Academic literature on the topic 'Saccharomyces cerevisiae Signal Transduction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Saccharomyces cerevisiae Signal Transduction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Saccharomyces cerevisiae Signal Transduction"
Portela, P., and Silvia Rossi. "cAMP-PKA signal transduction specificity in Saccharomyces cerevisiae." Current Genetics 66, no. 6 (September 15, 2020): 1093–99. http://dx.doi.org/10.1007/s00294-020-01107-6.
Full textOehlen, Bert, and Frederick R. Cross. "Signal transduction in the budding yeast Saccharomyces cerevisiae." Current Opinion in Cell Biology 6, no. 6 (December 1994): 836–41. http://dx.doi.org/10.1016/0955-0674(94)90053-1.
Full textPan, Xuewen, Toshiaki Harashima, and Joseph Heitman. "Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae." Current Opinion in Microbiology 3, no. 6 (December 2000): 567–72. http://dx.doi.org/10.1016/s1369-5274(00)00142-9.
Full textMagasanik, B. "The transduction of the nitrogen regulation signal in Saccharomyces cerevisiae." Proceedings of the National Academy of Sciences 102, no. 46 (November 7, 2005): 16537–38. http://dx.doi.org/10.1073/pnas.0507116102.
Full textKaniak, Aneta, Zhixiong Xue, Daniel Macool, Jeong-Ho Kim, and Mark Johnston. "Regulatory Network Connecting Two Glucose Signal Transduction Pathways in Saccharomyces cerevisiae." Eukaryotic Cell 3, no. 1 (February 2004): 221–31. http://dx.doi.org/10.1128/ec.3.1.221-231.2004.
Full textChoi, You-Jeong, Sun-Hong Kim, Ki-Sook Park, and Kang-Yell Choi. "Differential transmission of G1 cell cycle arrest and mating signals by Saccharomyces cerevisiae Ste5 mutants in the pheromone pathway." Biochemistry and Cell Biology 77, no. 5 (October 1, 1999): 459–68. http://dx.doi.org/10.1139/o99-054.
Full textMoskow, John J., Amy S. Gladfelter, Rachel E. Lamson, Peter M. Pryciak, and Daniel J. Lew. "Role of Cdc42p in Pheromone-Stimulated Signal Transduction in Saccharomyces cerevisiae." Molecular and Cellular Biology 20, no. 20 (October 15, 2000): 7559–71. http://dx.doi.org/10.1128/mcb.20.20.7559-7571.2000.
Full textSantangelo, George M. "Glucose Signaling in Saccharomyces cerevisiae." Microbiology and Molecular Biology Reviews 70, no. 1 (March 2006): 253–82. http://dx.doi.org/10.1128/mmbr.70.1.253-282.2006.
Full textLengeler, Klaus B., Robert C. Davidson, Cletus D'souza, Toshiaki Harashima, Wei-Chiang Shen, Ping Wang, Xuewen Pan, Michael Waugh, and Joseph Heitman. "Signal Transduction Cascades Regulating Fungal Development and Virulence." Microbiology and Molecular Biology Reviews 64, no. 4 (December 1, 2000): 746–85. http://dx.doi.org/10.1128/mmbr.64.4.746-785.2000.
Full textXu, Gang, Gregor Jansen, David Y. Thomas, Cornelis P. Hollenberg, and Massoud Ramezani Rad. "Ste50p sustains mating pheromone-induced signal transduction in the yeast Saccharomyces cerevisiae." Molecular Microbiology 20, no. 4 (May 1996): 773–83. http://dx.doi.org/10.1111/j.1365-2958.1996.tb02516.x.
Full textDissertations / Theses on the topic "Saccharomyces cerevisiae Signal Transduction"
Robinson, Kevin Spencer. "The phosphatidylinositol signal transduction system in the yeast Saccharomyces cerevisiae." Thesis, University of Bath, 1992. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316975.
Full textRoberts, Radclyffe L. (Radclyffe Lee) 1968. "Specificity determinants of a bifunctional signal transduction pathway in Saccharomyces cerevisiae." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43554.
Full textVan, Dyk Dewald 1975. "Genetic analysis of a signal transduction pathway : the regulation of invasive growth and starch degradation in Saccharomyces cerevisiae." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/49972.
Full textENGLISH ABSTRACT: Cells of the yeast Saccharomyces cerevisiae are able to change their morphological appearance in response to a variety of extracellular and intracellular signals. The processes involved in morphogenesis are well characterised in this organism, but the exact mechanism by which information emanating from the environment is integrated into the regulation of the actin cytoskeleton and the yeast cell cycle, is still not clearly understood. Considerable progress has, however, been made. The processes are investigated on various levels including: (i) the nature of the signals required to elicit a morphological adaptation, (ii) the mechanism by which these signals are perceived and transmitted to the nucleus for gene transcription regulation (signal transduction pathways), (iii) the role of the cytoskeleton, particularly actin, in morphogenesis, and (iv) the relationship between cell cycle regulators and factors required for alterations in cellular shape. The focus of this study was on elements involved in the regulation of one of these morphological processes, pseudohyphal formation, in S. cerevisiae. During pseudohyphal differentiation normal oval yeast cells become elongated and mother and daughter cells stay attached after cytokinesis to give rise to filaments. These filaments are able to penetrate the growth substrate, a phenomenon referred to as invasive growth. Actin remodelling is a prerequisite for the formation of elongated cells during pseudohyphal development and invasive growth. Its main contribution to this event is the directing of vesicles, containing cell wall constituents and enzymes, to specific sites of cell wall growth at the cell periphery. In order to fulfil this cellular function, actin is regulated on several levels. Signal transduction pathways that are activated in response to external nutritional signals play important roles in the regulation of the actin cytoskeleton during pseudohyphal differentiation. For this reason a literature review was compiled to introduce various aspects of actin-structure, the regulation of this structure and the functions actin performs during morphogenesis. The connection between signal transduction elements involved in morphological processes and actin remodelling is also reviewed. This study entailed the genetic analysis of numerous factors involved in the regulation of pseudohyphal differentiation, invasive growth and starch metabolism. Several transcriptional regulators playing a role in these phenomena were investigated. Apart from the transcription factors, which include Mss11p, Msn1p, Ste12p, F108p,Phd1p and Tec1p, additional elements ranging from transporters to G-proteins, were also investigated. Mutant strains deleted for one or more of these factors were constructed and tested to assess their abilities to form filaments that penetrate the growth substrate, and to utilise starch as a carbon source. Complex genetic relationships were observed for various combinations of these factors. Specifically, F108p,Msn1p and Ste12p were shown to act independently in controlling invasive growth and starch metabolism, suggesting that these factors are regulated by different signal transduction pathways. Mss11p, on the other hand, was found to play an indispensable role and seems to act as a downstream factor of Msn1 p, Fl08p, Ste12p and Tec1 p. The exception to this is Phd1 p, since multiple copies of PHD1 partially suppress the effect of a MSS11 deletion. The data suggests that Mss11 p functions at the confluence of several signalling pathways controlling the transcriptional regulation of genes required for invasive growth and starch degradation. Different nutritional signals were also found to differentially regulate specific signalling elements during the invasive growth response. For example, Tec1 p requires Msn1 p activity in response to growth on media containing a limited nitrogen source. This dependency, however, was absent when invasive growth was tested on glucose and starch media. Evidence was also obtained that confirmed the transcriptional co-regulation of MUC1 and STA2. MUC1 encodes a mucin-like protein that is required for invasive growth and pseudohyphal differentiation, whereas STA2 encodes a glucoamylase required for starch degradation. Unpublished results indicated that several transcriptional regulators of invasive growth also exert an effect on starch metabolism. The data generated during this study complemented and confirmed published results. It also contributed to the compilation of a more detailed model, integrating the numerous factors involved in these signalling processes.
AFRIKAANSE OPSOMMING: Saccharomyces cerevisiae gisselle beskik oor die vermoë om hul morfologiese voorkoms in responstot 'n verskeidenheid van ekstrasellulêre en intrasellulêre seine te verander. Die prosesse betrokke by morfogenese is goed gekarakteriseerd in hierdie organisme, maar die presiese meganisme waardeur inligting vanuit die omgewing geïntegreer word in die reguleringvan die aktien-sitoskelet en die gisselsiklus, word nog nie ten volle verstaan nie. Aansienlike vordering in die verband is egter gemaak. Die prosesse word op verskeie vlakke ondersoek, insluitende: (i) die aard van die seine wat benodig word om 'n morfologiese aanpassing te inisïeer; (ii) die meganisme waardeur hierdie seine waargeneem en herlei word na die selkern vir die regulering van geen-transkripsie (seintransduksie paaie); (iii) die rol van die sitoskelet, spesifiek aktien, in morfogenese en (iv) die verhouding tussen selsiklusreguleerders en faktore wat benodig word vir verandering in selvorm. Hierdie navorsing fokus op elemente betrokke by die regulering van een van hierdie morfologiese prosesse in S. cerevisiae, naamlik pseudohife-vorming. Gedurende pseudohife-differensiëring neem tipiese ovaalvormige selle 'n verlengde voorkoms aan wat tot die vorming van filamente lei. Hierdie filamente is in staat om die groeisubstraat te penetreer, 'n verskynsel bekend as penetrasie-groei. Aktienherrangskikking is 'n voorvereiste vir die vorming van verlengde selle tydens pseudohife-ontwikkeling. Die hoofbydrae van aktien tot hierdie verskynsel is die oriëntering van uitskeidingsvesikels, wat selwandkomponente en ensieme bevat, na spesifieke areas van selwandgroei op die seloppervlak. Aktien word op verskeie vlakke gereguleer om hierdie sellulêre funksie te vervul. Seintransduksiepaaie wat geaktiveer word in respons tot ekstrasellulêre voedingsseine speel 'n belangrike rol in die regulering van die aktien-sitoskelet tydens pseudohife-differensiëring. Op grond hiervan is 'n literatuuroorsig saamgestel vir die bekendstelling van verskeie aspekte van aktienstruktuur, die regulering van hierdie strukture en die funksies wat deur aktien gedurende morfogenese vervul word. Die verband tussen seintransduksie-elemente betrokke by morfologiese prosesse en aktien herrangskikkingword ook behandel. Hierdie studie het die genetiese analisering van verskeie faktore betrokke by pseudohife-differensiëring, penetrasie-groei en styselmetabolisme, behels. Verskeie transkripsionele reguleerders wat In rol speel in hierdie prosesse was bestudeer. Buiten die transkripsiefaktore Mss11p, Msn1p, Ste12p, F108p,Phd1P en Tec1p, was addisionele faktore, wat gewissel het van transporters tot G-proteïene, ook ondersoek. Mutante-rasse met geendelesies vir een of meer van hierdie faktore is gekonstrueer en getoets om vas te stel hoe dit hul vermoë raak om penetrerende filamente te vorm, asook om te bepaal of stysel as koolstofbron gebruik kan word. Komplekse genetiese interaksies vir verskeie kombinasies van hierdie faktore is waargeneem. Dit was waargeneem dat F108p,Msn1p en Ste12p onafhanklik funksioneer tydens die regulering van penetrasie-groei en styselmetabolisme, wat impliseer dat hierdie faktore deur verskillende seintransduksiepaaie gereguleer word. Mss11 p word beskou as In onmisbare rolspeler in hierdie prosesse en dit kom voor asof hierdie protein as 'n stroom-af faktor is en vereis word vir die funksionering van Msn1p, F108p, Ste12p en Tec1p. Phd1p is egter 'n uitsondering, aangesien veelvuldige kopieë van PHD1 die effek van 'n MSS11-delesie gedeeltelik oorkom. Die data impliseer dat Mss11 p by die samevloei van verskeie seintransduksiepaaie, benodig vir die transkripsionele regulering van gene betrokke by penetrasie-groei en styselmetabolisme, funksioneer. Dit was ook waargeneem dat verskillende voedingsseine die faktore betrokke by die penetrasie-groeirespons differensieel reguleer. Tec1 p byvoorbeeld benodig Msn1paktiwitieit in respons tot groei op media met 'n beperkte stikstofbron. Hierdie afhanklike interaksie is egter afwesig wanneer penetrasie-groei bestudeer word op glukose- en styselmedia. Resultate wat die gesamentlike transkripsionele regulering van MUC1 en STA2 bevestig, is ook verkry. MUC1 kodeer vir 'n mukienagtige proteïen wat benodig word vir pseudohife-vorming en penetrasie-groei, terwyl STA2 kodeer vir 'n glukoamilase essensieël vir styselafbraak. Ongepubliseerde resultate dui daarop dat verskeie transkripsionele reguleerders van penetrasie-groei ook In effek uitoefen op styselmetabolisme. Die data wat gegenereer is tydens hierdie studie komplementeer en bevestig reeds gepubliseerde resultate. Dit het ook bygedra tot die samestelling van 'n gedetaileerde model wat die verskillende faktore, betrokke by hierdie seintransduksieprosesse, integreer.
Kerwin, Christine. "Pho2 dependence in the phosphate signal transduction pathway of Saccharomyces cerevisiae and Candida glabrata." Click here for download, 2008. http://proquest.umi.com/pqdweb?did=1605126421&sid=1&Fmt=2&clientId=3260&RQT=309&VName=PQD.
Full textNikolaou, Elissavet. "Phylogenetic diversity of fungal stress signaling pathways." Thesis, Available from the University of Aberdeen Library and Historic Collections Digital Resources, 2008. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=24849.
Full textPowers, Ralph Wilson. "Genome-wide screens reveal that reduced TOR signaling extends chronological and replicative life span in S. cerevisiae /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/5044.
Full textZeller, Corinne Eileen Dohlman Henrik G. "Regulation of signal transduction by G protein [beta] subunits in Saccharomyces cerevisiae." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2007. http://dc.lib.unc.edu/u?/etd,1404.
Full textTitle from electronic title page (viewed Apr. 25, 2008). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biochemistry and Biophysics." Discipline: Biochemistry and Biophysics; Department/School: Medicine. On title page, [beta] appears as Greek character.
Tsujimoto, Yoshiyuki. "Regulation of DOG2 Gene Expression and Signal Transduction in Environmental Stress Response of saccharomyces cerevisiae." Kyoto University, 1998. http://hdl.handle.net/2433/157117.
Full textKyoto University (京都大学)
0048
新制・課程博士
博士(農学)
甲第7406号
農博第990号
新制||農||762(附属図書館)
学位論文||H10||N3152(農学部図書室)
UT51-98-G335
京都大学大学院農学研究科食品工学専攻
(主査)教授 木村 光, 教授 天知 輝夫, 教授 江﨑 信芳
学位規則第4条第1項該当
Ketela, Troy W. "Functional characterization of the Saccharomyces cerevisiae SKN7 and MID2 genes, and their roles in osmotic stress and cell wall integrity signaling." Thesis, McGill University, 1999. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=36620.
Full textMID2 was isolated in a screen designed to identify upstream regulators of Skn7p. Mid2p is an extensively O-mannosylated protein that is localized to the plasma membrane. Mutants with defective beta-1,6-glucan synthesis grow more quickly when MID2 is absent. Conversely, MID2 is essential for viability in cells lacking FKS1, the gene encoding the primary catalytic subunit of beta-1,3-glucan synthase. mid2Delta mutants are resistant to calcofluor white, a drug that interferes with cell wall chitin synthesis, while cells overexpressing MID2 are supersensitive to the drug. mid2Delta mutants have a significant reduction in stress-induced chitin synthesis, while cells overexpressing MID2 hyperaccumulate cell wall chitin. Consistent with a proposed role in sensing and responding to cell wall stress, high copy expression of specific components of the cell wall integrity MAP kinase cascade suppress various mid2Delta phenotypes, and Mid2p is essential for full activation of the Mpk1p MAP kinase during various cell wall stress and morphogenic conditions.
Observations from genetic and biochemical experiments suggest that Mid2p is a regulator of the small G-protein encoded by RHO1. Deletion of MID2 is lethal to mutants lacking the Rho1p GEF Rom2p, but suppresses the low temperature growth defect of mutants lacking the Rho1p GAP Sac7p. Conversely, high copy expression of MID2 is a strong suppressor of mutants lacking TOR2, an upstream activator of Rom2p, but is toxic to sac7Delta mutants. High copy expression of MID2 causes increased GEF activity towards Rho1p. Mid2p appears to act in parallel to Rom1p and Rom2p in promoting GDP-GTP exchange for Rho1p in a mechanism that is not yet understood.
Rivoyre, Matthieu de. "Expression et purification de protéines membranaires mammifères impliquées dans des pathologies." Nice, 2006. http://www.theses.fr/2006NICE4062.
Full textMembrane-bound proteins play a significant role in cell function due to their position in between the cell and the external medium. These proteines are for this reason, involved in a number of human diseases. Knowing membrane-bound proteins will allow us to better understand several biological and pathophysiological functions. Furthermore, their localisations make them interesting therapeutic targets. Knowing the structure of proteins gives a tremendous amount of information on their functions. To date, even if several thousands structures of soluble proteins have been solved; only less than two hundred structures of membrane-bound proteins are known. This important difference is partly due to the fact that membrane-bound proteins are difficult to obtain pure in a stable conformation in order to determine their three-dimensional structures. Recombinant expression of membrane-bound proteins has a high variability depending on the nature of the protein studied. Our research team is therefore interested in the development of recombinant expression and purification strategies of membrane-bound proteins involved in numerous human diseases, in order to study their functions but also to establish structurefunction relationships. My thesis work has focused on the expression and the purification of human receptors of the Hedgehog pathway, Patched and Smoothened. Alteration of these two proteins is known to be involved in numerous cancers but also in some neurological diseases. These two proteins have been expressed in two different systems : yeast cells Saccharomyces cerevisiae and Pichia pastoris and also in drosophila cells S2. We have been able to show that the protein Smoothened is expressed in Pichia pastoris in its native conformation in yeast cells an dit is therefore possible to purify it in order to perform structural studies. Patched and Smoothened have also been stably and functionaly expressed in S2 cells. This system is also interesting to perform comparative studies between drosophila and human proteins
Book chapters on the topic "Saccharomyces cerevisiae Signal Transduction"
Peeters, Ken, and Johan M. Thevelein. "Glucose Sensing and Signal Transduction in Saccharomyces cerevisiae." In Molecular Mechanisms in Yeast Carbon Metabolism, 21–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45782-5_2.
Full textLevitzki, Alexander. "Regulation of Adenylate Cyclase in Mammalian Cells and Saccharomyces Cerevisiae." In Receptors, Membrane Transport and Signal Transduction, 25–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74200-2_2.
Full textThevelein, Johan M., Linda Van Aelst, Peter Durnez, and Stefan Hohmann. "The Signal Transduction Pathway Upstream of CDC25 — ras — Adenylate Cyclase in the Yeast Saccharomyces Cerevisiae and its Relationship to Nutrient Control of Cell Cycle Progression." In The Superfamily of ras-Related Genes, 57–66. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-6018-6_7.
Full textKonopka, James B., and Stanley Fields. "The pheromone signal pathway in Saccharomyces cerevisiae." In Molecular Biology of Saccharomyces, 95–108. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2504-8_8.
Full textSingh, Keshav K., Anne Karin Rasmussen, and Lene Juel Rasmussen. "Genome-Wide Analysis of Signal Transducers and Regulators of Mitochondrial Dysfunction in Saccharomyces cerevisiae." In Mitochondrial Pathogenesis, 284–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-41088-2_27.
Full textTATCHELL, KELLY. "RAS Genes in the Budding Yeast Saccharomyces cerevisiae." In Signal Transduction, 147–88. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-12-429350-2.50011-5.
Full textWHITEWAY, MALCOLM, and BEVERLY ERREDE. "Signal Transduction Pathway for Pheromone Response in Saccharomyces cerevisiae." In Signal Transduction, 189–237. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-12-429350-2.50012-7.
Full textSantos, Melina C., Carlos A. Breyer, Leonardo Schultz, Karen S. Romanello, Anderson F. Cunha, Carlos A. Tairum Jr, and Marcos Antonio de Oliveira. "Saccharomyces cerevisiae Peroxiredoxins in Biological Processes: Antioxidant Defense, Signal Transduction, Circadian Rhythm, and More." In Old Yeasts - New Questions. InTech, 2017. http://dx.doi.org/10.5772/intechopen.70401.
Full textConference papers on the topic "Saccharomyces cerevisiae Signal Transduction"
Ulfa, Evi Umayah, Elly Munadziroh, Hermansyah, and Ni Nyoman Tri Puspaningsih. "Cloning of SLPI gene containing HM-1 signal peptide in Saccharomyces cerevisiae." In THE 3RD INTERNATIONAL SEMINAR ON CHEMISTRY: Green Chemistry and its Role for Sustainability. Author(s), 2018. http://dx.doi.org/10.1063/1.5082512.
Full textBarabas, Jan, Ladislav Janousek, Roman Radil, and Simona Moravcikova. "Investigation of low frequency electromagnetic field (0–2kHz) excitation signal shape influence on Saccharomyces cerevisiae cell counts." In 2017 18th International Conference on Computational Problems of Electrical Engineering (CPEE). IEEE, 2017. http://dx.doi.org/10.1109/cpee.2017.8093066.
Full text