriptòmic. Els resultats van mostrar que els llevats que contenen àcids grassos insaturats com els àcids linoleic o linolènic són més tolerants a l'estrès oxidatiu. Per altra banda, la suplementació amb melatonina va facilitar que les cèl·lules fessin front a possibles estressos futurs. Tanmateix, quan les cèl·lules van ser sotmeses a estrès oxidatiu induït per H2O2, la melatonina va poder mitigar parcialment el dany cel·lular reduint la producció de ROS, la peroxidació de lípids i el glutatió oxidat a la vegada que augmentava el glutatió reduït i la viabilitat cel·lular. L`anàlisi de transcriptòmica va demostrar que la melatonina és capaç de modular la resposta a l'estrès oxidatiu a nivell transcripcional. Els resultats demostren que la melatonina pot actuar com antioxidant tant en llevats Saccharomyces com en no-Saccharomyces.
La melatonina (N-acetil-5 metoxytryptamine) que se sintetiza a partir del triptófano, se forma durante la fermentación alcohólica, no obstante su papel en la levadura es desconocido. Este estudio utilizó especies de Saccharomyces y no Saccharomyces para evaluar los posibles efectos antioxidantes de la melatonina. Se evaluó la resistencia al H2O2, la producción de especies reactivas de oxígeno, la peroxidación lipídica, la actividad catalasa y la composición lipídica (ácidos grasos, fosfolípidos y esteroles) tanto en levaduras de Saccharomyces como no-Saccharomyces. Además, en S. cerevisiae se evaluó el contenido de glutatión reducido y oxidado, se cuantificó la melatonina endógena y se realizó un ensayo transcriptómico. Los resultados mostraron que las levaduras que contienen ácidos grasos insaturados como los ácidos linoleico o linolénico son más tolerantes al estrés oxidativo. Por otra parte, la suplementación con melatonina facilitó que las células hicieran frente a posibles estreses futuros. Sin embargo, cuando las células fueron sometidas a estrés oxidativo inducido por H2O2, la melatonina pudo mitigar parcialmente el daño celular reduciendo la producción de ROS, la peroxidación de lípidos y el glutatión oxidado a la vez que aumentaba el glutatión reducido y la viabilidad celular. El analisis de transcriptómica demostró que la melatonina es capaz de modular la respuesta al estrés oxidativo a nivel transcripcional. Los resultados demuestran que la melatonina puede actuar como antioxidante tanto en levaduras Saccharomyces como no-Saccharomyces.
Melatonin (N-acetyl-5 methoxytryptamine) which is synthesized from tryptophan, is formed during alcoholic fermentation, though its role in yeast is unknown. This study employed Saccharomyces and non-Saccharomyces species to evaluate the possible antioxidant effects of melatonin. Resistance to H2O2, reactive oxygen species, lipid peroxidation, catalase activity and lipid composition (fatty acids, phospholipids and sterols) were evaluated in both Saccharomyces and non-Saccharomyces yeasts. Furthermore, cell viability, reduced and oxidized glutathione levels, endogenous melatonin levels as well as transcriptomics study were assessed in S. cerevisiae. Results showed that non-Saccharomyces yeast containing unsaturated fatty acids such as linoleic or linolenic acids are more tolerant to oxidative stress. Melatonin supplementation enables cells to resist better further stresses. However, when cells were subjected to oxidative stress induced by H2O2, melatonin was able to partially mitigate cell damage by decreasing ROS production, lipid peroxidation and oxidized glutathione and increasing reduced glutathione and viability. Transcriptomics assays showed that melatonin is able to modulate the oxidative stress response at transcriptional level. The findings demonstrate that melatonin can act as antioxidant in both Saccharomyces and non-Saccharomyces yeasts.
APA, Harvard, Vancouver, ISO, and other styles
3

Serra, Audrey. "Production d'hybrides saccharomyces cerevisiae x saccharomyces uvarum : contraintes physiologiques et procédé." Toulouse, INPT, 2004. http://www.theses.fr/2004INPT006G.

Full text
Abstract:
La maîtrise des procédés fermentaires a largement contribué à l'essor de la pratique du levurage en vinification. Toutefois, dans un souci de respect et de préservation des spécificités de chaque région viticole, de nouvelles souches de levures sont sélectionnées. Ainsi nous nous intéressons dans ce travail à l'étude de souches hybrides S. Cerevisiae x S. Uvarum et plus particulièrement dans l'optique de leur production industrielle sous forme de levures sèches actives. Tout d'abord, les caractéristiques physiologiques de la souche parentale S. Uvarum nécessaires pour la conduite d'une production de biomasse ont été identifiées. Par ailleurs, une perte de viabilité assez atypique chez une levure a été décelée sous certaines conditions opératoires. Puis après une étude comparative des souches hybrides et parentales, notamment en ce qui concerne leurs potentialités fermentaires, les modalités pour la production optimale d'un hybride ont été abordées. La détermination de deux profils d'apport du substrat, dont la validité dépend de la concentration en sucre dans l'alimentation et des souches employées, ainsi que l'accumulation de tréhalose intracellulaire en constituent les paramètres établis. Ces parmètres clé du procédé ont ensuite été confirmés par des productions de biomasse sous forme de levures sèches actives à une échelle pilote.
APA, Harvard, Vancouver, ISO, and other styles
4

James, Allan. "A genetic analysis of sulfate transporters in Saccharomyces cerevisiae and Saccharomyces pastorianus." Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/1525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schorling, Stefan. "Ceramidsynthese in Saccharomyces cerevisiae." Diss., lmu, 2001. http://nbn-resolving.de/urn:nbn:de:bvb:19-3658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Deans, Karen. "Ageing of Saccharomyces cerevisiae." Thesis, Heriot-Watt University, 1997. http://hdl.handle.net/10399/663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Messias, Susana Isabel Serra. "Caraterização dos polissacarídeos da parede celular das leveduras Saccharomyces cerevisiae e Saccharomyces pastorianus." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/17874.

Full text
Abstract:
Mestrado em Bioquímica - Bioquímica Alimentar
A indústria cervejeira usa diferentes espécies de leveduras Saccharomyces para a produção de cerveja. As leveduras são normalmente reutilizadas em 3-7 ciclos fermentativos e em seguida, são descartadas, sendo designado como levedura excedentária da cerveja (BSY). A BSY é um dos maiores subprodutos resultantes da indústria cervejeira e é fonte de polissacarídeos, nomeadamente glucanas, manoproteínas e quitina, provenientes da parede celular. No presente trabalho foram analisados os polissacarídeos das leveduras S. cerevisiae com 1 e 3 ciclos fermentativos e S. pastorianus com 2 e 6 ciclos fermentativos. Os polissacarídeos da parede celular das leveduras foram extraídos sequencialmente recorrendo à extração com água a 100 ºC e à extração aquosa assistida por micro-ondas (MWE) a 180 ºC. A extração com água quente permitiu extrair os polissacarídeos da superfície da parede celular que, no caso da S. cerevisiae, são constituídos essencialmente por resíduos de glucose em ligação (1→4) e, no caso da S. pastorianus são constituídos por resíduos de manose em ligação terminal, (1→2)-Man e (1→2,6)-Man. Os extratos solúveis da MWE, de S. cerevisiae são ricos em (1→4)-Glc e os da S. pastorianus são ricos em (1→2)-Man e (1→2,6)-Man. O resíduo insolúvel é composto por (1→4) e (1→3) glucanas. Os resíduos de glucose em ligação (1→4) foram sensíveis à hidrólise com α-amilase e com celulase, permitindo inferir a presença de resíduos com configuração anomérica α e β. Por microscopia eletrónica de varrimento verificou-se que a estrutura tridimensional das leveduras se mantém no resíduo após extração aquosa dos polissacarídeos. Uma potencial valorização deste resíduo poderá ser como microcápsula para a incorporação de compostos bioativos na área alimentar ou clínica. A levedura excedentária da cerveja apresenta grande variabilidade dependendo da estirpe/espécie da levedura e ainda do número de ciclos fermentativos a que está sujeita. Os extratos solúveis de MWE de S. cerevisiae são fonte de glucose em ligação (1→3), quando provenientes de um baixo número de reutilizações, e/ou ligação (1→4), se provenientes de um elevado número de reutilizações. As S. pastorianus são fonte de manoproteínas.
Beer industry uses different Saccharomyces yeast species, which are reused during 3-7 fermentative cycles. When discarded, they are named brewer’s spent yeast (BSY). BSY is one of the major by-products resultant of brewery industry and it is a source of glucan, mannoprotein and chitin components of yeast cell wall polysaccharides. In the present work, the cell wall polysaccharides of S. cerevisiae with 1 and 3 fermentative cycles and S. pastorianus with 2 and 6 fermentative cycles were analyzed. Cell wall polysaccharides were sequentially extracted with water at 100 ° C and with microwave assisted water extraction (MWE) at 180 ° C. The hot water extraction allowed to obtain the cell wall surface polysaccharides. Extracted S. cerevisiae polysaccharides were mainly constituted by (1→4) linked glucose and S. pastorianus ones were constituted by terminally-linked mannose, (1→2)-Man and (1→2,6)-Man. S. cerevisiae MWE extracts were enriched in (1→4)-Glc while MWE extracts of S. pastorianus were rich in (1→2)-Man e (1→2,6)-Man. The insoluble residue was composed mainly of (1→ 4) and (1→ 3) glucan. The (1→4) linked glucose was hydrolysed by amylase and cellulase, allowing to infer the presence of α and β anomeric configurations. The residue that remain after the extraction of the polysaccharides was found by scanning electron microscopy, to maintain the three dimensional structure of the yeast. This residue can be valued as a microcapsule for the incorporation of bioactive compounds in food or clinical applications. Depending on the number of yeast reutilizations, MWE extracts of S. cerevisiae are a source of (1→3)-glucans or (1→4)-glucans, while MWE extracts of S. pastorianus are a source of mannoproteins. As BSY showed a high variability depending on the yeasts strain/ species and reutilization, able to be recovered by MWE.
APA, Harvard, Vancouver, ISO, and other styles
8

Ericson, Elke. "High-resolution phenomics to decode : yeast stress physiology /." Göteborg : Göteborg University, Dept. of Cell and Molecular Biology, Faculty of Science, 2006. http://www.loc.gov/catdir/toc/fy0707/2006436807.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Eriksson, Peter. "Identification of the two GPD isogenes of saccharomyces cerevisiae and characterization of their response to hyper-osmotic stress." Göteborg : Chalmers Reproservice, 1996. http://catalog.hathitrust.org/api/volumes/oclc/38202006.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Soden, Alison. "The fermentation properties of non-Saccharomyces wine yeasts and their interaction with Saccharomyces cerevisiae /." Title page, contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phs679.pdf.

Full text
Abstract:
Thesis (Ph.D.)-- University of Adelaide, Dept. of Horticulture, Viticulture and Oenology, 1999.
Errata slip inserted on back end-paper. Thesis (Ph.D.)--University of Adelaide, Dept. of Horticulture, Viticulture and Oenology, 1999. Bibliography: leaves 106-125.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Saccharomyces"

1

Tuite, Michael F., and Stephen G. Oliver, eds. Saccharomyces. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Grivell, L. A., ed. Molecular Biology of Saccharomyces. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2504-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

A, Grivell L., ed. Molecular biology of saccharomyces. Dordrecht: Kluwer Academic Publishers, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mojzita, Dominik. Thiamine-related regulation of metabolism and gene expression in the yeast Saccharomyces cerevisiae. Göteborg: Dept. of Cellular and Molecular Biology, Göteborg University, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pettersson, Nina. Functional analysis of aquaporins Saccharomyces cerevisae. Göteborg: Department of Cell and Molecular Biology, Göteborg University, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pettersson, Nina. Functional analysis of aquaporins Saccharomyces cerevisae. Göteborg: Department of Cell and Molecular Biology, Göteborg University, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Strässle, Christoph A. Modell zur Spontansynchronisation von Saccharomyces cerevisiae. [s.l.]: [s.n.], 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mortimer, Robert K. Genetic map of Saccharomyces cerevisiae: (as of November 1984). [Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory], 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wingler, Laura Michele. Harnessing Saccharomyces cerevisiae Genetics for Cell Engineering. [New York, N.Y.?]: [publisher not identified], 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Smart, Christopher Andrew. Biotransformations of ketoximes by saccharomyces cerevisiae NCYC 1765. [s.l.]: typescript, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Saccharomyces"

1

Tuite, Michael F., and Stephen G. Oliver. "Introduction." In Saccharomyces, 1–3. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kreutzfeldt, C., and W. Witt. "Structural Biochemistry." In Saccharomyces, 5–58. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dickinson, J. R. "Metabolism and Biosynthesis." In Saccharomyces, 59–100. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wickner, R. B. "Methods in Classical Genetics." In Saccharomyces, 101–47. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kingsman, A. J., E. J. Mellor, M. J. Dobson, and S. M. Kingsman. "Recombinant DNA Techniques." In Saccharomyces, 149–67. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tuite, Michael F. "Expression of Heterologous Genes." In Saccharomyces, 169–212. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Oliver, Stephen G. "“Classical” Yeast Biotechnology." In Saccharomyces, 213–48. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Matthews, T. M., and C. Webb. "Culture Systems." In Saccharomyces, 249–82. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tuite, Michael F., and Stephen G. Oliver. "Biochemical Techniques." In Saccharomyces, 283–320. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Xinhua, and Ciarán P. Kelly. "Saccharomyces spp." In Therapeutic Microbiology, 51–60. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815462.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Saccharomyces"

1

Heath, Allison P., Lydia Kavraki, and Gabor Balazsi. "Bipolarity of the Saccharomyces Cerevisiae Genome." In 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2008. http://dx.doi.org/10.1109/icbbe.2008.84.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gabrovšek, Ana, Nika Tašler, Rigoberto Barrios-Francisco, and Marko Jeran. "Impact of a Saccharin Higher Homolog on Saccharomyces cerevisiae." In Socratic Lectures 7. University of Lubljana Press, 2022. http://dx.doi.org/10.55295/psl.2022.d15.

Full text
Abstract:
Saccharin is an organic compound, which is often used as a calorie-free artificial sweetener. It salts are being produced for the market for over 80 years. Saccharin and its derivates are very applicatory oriented, therefore researchers synthesize more and more active ingredients, which could potentially show better performance. This work considers the effect of biological activity of a newly synthesized saccharin derivative Me- thyl 4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-3-carboxylate (6Sac) on yeast Saccharomyces cere-visiae. Qualitative comparison of the studied activity with the activity of the saccharine sodium salt is presented. Our results were gained by two different ways of viability detection: counting dead/live cells dyed with methylene blue and counting colony-forming units (CFU). The study has shown that the saccharine derivative with an ester functional group has negative effect on growth and repro-duction of yeast. The qualitative comparison of the activity of the tested substance with the already known activity of saccharine sodium salt is a convenient method for following the model organism Saccharomyces cerevisiae. Keywords: Saccharin, sodium saccharinate, Saccharomyces cerevisiae, Viability, Methylene blue, Col-ony-forming units (CFU), Medicine
APA, Harvard, Vancouver, ISO, and other styles
3

"Bioethanol Generation Through the Fermentation Process of Pineapple and Black Grape Utilizing Saccharomyces cerevisiae and Saccharomyces bayanus." In 4th International Conference Eco-Innovation in Science, Engineering, and Technology. Galaxy Science, 2023. http://dx.doi.org/10.11594/nstp.2023.3609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pinguli, Luljeta, Ilirjan Malollari, Anisa Dhroso, Hasime Manaj, and Dhurata Premtis. "A Comparative Study of Batch Fermentation Performance of Saccharomyces carlsbengensis and Saccharomyces cerevisiae based on Kinetic Parameters." In University for Business and Technology International Conference. Pristina, Kosovo: University for Business and Technology, 2018. http://dx.doi.org/10.33107/ubt-ic.2018.159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Yueying, Di Liu, and Jun Meng. "Module of cellular networks in saccharomyces cerevisiae." In 2012 IEEE 6th International Conference on Systems Biology (ISB). IEEE, 2012. http://dx.doi.org/10.1109/isb.2012.6314133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ragothaman Avanasi Narasimhan, Ganti S Murthy, and Christopher Beatty. "Hemicellulose fermentation by industrial yeast Saccharomyces cerevisiae." In 2010 Pittsburgh, Pennsylvania, June 20 - June 23, 2010. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2010. http://dx.doi.org/10.13031/2013.29920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Борисенко, О. А. "Влияние холодного охмеления на дрожжи Saccharomyces cerevisiae." In Наука России: Цели и задачи. НИЦ "LJournal", 2021. http://dx.doi.org/10.18411/sr-10-06-2021-39.

Full text
Abstract:
В представленной работе исследуется влияние холодного охмеления на физиологическое состояние дрожжей. В процессе исследований проводились модельные опыты по холодному охмелению при температуре 5°С и 20°С с применением хмеля Магнум и Тетнангер и двух рас пивоваренных дрожжей Saccharomyces cerevisiae: Rh – низового брожения и Nottingham (Nt) – верхового брожения. Показано, что условия холодного охмеления одинаково воздействуют на дрожжи низового и верхового брожения с точки зрения влияния на физиологическое состояние и критическое влияние на процесс оказывает температура. Выявлено положительное влияние пониженных температур на жизнедеятельность дрожжей и их физиологическое состояние.
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Chenyu, and Yilin Li. "Gene Editing of Saccharomyces Cerevisiae Using CRISPR." In International Conference on Biotechnology and Biomedicine. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0012021800003633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lobodina, E. V., E. A. Al-Nakib, and A. O. Avakimyan. "Morphotypic assessment of autochthonous strains of Saccharomyces and non-Saccharomyces yeast on grape varieties Dostoinyy Anapo-Taman zone of viticulture." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.152.

Full text
Abstract:
The article presents the results of the assessment of morphotypes of strains of wine yeast sown from wort and pulp of samples of grape variety Dostoyny, taken in the SEC "Wine Village" of the Anapsky District of the Krasnodar Territory. The separation of saccharomycetes and non-saccharomycetes by morphotypic features and using an elective test was carried out.
APA, Harvard, Vancouver, ISO, and other styles
10

Dong, Limin, Zhuo Diao, Juan Du, Zhao Jiang, Qingjuan Meng, and Ying Zhang. "Mechanism of Cu(II) Biosorption by Saccharomyces Cerevisiae." In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5163036.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Saccharomyces"

1

DeLoache, William, Zachary Russ, Jennifer Samson, and John Dueber. Repurposing the Saccharomyces cerevisiae peroxisome for compartmentalizing multi-enzyme pathways. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1394729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Campbell, Chelsea, Cullen Horstmann, Kyoungtae Kim, and Alan Kennedy. Saccharomyces cerevisiae (Budding Yeast); Standard Operating Procedure Series : Toxicology (T). Engineer Research and Development Center (U.S.), August 2019. http://dx.doi.org/10.21079/11681/33688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Busche, R. M., C. D. Scott, B. H. Davison, and L. R. Lynd. The ultimate ethanol: Technoeconomic evaluation of ethanol manufacture, comparing yeast vs Zymomonas bacterium fermentations. [Zymomonas mobilis:a5; Saccharomyces cerevisiae:a6]. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/5138781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Turner, Joshua, Lizabeth Thomas, and Sarah Kennedy. Structural Analysis of a New Saccharomyces cerevisiae α-glucosidase Homology Model and Identification of Potential Inhibitor Enzyme Docking Sites. Journal of Young Investigators, October 2020. http://dx.doi.org/10.22186/jyi.38.4.27-33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Alexandar, Irina, Diana Zasheva, and Nikolay Kaloyanov. Antimicrobial Activity of New Molecular Complexes of 1,10‑Phenanthroline and 5‑Amino‑1,10‑Phenanthroline on Escherichia coli and Saccharomyces cerevisiae Strains. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2019. http://dx.doi.org/10.7546/crabs.2019.01.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhao, Chun. Suppressors (scsl-scs7) of CSG2, a Gene Required by Saccharomyces cerevisiae for Growth in Media Containing 10 mMCa(2+), Identify Genes Required for Sphingolipid Biosynthesis. Fort Belvoir, VA: Defense Technical Information Center, June 1994. http://dx.doi.org/10.21236/ad1011395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Luther, Jamie, Holly Goodson, and Clint Arnett. Development of a genetic memory platform for detection of metals in water : use of mRNA and protein destabilization elements as a means to control autoinduction from the CUP1 promoter of Saccharomyces cerevisiae. Construction Engineering Research Laboratory (U.S.), June 2018. http://dx.doi.org/10.21079/11681/27275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shapira, Roni, Judith Grizzle, Nachman Paster, Mark Pines, and Chamindrani Mendis-Handagama. Novel Approach to Mycotoxin Detoxification in Farm Animals Using Probiotics Added to Feed Stuffs. United States Department of Agriculture, May 2010. http://dx.doi.org/10.32747/2010.7592115.bard.

Full text
Abstract:
T-2 toxin, a toxic product belongs to the trichothecene mycotoxins, attracts major interest because of its severe detrimental effects on the health of human and farm animals. The occurrence of trichothecenes contamination is global and they are very resistant to physical or chemical detoxification techniques. Trichothecenes are absorbed in the small intestine into the blood stream. The hypothesis of this project was to develop a protecting system using probiotic bacteria that will express trichothecene 3-O-acetyltransferase (Tri101) that convert T-2 to a less toxic intermediate to reduce ingested levels in-situ. The major obstacle that we had faced during the project is the absence of stable and efficient expression vectors in probiotics. Most of the project period was invested to screen and isolate strong promoter to express high amounts of the detoxify enzyme on one hand and to stabilize the expression vector on the other hand. In order to estimate the detoxification capacity of the isolated promoters we had developed two very sensitive bioassays.The first system was based on Saccharomyces cerevisiae cells expressing the green fluorescent protein (GFP). Human liver cells proliferation was used as the second bioassay system.Using both systems we were able to prove actual detoxification on living cells by probiotic bacteria expressing Tri101. The first step was the isolation of already discovered strong promoters from lactic acid bacteria, cloning them downstream the Tri101 gene and transformed vectors to E. coli, a lactic acid bacteria strain Lactococcuslactis MG1363, and a probiotic strain of Lactobacillus casei. All plasmid constructs transformed to L. casei were unstable. The promoter designated lacA found to be the most efficient in reducing T-2 from the growth media of E. coli and L. lactis. A prompter library was generated from L. casei in order to isolate authentic probiotic promoters. Seven promoters were isolated, cloned downstream Tri101, transformed to bacteria and their detoxification capability was compared. One of those prompters, designated P201 showed a relatively high efficiency in detoxification. Sequence analysis of the promoter region of P201 and another promoter, P41, revealed the consensus region recognized by the sigma factor. We further attempted to isolate an inducible, strong promoter by comparing the protein profiles of L. casei grown in the presence of 0.3% bile salt (mimicking intestine conditions). Six spots that were consistently overexpressed in the presence of bile salts were isolated and identified. Their promoter reigns are now under investigation and characterization.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Ting, Roni Shapira, Peter Pauls, Nachman Paster, and Mark Pines. Biological Detoxification of the Mycotoxin Deoxynivalenol (DON) to Improve Safety of Animal Feed and Food. United States Department of Agriculture, July 2010. http://dx.doi.org/10.32747/2010.7613885.bard.

Full text
Abstract:
The trichothecene deoxynivalenol (DON, vomitoxin), one of the most common mycotoxin contaminants of grains, is produced by members of the Fusarium genus. DON poses a health risk to consumers and impairs livestock performance because it causes feed refusal, nausea, vomiting, diarrhea, hemolytic effects and cellular injury. The occurrence of trichothecenes contamination is global and they are very resistant to physical or chemical detoxification techniques. Trichothecenes are absorbed in the small intestine into the blood stream. The overall objective of this project was to develop a protecting system using probiotic bacteria that will express trichothecene 3-O-acetyltransferase (Tri101) that convert T-2 to a less toxic intermediate to reduce ingested levels in-situ. The major obstacle that we had faced during the project is the absence of stable and efficient expression vectors in probiotics. Most of the project period was invested to screen and isolate strong promoter to express high amounts of the detoxify enzyme on one hand and to stabilize the expression vector on the other hand. In order to estimate the detoxification capacity of the isolated promoters we had developed two very sensitive bioassays.The first system was based on Saccharomyces cerevisiae cells expressing the green fluorescent protein (GFP). Human liver cells proliferation was used as the second bioassay system.Using both systems we were able to prove actual detoxification on living cells by probiotic bacteria expressing Tri101. The first step was the isolation of already discovered strong promoters from lactic acid bacteria, cloning them downstream the Tri101 gene and transformed vectors to E. coli, a lactic acid bacteria strain Lactococcuslactis MG1363, and a probiotic strain of Lactobacillus casei. All plasmid constructs transformed to L. casei were unstable. The promoter designated lacA found to be the most efficient in reducing T-2 from the growth media of E. coli and L. lactis. A prompter library was generated from L. casei in order to isolate authentic probiotic promoters. Seven promoters were isolated, cloned downstream Tri101, transformed to bacteria and their detoxification capability was compared. One of those prompters, designated P201 showed a relatively high efficiency in detoxification. Sequence analysis of the promoter region of P201 and another promoter, P41, revealed the consensus region recognized by the sigma factor. We further attempted to isolate an inducible, strong promoter by comparing the protein profiles of L. casei grown in the presence of 0.3% bile salt (mimicking intestine conditions). Six spots that were consistently overexpressed in the presence of bile salts were isolated and identified. Their promoter reigns are now under investigation and characterization.
APA, Harvard, Vancouver, ISO, and other styles
10

Irudayaraj, Joseph, Ze'ev Schmilovitch, Amos Mizrach, Giora Kritzman, and Chitrita DebRoy. Rapid detection of food borne pathogens and non-pathogens in fresh produce using FT-IRS and raman spectroscopy. United States Department of Agriculture, October 2004. http://dx.doi.org/10.32747/2004.7587221.bard.

Full text
Abstract:
Rapid detection of pathogens and hazardous elements in fresh fruits and vegetables after harvest requires the use of advanced sensor technology at each step in the farm-to-consumer or farm-to-processing sequence. Fourier-transform infrared (FTIR) spectroscopy and the complementary Raman spectroscopy, an advanced optical technique based on light scattering will be investigated for rapid and on-site assessment of produce safety. Paving the way toward the development of this innovative methodology, specific original objectives were to (1) identify and distinguish different serotypes of Escherichia coli, Listeria monocytogenes, Salmonella typhimurium, and Bacillus cereus by FTIR and Raman spectroscopy, (2) develop spectroscopic fingerprint patterns and detection methodology for fungi such as Aspergillus, Rhizopus, Fusarium, and Penicillium (3) to validate a universal spectroscopic procedure to detect foodborne pathogens and non-pathogens in food systems. The original objectives proposed were very ambitious hence modifications were necessary to fit with the funding. Elaborate experiments were conducted for sensitivity, additionally, testing a wide range of pathogens (more than selected list proposed) was also necessary to demonstrate the robustness of the instruments, most crucially, algorithms for differentiating a specific organism of interest in mixed cultures was conceptualized and validated, and finally neural network and chemometric models were tested on a variety of applications. Food systems tested were apple juice and buffer systems. Pathogens tested include Enterococcus faecium, Salmonella enteritidis, Salmonella typhimurium, Bacillus cereus, Yersinia enterocolitis, Shigella boydii, Staphylococus aureus, Serratiamarcescens, Pseudomonas vulgaris, Vibrio cholerae, Hafniaalvei, Enterobacter cloacae, Enterobacter aerogenes, E. coli (O103, O55, O121, O30 and O26), Aspergillus niger (NRRL 326) and Fusarium verticilliodes (NRRL 13586), Saccharomyces cerevisiae (ATCC 24859), Lactobacillus casei (ATCC 11443), Erwinia carotovora pv. carotovora and Clavibacter michiganense. Sensitivity of the FTIR detection was 103CFU/ml and a clear differentiation was obtained between the different organisms both at the species as well as at the strain level for the tested pathogens. A very crucial step in the direction of analyzing mixed cultures was taken. The vector based algorithm was able to identify a target pathogen of interest in a mixture of up to three organisms. Efforts will be made to extend this to 10-12 key pathogens. The experience gained was very helpful in laying the foundations for extracting the true fingerprint of a specific pathogen irrespective of the background substrate. This is very crucial especially when experimenting with solid samples as well as complex food matrices. Spectroscopic techniques, especially FTIR and Raman methods are being pursued by agencies such as DARPA and Department of Defense to combat homeland security. Through the BARD US-3296-02 feasibility grant, the foundations for detection, sample handling, and the needed algorithms and models were developed. Successive efforts will be made in transferring the methodology to fruit surfaces and to other complex food matrices which can be accomplished with creative sampling methods and experimentation. Even a marginal success in this direction will result in a very significant breakthrough because FTIR and Raman methods, in spite of their limitations are still one of most rapid and nondestructive methods available. Continued interest and efforts in improving the components as well as the refinement of the procedures is bound to result in a significant breakthrough in sensor technology for food safety and biosecurity.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography