Journal articles on the topic 'Saccharomyces cerevisiae, healthy aging'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Saccharomyces cerevisiae, healthy aging.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Alugoju, Phaniendra, Chella Perumal Palanisamy, Naga Venkata Anusha Anthikapalli, et al. "Exploring the anti-aging potential of natural products and plant extracts in budding yeast Saccharomyces cerevisiae: A review." F1000Research 12 (December 17, 2024): 1265. https://doi.org/10.12688/f1000research.141669.2.
Full textSu, Wei-Hsuan, Omar Ocegueda, Catherine Choi, et al. "SPERMIDINE TOXICITY IN MITOCHONDRIAL DNA-DEFICIENT SACCHAROMYCES CEREVISIAE." Innovation in Aging 6, Supplement_1 (2022): 444–45. http://dx.doi.org/10.1093/geroni/igac059.1740.
Full textBegum, Farhana, Jaroslav Kristof, Md Jahangir Alam, et al. "Exploring the Role of Microplasma for Controlling Cellular Senescence in Saccharomyces cerevisiae." Molecules 30, no. 9 (2025): 1970. https://doi.org/10.3390/molecules30091970.
Full textOgita, Akira, Wakae Murata, Marina Hasegawa, et al. "PROLONGATION OF HUMAN LIFESPAN BY IMMATURE PEAR EXTRACT MEDIATED SIRTUIN-RELATED GENE EXPRESSION." Innovation in Aging 3, Supplement_1 (2019): S97. http://dx.doi.org/10.1093/geroni/igz038.365.
Full textSu, Wei-Hsuan, Jessica Smith, Evien Cheng, and Samuel Schriner. "EXPRESSION OF THE TARDIGRADE DAMAGE SUPPRESSOR PROTEIN IN THE YEAST SACCHAROMYCES CEREVISIAE." Innovation in Aging 7, Supplement_1 (2023): 770. http://dx.doi.org/10.1093/geroni/igad104.2489.
Full textKaya, Alaattin. "EVIDENCE THAT CONSERVED ESSENTIAL GENES ARE ENRICHED FOR PRO-LONGEVITY FACTORS." Innovation in Aging 7, Supplement_1 (2023): 769–70. http://dx.doi.org/10.1093/geroni/igad104.2487.
Full textKitanovic, Ana, and Stefan Wölfl. "Fructose-1,6-bisphosphatase mediates cellular responses to DNA damage and aging in Saccharomyces cerevisiae." Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 594, no. 1-2 (2006): 135–47. http://dx.doi.org/10.1016/j.mrfmmm.2005.08.005.
Full textRomano, Patrizia, Giacomo Braschi, Gabriella Siesto, Francesca Patrignani, and Rosalba Lanciotti. "Role of Yeasts on the Sensory Component of Wines." Foods 11, no. 13 (2022): 1921. http://dx.doi.org/10.3390/foods11131921.
Full textShalamitskiy, Maksim Yu, Tatiana N. Tanashchuk, Sofia N. Cherviak, Egor A. Vasyagin, Nikolai V. Ravin, and Andrey V. Mardanov. "Ethyl Carbamate in Fermented Food Products: Sources of Appearance, Hazards and Methods for Reducing Its Content." Foods 12, no. 20 (2023): 3816. http://dx.doi.org/10.3390/foods12203816.
Full textLiu, Gang, Lei Yu, Yordan Martínez, et al. "Dietary Saccharomyces cerevisiae Cell Wall Extract Supplementation Alleviates Oxidative Stress and Modulates Serum Amino Acids Profiles in Weaned Piglets." Oxidative Medicine and Cellular Longevity 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/3967439.
Full textMołoń, Mateusz, Karolina Stępień, Patrycja Kielar, et al. "Actin-Related Protein 4 and Linker Histone Sustain Yeast Replicative Ageing." Cells 11, no. 17 (2022): 2754. http://dx.doi.org/10.3390/cells11172754.
Full textLewis, Kim. "Programmed Death in Bacteria." Microbiology and Molecular Biology Reviews 64, no. 3 (2000): 503–14. http://dx.doi.org/10.1128/mmbr.64.3.503-514.2000.
Full textMarangon, Matteo, Poppy Seeley, Erica Barocci, et al. "Effect of Interspecific Yeast Hybrids for Secondary In-Bottle Alcoholic Fermentation of English Sparkling Wines." Foods 12, no. 10 (2023): 1995. http://dx.doi.org/10.3390/foods12101995.
Full textHolbrook, M. A., and J. R. Menninger. "Erythromycin Slows Aging of Saccharomyces cerevisiae." Journals of Gerontology Series A: Biological Sciences and Medical Sciences 57, no. 1 (2002): B29—B36. http://dx.doi.org/10.1093/gerona/57.1.b29.
Full textKennedy, Brian K., and Leonard Guarente. "Genetic analysis of aging in Saccharomyces cerevisiae." Trends in Genetics 12, no. 9 (1996): 355–59. http://dx.doi.org/10.1016/s0168-9525(96)80018-7.
Full textCohen, Aviv, Esther Weindling, Efrat Rabinovich, et al. "Water-Transfer Slows Aging in Saccharomyces cerevisiae." PLOS ONE 11, no. 2 (2016): e0148650. http://dx.doi.org/10.1371/journal.pone.0148650.
Full textLongo, Valter D., Gerald S. Shadel, Matt Kaeberlein, and Brian Kennedy. "Replicative and Chronological Aging in Saccharomyces cerevisiae." Cell Metabolism 16, no. 1 (2012): 18–31. http://dx.doi.org/10.1016/j.cmet.2012.06.002.
Full textPeters, Theodore W., Matthew J. Rardin, Gregg Czerwieniec, et al. "Tor1 regulates protein solubility in Saccharomyces cerevisiae." Molecular Biology of the Cell 23, no. 24 (2012): 4679–88. http://dx.doi.org/10.1091/mbc.e12-08-0620.
Full textD'Mello, N. P., and S. M. Jazwinski. "Telomere length constancy during aging of Saccharomyces cerevisiae." Journal of Bacteriology 173, no. 21 (1991): 6709–13. http://dx.doi.org/10.1128/jb.173.21.6709-6713.1991.
Full textChen, Xiao-Fen, Fei-Long Meng, and Jin-Qiu Zhou. "Telomere Recombination Accelerates Cellular Aging in Saccharomyces cerevisiae." PLoS Genetics 5, no. 6 (2009): e1000535. http://dx.doi.org/10.1371/journal.pgen.1000535.
Full textBlomme, Arnaud, Allan Mac'Cord, Francis E. Sluse, and Gregory Mathy. "Proteomic evolution of Saccharomyces cerevisiae during chronological aging." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797 (July 2010): 58. http://dx.doi.org/10.1016/j.bbabio.2010.04.189.
Full textSetiyoningrum, F., G. Priadi, and F. Afiati. "Chemical properties of solo black garlic fermented by Saccharomyces cerevisiae." IOP Conference Series: Earth and Environmental Science 976, no. 1 (2022): 012044. http://dx.doi.org/10.1088/1755-1315/976/1/012044.
Full textVelenosi, Matteo, Pasquale Crupi, Rocco Perniola, et al. "Color Stabilization of Apulian Red Wines through the Sequential Inoculation of Starmerella bacillaris and Saccharomyces cerevisiae." Molecules 26, no. 4 (2021): 907. http://dx.doi.org/10.3390/molecules26040907.
Full textJazwinski, S. M. "Aging and senescence of the budding yeast Saccharomyces cerevisiae." Molecular Microbiology 4, no. 3 (1990): 337–43. http://dx.doi.org/10.1111/j.1365-2958.1990.tb00601.x.
Full textBitterman, Kevin J., Oliver Medvedik, and David A. Sinclair. "Longevity Regulation in Saccharomyces cerevisiae: Linking Metabolism, Genome Stability, and Heterochromatin." Microbiology and Molecular Biology Reviews 67, no. 3 (2003): 376–99. http://dx.doi.org/10.1128/mmbr.67.3.376-399.2003.
Full textBenetti, Fábia, Thanise Antunes Dias, Jorge Alberto Vieira Costa, and Telma Elita Bertolin. "Caloric restriction and Spirulina platensis extract against ferrous ion (Fe2+) in the aging of Saccharomyces cerevisiae cells deleted to the SIR2 gene." Research, Society and Development 9, no. 8 (2020): e662986210. http://dx.doi.org/10.33448/rsd-v9i8.6210.
Full textNasuti, Chiara, Jennifer Ruffini, Laura Sola, et al. "Sour Beer as Bioreservoir of Novel Craft Ale Yeast Cultures." Microorganisms 11, no. 9 (2023): 2138. http://dx.doi.org/10.3390/microorganisms11092138.
Full textKirchman, Paul A., Sangkyu Kim, Chi-Yung Lai, and S. Michal Jazwinski. "Interorganelle Signaling Is a Determinant of Longevity in Saccharomyces cerevisiae." Genetics 152, no. 1 (1999): 179–90. http://dx.doi.org/10.1093/genetics/152.1.179.
Full textMcCleary, David F., and Jasper Rine. "Nutritional Control of Chronological Aging and Heterochromatin in Saccharomyces cerevisiae." Genetics 205, no. 3 (2017): 1179–93. http://dx.doi.org/10.1534/genetics.116.196485.
Full textSorokin, Maksim, Dmitry Knorre, and Fedor Severin. "Early manifestations of replicative aging in the yeast Saccharomyces cerevisiae." Microbial Cell 1, no. 1 (2014): 37–42. http://dx.doi.org/10.15698/mic2014.01.122.
Full textYiu, G., A. McCord, A. Wise, et al. "Pathways Change in Expression During Replicative Aging in Saccharomyces cerevisiae." Journals of Gerontology Series A: Biological Sciences and Medical Sciences 63, no. 1 (2008): 21–34. http://dx.doi.org/10.1093/gerona/63.1.21.
Full textAshrafi, K., D. Sinclair, J. I. Gordon, and L. Guarente. "Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae." Proceedings of the National Academy of Sciences 96, no. 16 (1999): 9100–9105. http://dx.doi.org/10.1073/pnas.96.16.9100.
Full textMacCord, Allan, Gregory Mathy, Pierre Leprince, Edwin de Pauw, and Francis E. Sluse. "S14.7 Impact of chronological aging on mitoproteome of Saccharomyces cerevisiae." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1777 (July 2008): S101. http://dx.doi.org/10.1016/j.bbabio.2008.05.395.
Full textBiliński, Tomasz, and Grzegorz Bartosz. "Hypothesis: cell volume limits cell divisions." Acta Biochimica Polonica 53, no. 4 (2006): 833–35. http://dx.doi.org/10.18388/abp.2006_3313.
Full textWang, Shaoyu. "Leveraging budding yeast Saccharomyces cerevisiae for discovering aging modulation substances for functional food." Functional Foods in Health and Disease 9, no. 5 (2019): 297. http://dx.doi.org/10.31989/ffhd.v9i5.575.
Full textFabrizio, Paola, Luisa Battistella, Raffaello Vardavas, et al. "Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae." Journal of Cell Biology 166, no. 7 (2004): 1055–67. http://dx.doi.org/10.1083/jcb.200404002.
Full textHwang, Hye-Seon, Kwang-Rim Baek, and Seung-Oh Seo. "Retinal Production by Precision Fermentation of Saccharomyces cerevisiae." Fermentation 11, no. 4 (2025): 214. https://doi.org/10.3390/fermentation11040214.
Full textStępień, Karolina, Dominik Wojdyła, Katarzyna Nowak, and Mateusz Mołoń. "Impact of curcumin on replicative and chronological aging in the Saccharomyces cerevisiae yeast." Biogerontology 21, no. 1 (2019): 109–23. http://dx.doi.org/10.1007/s10522-019-09846-x.
Full textAlugoju, Phaniendra, Chella Perumal Palanisamy, Naga Venkata Anusha Anthikapalli, et al. "Exploring the anti-aging potential of natural products and plant extracts in budding yeast Saccharomyces cerevisiae: A review." F1000Research 12 (October 4, 2023): 1265. http://dx.doi.org/10.12688/f1000research.141669.1.
Full textArlia-Ciommo, Anthony, Anna Leonov, Amanda Piano, Veronika Svistkova, and Vladimir Titorenko. "Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae." Microbial Cell 1, no. 6 (2014): 163–78. http://dx.doi.org/10.15698/mic2014.06.152.
Full textLefevre, Sophie D., Carlo W. Roermund, Ronald J. A. Wanders, Marten Veenhuis, and Ida J. Klei. "The significance of peroxisome function in chronological aging of Saccharomyces cerevisiae." Aging Cell 12, no. 5 (2013): 784–93. http://dx.doi.org/10.1111/acel.12113.
Full textKaya, Alaattin, Alexei V. Lobanov, and Vadim N. Gladyshev. "Evidence that mutation accumulation does not cause aging in Saccharomyces cerevisiae." Aging Cell 14, no. 3 (2015): 366–71. http://dx.doi.org/10.1111/acel.12290.
Full textvan der Laan, Kiran J., Julie Naulleau, Viraj G. Damle, et al. "Toward Using Fluorescent Nanodiamonds To Study Chronological Aging in Saccharomyces cerevisiae." Analytical Chemistry 90, no. 22 (2018): 13506–13. http://dx.doi.org/10.1021/acs.analchem.8b03431.
Full textManshin, Dmitrii, Maria Kuntsova, Alexey Shilenko, and Anastasia Andreeva. "Probiotic yeast <i>Saccharomyces cerevisiae var. boulardii</i>: properties and peculiarities of use in functional foods development." Functional Foods in Health and Disease 15, no. 5 (2025): 296–315. https://doi.org/10.31989/ffhd.v15i5.1482.
Full textHa, Cheol Woong, and Won-Ki Huh. "The implication of Sir2 in replicative aging and senescence in Saccharomyces cerevisiae." Aging 3, no. 3 (2011): 319–24. http://dx.doi.org/10.18632/aging.100299.
Full textBarbero-Úriz, Óscar, Marta Valenti, María Molina, Teresa Fernández-Acero, and Víctor J. Cid. "Modeling Necroptotic and Pyroptotic Signaling in Saccharomyces cerevisiae." Biomolecules 15, no. 4 (2025): 530. https://doi.org/10.3390/biom15040530.
Full textBhattacharya, Somanon, Tejas Bouklas, and Bettina C. Fries. "Replicative Aging in Pathogenic Fungi." Journal of Fungi 7, no. 1 (2020): 6. http://dx.doi.org/10.3390/jof7010006.
Full textYuan, Yuan, Jia-ying Lin, Hong-jing Cui, et al. "PCK1 Deficiency Shortens the Replicative Lifespan of Saccharomyces cerevisiae through Upregulation of PFK1." BioMed Research International 2020 (February 12, 2020): 1–10. http://dx.doi.org/10.1155/2020/3858465.
Full textKhandaker, AM, and A. Koc. "Deletion of mitochondrial inorganic pyrophosphatase gene extends life span in haploid yeast (Saccharomyces cerevisiae)." Journal of Biodiversity Conservation and Bioresource Management 3, no. 2 (2018): 69–76. http://dx.doi.org/10.3329/jbcbm.v3i2.36030.
Full textTakeda, Ryuji, Norio Kanesugi, Michiyo Kanesugi, Syukuko Ebihara, and Shigeru Imai. "Effects of Saccharomyces cerevisiae NK-1 on stool frequency and volume in healthy individuals with infrequent bowel movements: a randomized, placebo, placebo controlled, double-blind study." Functional Foods in Health and Disease 8, no. 9 (2018): 462. http://dx.doi.org/10.31989/ffhd.v8i9.545.
Full text