Journal articles on the topic 'Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins Signal Transduction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins Signal Transduction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Santangelo, George M. "Glucose Signaling in Saccharomyces cerevisiae." Microbiology and Molecular Biology Reviews 70, no. 1 (2006): 253–82. http://dx.doi.org/10.1128/mmbr.70.1.253-282.2006.
Full textLevin, David E. "Cell Wall Integrity Signaling in Saccharomyces cerevisiae." Microbiology and Molecular Biology Reviews 69, no. 2 (2005): 262–91. http://dx.doi.org/10.1128/mmbr.69.2.262-291.2005.
Full textChoi, You-Jeong, Sun-Hong Kim, Ki-Sook Park, and Kang-Yell Choi. "Differential transmission of G1 cell cycle arrest and mating signals by Saccharomyces cerevisiae Ste5 mutants in the pheromone pathway." Biochemistry and Cell Biology 77, no. 5 (1999): 459–68. http://dx.doi.org/10.1139/o99-054.
Full textAlepuz, Paula M., Dina Matheos, Kyle W. Cunningham, and Francisco Estruch. "The Saccharomyces cerevisiae RanGTP-Binding Protein Msn5p Is Involved in Different Signal Transduction Pathways." Genetics 153, no. 3 (1999): 1219–31. http://dx.doi.org/10.1093/genetics/153.3.1219.
Full textMoskow, John J., Amy S. Gladfelter, Rachel E. Lamson, Peter M. Pryciak, and Daniel J. Lew. "Role of Cdc42p in Pheromone-Stimulated Signal Transduction in Saccharomyces cerevisiae." Molecular and Cellular Biology 20, no. 20 (2000): 7559–71. http://dx.doi.org/10.1128/mcb.20.20.7559-7571.2000.
Full textKaniak, Aneta, Zhixiong Xue, Daniel Macool, Jeong-Ho Kim, and Mark Johnston. "Regulatory Network Connecting Two Glucose Signal Transduction Pathways in Saccharomyces cerevisiae." Eukaryotic Cell 3, no. 1 (2004): 221–31. http://dx.doi.org/10.1128/ec.3.1.221-231.2004.
Full textGerst, J. E., K. Ferguson, A. Vojtek, M. Wigler, and J. Field. "CAP is a bifunctional component of the Saccharomyces cerevisiae adenylyl cyclase complex." Molecular and Cellular Biology 11, no. 3 (1991): 1248–57. http://dx.doi.org/10.1128/mcb.11.3.1248.
Full textGerst, J. E., K. Ferguson, A. Vojtek, M. Wigler, and J. Field. "CAP is a bifunctional component of the Saccharomyces cerevisiae adenylyl cyclase complex." Molecular and Cellular Biology 11, no. 3 (1991): 1248–57. http://dx.doi.org/10.1128/mcb.11.3.1248-1257.1991.
Full textWhiteway, Malcolm, Daniel Dignard та David Y. Thomas. "Mutagenesis of Ste18, a putative Gγ subunit in the Saccharomyces cerevisiae pheromone response pathway". Biochemistry and Cell Biology 70, № 10-11 (1992): 1230–37. http://dx.doi.org/10.1139/o92-169.
Full textMösch, Hans-Ulrich, and Gerald R. Fink. "Dissection of Filamentous Growth by Transposon Mutagenesis in Saccharomyces cerevisiae." Genetics 145, no. 3 (1997): 671–84. http://dx.doi.org/10.1093/genetics/145.3.671.
Full textGomez, Shawn M., Shaw-Hwa Lo, and Andrey Rzhetsky. "Probabilistic Prediction of Unknown Metabolic and Signal-Transduction Networks." Genetics 159, no. 3 (2001): 1291–98. http://dx.doi.org/10.1093/genetics/159.3.1291.
Full textLengeler, Klaus B., Robert C. Davidson, Cletus D'souza, et al. "Signal Transduction Cascades Regulating Fungal Development and Virulence." Microbiology and Molecular Biology Reviews 64, no. 4 (2000): 746–85. http://dx.doi.org/10.1128/mmbr.64.4.746-785.2000.
Full textSitcheran, Raquel, Roger Emter, Anastasia Kralli, and Keith R. Yamamoto. "A Genetic Analysis of Glucocorticoid Receptor Signaling: Identification and Characterization of Ligand-Effect Modulators in Saccharomyces cerevisiae." Genetics 156, no. 3 (2000): 963–72. http://dx.doi.org/10.1093/genetics/156.3.963.
Full textNeiman, A. M., B. J. Stevenson, H. P. Xu, et al. "Functional homology of protein kinases required for sexual differentiation in Schizosaccharomyces pombe and Saccharomyces cerevisiae suggests a conserved signal transduction module in eukaryotic organisms." Molecular Biology of the Cell 4, no. 1 (1993): 107–20. http://dx.doi.org/10.1091/mbc.4.1.107.
Full textMiyajima, I., N. Nakayama, M. Nakafuku, Y. Kaziro, K. Arai, and K. Matsumoto. "Suppressors of a gpa1 mutation cause sterility in Saccharomyces cerevisiae." Genetics 119, no. 4 (1988): 797–804. http://dx.doi.org/10.1093/genetics/119.4.797.
Full textFujimura, H. A. "The yeast G-protein homolog is involved in the mating pheromone signal transduction system." Molecular and Cellular Biology 9, no. 1 (1989): 152–58. http://dx.doi.org/10.1128/mcb.9.1.152.
Full textFujimura, H. A. "The yeast G-protein homolog is involved in the mating pheromone signal transduction system." Molecular and Cellular Biology 9, no. 1 (1989): 152–58. http://dx.doi.org/10.1128/mcb.9.1.152-158.1989.
Full textKim, Jeong-Ho, Valérie Brachet, Hisao Moriya, and Mark Johnston. "Integration of Transcriptional and Posttranslational Regulation in a Glucose Signal Transduction Pathway in Saccharomyces cerevisiae." Eukaryotic Cell 5, no. 1 (2006): 167–73. http://dx.doi.org/10.1128/ec.5.1.167-173.2006.
Full textSuzuki-Fujimoto, T., M. Fukuma, K. I. Yano, et al. "Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p." Molecular and Cellular Biology 16, no. 5 (1996): 2504–8. http://dx.doi.org/10.1128/mcb.16.5.2504.
Full textBarr, M. M., H. Tu, L. Van Aelst, and M. Wigler. "Identification of Ste4 as a potential regulator of Byr2 in the sexual response pathway of Schizosaccharomyces pombe." Molecular and Cellular Biology 16, no. 10 (1996): 5597–603. http://dx.doi.org/10.1128/mcb.16.10.5597.
Full textLu, Jade Mei-Yeh, Robert J. Deschenes, and Jan S. Fassler. "Role for the Ran Binding Protein, Mog1p, in Saccharomyces cerevisiae SLN1-SKN7 Signal Transduction." Eukaryotic Cell 3, no. 6 (2004): 1544–56. http://dx.doi.org/10.1128/ec.3.6.1544-1556.2004.
Full textCole, G. M., D. E. Stone, and S. I. Reed. "Stoichiometry of G protein subunits affects the Saccharomyces cerevisiae mating pheromone signal transduction pathway." Molecular and Cellular Biology 10, no. 2 (1990): 510–17. http://dx.doi.org/10.1128/mcb.10.2.510.
Full textCole, G. M., D. E. Stone, and S. I. Reed. "Stoichiometry of G protein subunits affects the Saccharomyces cerevisiae mating pheromone signal transduction pathway." Molecular and Cellular Biology 10, no. 2 (1990): 510–17. http://dx.doi.org/10.1128/mcb.10.2.510-517.1990.
Full textYoon, Je-Hyun, Eui-Ju Choi, and Roy Parker. "Dcp2 phosphorylation by Ste20 modulates stress granule assembly and mRNA decay in Saccharomyces cerevisiae." Journal of Cell Biology 189, no. 5 (2010): 813–27. http://dx.doi.org/10.1083/jcb.200912019.
Full textSchrick, Kathrin, Barbara Garvik, and Leland H. Hartwell. "Mating in Saccharomyces cerevisiae: The Role of the Pheromone Signal Transduction Pathway in the Chemotropic Response to Pheromone." Genetics 147, no. 1 (1997): 19–32. http://dx.doi.org/10.1093/genetics/147.1.19.
Full textCatlett, Natalie L., Olen C. Yoder, and B. Gillian Turgeon. "Whole-Genome Analysis of Two-Component Signal Transduction Genes in Fungal Pathogens." Eukaryotic Cell 2, no. 6 (2003): 1151–61. http://dx.doi.org/10.1128/ec.2.6.1151-1161.2003.
Full textMcBride, Anne E., Cecilia Zurita-Lopez, Anthony Regis, et al. "Protein Arginine Methylation in Candida albicans: Role in Nuclear Transport." Eukaryotic Cell 6, no. 7 (2007): 1119–29. http://dx.doi.org/10.1128/ec.00074-07.
Full textBhat, P. J., D. Oh, and J. E. Hopper. "Analysis of the GAL3 signal transduction pathway activating GAL4 protein-dependent transcription in Saccharomyces cerevisiae." Genetics 125, no. 2 (1990): 281–91. http://dx.doi.org/10.1093/genetics/125.2.281.
Full textBrill, J. A., E. A. Elion, and G. R. Fink. "A role for autophosphorylation revealed by activated alleles of FUS3, the yeast MAP kinase homolog." Molecular Biology of the Cell 5, no. 3 (1994): 297–312. http://dx.doi.org/10.1091/mbc.5.3.297.
Full textZhou, Z., A. Gartner, R. Cade, G. Ammerer, and B. Errede. "Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases." Molecular and Cellular Biology 13, no. 4 (1993): 2069–80. http://dx.doi.org/10.1128/mcb.13.4.2069.
Full textZhou, Z., A. Gartner, R. Cade, G. Ammerer, and B. Errede. "Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases." Molecular and Cellular Biology 13, no. 4 (1993): 2069–80. http://dx.doi.org/10.1128/mcb.13.4.2069-2080.1993.
Full textSadhu, C., D. Hoekstra, M. J. McEachern, S. I. Reed, and J. B. Hicks. "A G-protein alpha subunit from asexual Candida albicans functions in the mating signal transduction pathway of Saccharomyces cerevisiae and is regulated by the a1-alpha 2 repressor." Molecular and Cellular Biology 12, no. 5 (1992): 1977–85. http://dx.doi.org/10.1128/mcb.12.5.1977.
Full textSadhu, C., D. Hoekstra, M. J. McEachern, S. I. Reed, and J. B. Hicks. "A G-protein alpha subunit from asexual Candida albicans functions in the mating signal transduction pathway of Saccharomyces cerevisiae and is regulated by the a1-alpha 2 repressor." Molecular and Cellular Biology 12, no. 5 (1992): 1977–85. http://dx.doi.org/10.1128/mcb.12.5.1977-1985.1992.
Full textJethmalani, Yogita, and Erin M. Green. "Using Yeast to Define the Regulatory Role of Protein Lysine Methylation." Current Protein & Peptide Science 21, no. 7 (2020): 690–98. http://dx.doi.org/10.2174/1389203720666191023150727.
Full textLoomis, W. F., G. Shaulsky, and N. Wang. "Histidine kinases in signal transduction pathways of eukaryotes." Journal of Cell Science 110, no. 10 (1997): 1141–45. http://dx.doi.org/10.1242/jcs.110.10.1141.
Full textSchmidt, A., M. N. Hall, and A. Koller. "Two FK506 resistance-conferring genes in Saccharomyces cerevisiae, TAT1 and TAT2, encode amino acid permeases mediating tyrosine and tryptophan uptake." Molecular and Cellular Biology 14, no. 10 (1994): 6597–606. http://dx.doi.org/10.1128/mcb.14.10.6597.
Full textSchmidt, A., M. N. Hall, and A. Koller. "Two FK506 resistance-conferring genes in Saccharomyces cerevisiae, TAT1 and TAT2, encode amino acid permeases mediating tyrosine and tryptophan uptake." Molecular and Cellular Biology 14, no. 10 (1994): 6597–606. http://dx.doi.org/10.1128/mcb.14.10.6597-6606.1994.
Full textHenry, Theresa C., Juliette E. Power, Christine L. Kerwin, et al. "Systematic Screen of Schizosaccharomyces pombe Deletion Collection Uncovers Parallel Evolution of the Phosphate Signal Transduction Pathway in Yeasts." Eukaryotic Cell 10, no. 2 (2010): 198–206. http://dx.doi.org/10.1128/ec.00216-10.
Full textAbeliovich, Hagai, William A. Dunn, John Kim, and Daniel J. Klionsky. "Dissection of Autophagosome Biogenesis into Distinct Nucleation and Expansion Steps." Journal of Cell Biology 151, no. 5 (2000): 1025–34. http://dx.doi.org/10.1083/jcb.151.5.1025.
Full textHorecka, Joe, and George F. Sprague. "Identification and Characterization of FAR3, a Gene Required for Pheromone-Mediated G1 Arrest in Saccharomyces cerevisiae." Genetics 144, no. 3 (1996): 905–21. http://dx.doi.org/10.1093/genetics/144.3.905.
Full textDemczuk, Agnieszka, Nilanjan Guha, Peter H. Nguyen, et al. "Saccharomyces cerevisiae Phospholipase C Regulates Transcription of Msn2p-Dependent Stress-Responsive Genes." Eukaryotic Cell 7, no. 6 (2008): 967–79. http://dx.doi.org/10.1128/ec.00438-07.
Full textBlondel, Marc, Jean-Marc Galan, and Matthias Peter. "Isolation and Characterization of HRT1 Using a Genetic Screen for Mutants Unable to Degrade Gic2p in Saccharomyces cerevisiae." Genetics 155, no. 3 (2000): 1033–44. http://dx.doi.org/10.1093/genetics/155.3.1033.
Full textCutler, N. Shane, Xuewen Pan, Joseph Heitman, and Maria E. Cardenas. "The TOR Signal Transduction Cascade Controls Cellular Differentiation in Response to Nutrients." Molecular Biology of the Cell 12, no. 12 (2001): 4103–13. http://dx.doi.org/10.1091/mbc.12.12.4103.
Full textElion, E. A., B. Satterberg, and J. E. Kranz. "FUS3 phosphorylates multiple components of the mating signal transduction cascade: evidence for STE12 and FAR1." Molecular Biology of the Cell 4, no. 5 (1993): 495–510. http://dx.doi.org/10.1091/mbc.4.5.495.
Full textRodicio, Rosaura, Sabrina Koch, Hans-Peter Schmitz, and Jürgen J. Heinisch. "KlRHO1 and KlPKC1 are essential for cell integrity signalling in Kluyveromyces lactis." Microbiology 152, no. 9 (2006): 2635–49. http://dx.doi.org/10.1099/mic.0.29105-0.
Full textTraincard, F., E. Ponte, J. Pun, B. Coukell, and M. Veron. "Evidence for the presence of an NF-kappaB signal transduction system in Dictyostelium discoideum." Journal of Cell Science 112, no. 20 (1999): 3529–35. http://dx.doi.org/10.1242/jcs.112.20.3529.
Full textLi, Fang, and Sean P. Palecek. "EAP1, a Candida albicans Gene Involved in Binding Human Epithelial Cells." Eukaryotic Cell 2, no. 6 (2003): 1266–73. http://dx.doi.org/10.1128/ec.2.6.1266-1273.2003.
Full textHoltzman, DA, S. Yang, and DG Drubin. "Synthetic-lethal interactions identify two novel genes, SLA1 and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae." Journal of Cell Biology 122, no. 3 (1993): 635–44. http://dx.doi.org/10.1083/jcb.122.3.635.
Full textArévalo-Rodríguez, Miguel, and Joseph Heitman. "Cyclophilin A Is Localized to the Nucleus and Controls Meiosis in Saccharomyces cerevisiae." Eukaryotic Cell 4, no. 1 (2005): 17–29. http://dx.doi.org/10.1128/ec.4.1.17-29.2005.
Full textXu, Wenjie, Frank J. Smith, Ryan Subaran, and Aaron P. Mitchell. "Multivesicular Body-ESCRT Components Function in pH Response Regulation inSaccharomyces cerevisiaeandCandida albicans." Molecular Biology of the Cell 15, no. 12 (2004): 5528–37. http://dx.doi.org/10.1091/mbc.e04-08-0666.
Full text