Contents
Academic literature on the topic 'Saccharomyces cerevisiæ – Génétique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Saccharomyces cerevisiæ – Génétique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Saccharomyces cerevisiæ – Génétique"
Labroussaa, Fabien, Vincent Baby, Sébastien Rodrigue, and Carole Lartigue. "La transplantation de génomes." médecine/sciences 35, no. 10 (2019): 761–70. http://dx.doi.org/10.1051/medsci/2019154.
Full textDissertations / Theses on the topic "Saccharomyces cerevisiæ – Génétique"
Giroux, Mélissa. "Identification des déterminants génétiques impliqués dans la différenciation phénotypique entre Saccharomyces cerevisiae et Saccharomyces paradoxus." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/29628/29628.pdf.
Full textCheng, Xue. "Implication of NuA4 histone acetyltransferase complex in transcription regulation and genome stability." Master's thesis, Université Laval, 2014. http://hdl.handle.net/20.500.11794/25797.
Full textCell genome is packaged into chromatin in order to compensate the limited space within the nucleus. However, this highly condensed structure also presents strong physical barriers for cellular processes using DNA as templates. Recent years of studies have unveiled chromatin modifying complexes as key players in several mechanisms of chromatin modulation. One of these modifiers is NuA4, an evolutionary conserved large multi-subunit histone acetyltransferase complex that acetylates histone H2A, H2A.Z and H4. In this thesis, using Saccharomyces cerevisiae as model system, we identified the implication of NuA4 in global histone variant H2A.Z incorporation and purine biosynthesis pathways. Moreover, we also show previously uncharacterized involvement of NuA4 in DNA damage response pathways through Mec1/ Tel1-dependent phosphorylation events on NuA4 subunits. Further analysis will shed light on detailed mechanisms about how NuA4, as a multifunctional complex, coordinates various cellular activities.
Lavoie, Elyse. "Étude de la fonction cellulaire de SYP1 chez Saccharomyces cerevisiae." Thesis, Université Laval, 2006. http://www.theses.ulaval.ca/2006/23617/23617.pdf.
Full textMarois-Blanchet, François-Christophe. "Le rôle de la régulation transcriptionnelle dans l'évolution des réseaux d'interaction protéine-protéine." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28445/28445.pdf.
Full textEvolution by gene duplication is considered one of the most important mechanisms of evolutionary innovation. What is less known and highly debated is the relative role of the divergence of transcriptional regulation and the divergence of protein coding sequence in the evolution of molecular networks. We developed a method aimed at evaluating the role of transcriptional regulation in the divergence of protein-protein interactions among duplicated genes in the budding yeast Saccharomyces cerevisiae. Our results demonstrate that our approach can be used effectively to test if divergence of protein-protein interaction profiles can be explained by the divergence of transcriptional regulation or the divergence of coding sequences. We found evidence supporting different scenarios, whereby expression regulation has a large effect, no effect or little effect on protein-protein interaction profiles of paralogous proteins. Our method can be brought to large scale and help elucidate the importance of gene transcriptional regulation in evolution of complex cellular networks.
Diss, Guillaume, and Guillaume Diss. "Architecture et évolution des réseaux d'interactions protéines-protéines : exploration de la carte génotype-phénotype." Doctoral thesis, Université Laval, 2014. http://hdl.handle.net/20.500.11794/25454.
Full textTableau d'honneur de la Faculté des études supérieures et postdorales, 2014-2015
La question des bases structurales du phénotype et de sa variation est une des questions les plus anciennes de la biologie. Le paradigme actuel stipule que le phénotype est exprimé à partir du génotype au travers de réseaux moléculaires dont l’architecture structure l’information génétique. Cette description mécanistique de la carte génotype-phénotype implique que c’est par la perturbation de l’architecture de ces réseaux que des variations génotypiques mènent à des modifications du phénotype. Les protéines constituant le principal vecteur de l’information génétique, comprendre la carte génotype-phénotype requiert de comprendre comment les variations génotypiques perturbent l’architecture du réseau d’interactions protéines-protéines. Au cours de cette thèse, nous avons développé une méthode permettant d’étudier chez la levure Saccharomyces cerevisiae l’impact de la délétion des gènes sur les interactions entre protéines. Nous avons appliqué cette méthode à l’étude des mécanismes moléculaires de la robustesse par lesquels le réseau d’interactions protéines-protéines filtre les variations génotypiques pour préserver le phénotype. Nous avons mis au jour un mécanisme de compensation fonctionnelle entre gènes paralogues basé sur la compensation des interactions protéines-protéines et expliquant un lien entre génotype et phénotype qui était mal compris jusqu’alors. En outre, en appliquant notre méthode à l’identification des régulateurs de la Protéine Kinase A, nous avons approfondi les connaissances sur la façon dont les maîtres régulateurs coordonnent les processus cellulaires et maintiennent l’homéostasie, une propriété distribuée de la robustesse. Ces résultats, et ceux qui seront produits à l’avenir par l’application de cette méthode, promettent une meilleure compréhension des mécanismes moléculaires par lesquels l’information génétique est transmise du génotype au phénotype, condition essentielle à la compréhension du vivant et de son évolution.
La question des bases structurales du phénotype et de sa variation est une des questions les plus anciennes de la biologie. Le paradigme actuel stipule que le phénotype est exprimé à partir du génotype au travers de réseaux moléculaires dont l’architecture structure l’information génétique. Cette description mécanistique de la carte génotype-phénotype implique que c’est par la perturbation de l’architecture de ces réseaux que des variations génotypiques mènent à des modifications du phénotype. Les protéines constituant le principal vecteur de l’information génétique, comprendre la carte génotype-phénotype requiert de comprendre comment les variations génotypiques perturbent l’architecture du réseau d’interactions protéines-protéines. Au cours de cette thèse, nous avons développé une méthode permettant d’étudier chez la levure Saccharomyces cerevisiae l’impact de la délétion des gènes sur les interactions entre protéines. Nous avons appliqué cette méthode à l’étude des mécanismes moléculaires de la robustesse par lesquels le réseau d’interactions protéines-protéines filtre les variations génotypiques pour préserver le phénotype. Nous avons mis au jour un mécanisme de compensation fonctionnelle entre gènes paralogues basé sur la compensation des interactions protéines-protéines et expliquant un lien entre génotype et phénotype qui était mal compris jusqu’alors. En outre, en appliquant notre méthode à l’identification des régulateurs de la Protéine Kinase A, nous avons approfondi les connaissances sur la façon dont les maîtres régulateurs coordonnent les processus cellulaires et maintiennent l’homéostasie, une propriété distribuée de la robustesse. Ces résultats, et ceux qui seront produits à l’avenir par l’application de cette méthode, promettent une meilleure compréhension des mécanismes moléculaires par lesquels l’information génétique est transmise du génotype au phénotype, condition essentielle à la compréhension du vivant et de son évolution.
The question of the structural bases of the phenotype and of its evolution is one of the oldest questions in biology. The present paradigm states that the phenotype is expressed from the genotype through molecular networks, the architecture from which structures genetic information. This mechanistic description of the genotype-phenotype map implies that it is through by perturbing of the architecture of these networks that genotypic variations lead to phenotypic modifications. Since proteins are the main vector of genetic information, understanding the genotype-phenotype map requires the understanding of how genotypic variations perturb the architecture of the protein interaction network. In the course of this thesis, we developped a methodology that allows to study the impact of gene deletions on the interactions between proteins in the yeast Saccharomyces cerevisiae. We applied this method to the study of the molecular mechanisms of robustness by which the protein interaction network filters genotypic variations to preserve the phenotype. We uncovered un mechanism of functional compensation between paralogous genes that is based on protein-protein interaction compensation and that explains the poorly understood link between genotype and phenotype. Moreover, we applied our method to the identification of regulators of Protein Kinase A and deepened our knowledge of how master regulators coordinate cellular processes and maintain homeostasis, a distributed property of robustness. These results, and the ones that will be produced in the future by applying this method, promise a better understanding of the molecular mechanisms through which genetic information is transmitted from the genotype to the phenotype, an essential condition for the understanding of life and its evolution.
The question of the structural bases of the phenotype and of its evolution is one of the oldest questions in biology. The present paradigm states that the phenotype is expressed from the genotype through molecular networks, the architecture from which structures genetic information. This mechanistic description of the genotype-phenotype map implies that it is through by perturbing of the architecture of these networks that genotypic variations lead to phenotypic modifications. Since proteins are the main vector of genetic information, understanding the genotype-phenotype map requires the understanding of how genotypic variations perturb the architecture of the protein interaction network. In the course of this thesis, we developped a methodology that allows to study the impact of gene deletions on the interactions between proteins in the yeast Saccharomyces cerevisiae. We applied this method to the study of the molecular mechanisms of robustness by which the protein interaction network filters genotypic variations to preserve the phenotype. We uncovered un mechanism of functional compensation between paralogous genes that is based on protein-protein interaction compensation and that explains the poorly understood link between genotype and phenotype. Moreover, we applied our method to the identification of regulators of Protein Kinase A and deepened our knowledge of how master regulators coordinate cellular processes and maintain homeostasis, a distributed property of robustness. These results, and the ones that will be produced in the future by applying this method, promise a better understanding of the molecular mechanisms through which genetic information is transmitted from the genotype to the phenotype, an essential condition for the understanding of life and its evolution.
Labrecque, Marie-Hélène. "Étude de la capacité de deux souches de levures à dégrader le xylène." Thesis, Université Laval, 2003. http://www.theses.ulaval.ca/2003/21125/21125.pdf.
Full textCramet, Myriam. "Étude des déterminants moléculaires contrôlant l'association du complexe histone acétyltransférase NuA4 avec la chromatine durant la transcription." Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26414/26414.pdf.
Full textGamonet, Franck. "Biosynthèse de la lysine chez la levure Saccharomyces Cerevisiae : rôle(s) des gènes LYS7 et LYS4." Bordeaux 2, 1997. http://www.theses.fr/1997BOR28536.
Full textCormier, Laëtitia. "Mécanismes d’activation transcriptionnelle du régulon Met4 chez Saccharomyces cerevisiae." Paris 11, 2008. http://www.theses.fr/2008PA112288.
Full textMet4 is the transcriptional activator which controls the MET gene network responsible for the biosynthesis of sulfur-containing amino acids. It is actif under conditions of limitation in sulfur and also upon exposure to cadmium (Cd2+) and, therefore, leading to synthesis of the cystein required to formation of glutathione, a thiol tripeptide necessary to complex and detoxify Cd2+. We showed that Met4 recruits at least three coactivators in response to these two conditions: the Mediator, SAGA and TAF. However, some of the subunits of these three complexes seem to be required in only one of the two induction conditions, suggesting a differential activation mechanism by Met4 according to the signal. Within the framework of the global sulfur sparing response in answer to Cd2+, we focused on the molecular mechanisms that govern the switch in expression between Pdc1 and Pdc6, two isoforms of pyruvate decarboxylase with differents contents of sulfur-containing amino acids. We showed that (1) transcriptional activation of PDC6 depends directly on Met4 and its cofactors but involves on atypical DNA binding site, (2) recruitment of the transcriptional machinery at PDC6 promoter and accumulation of PDC6 transcripts are delayed compared to MET genes and (3) PDC6 activation requires high concentrations of Cd2+. In addition, we showed involvement of the corepressor complexe Ssn6/Tup1 in the PDC1 repression, this probably through changes in chromatin structure via the histone deacetylase Rpd3. Finally, this transcriptional switch was also observed under condition of limitation in sulfur
Raffoux, Xavier. "Diversité et déterminisme génétique de la recombinaison méiotique chez Saccharomyces cerevisiae." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS392/document.
Full textModern agriculture must ensure food security in a context of climate change that will lower yields. A better understanding of the factors controlling meiotic recombination could pave the way to modifying the number and distribution of crossing-over, which would allow a more precise localization of genetic factors controlling agronomic traits, and facilitate gene pyramiding in selection programs. During my thesis, I developed a method for high-throughput measurement of recombination rates in the yeast Saccharomyces cerevisiae. This allowed me to study the diversity of recombination and interference in a collection of 24 strains representing most of the diversity of the species, as well as within a five-parent di-allele design. The results show an average number of crossovers per meiosis ranging between 24 and 61, higher than in the majority of other species. Furthermore, recombination patterns differ between strains, and ratios of local recombination rates show 9-fold differences in some regions. Strains from unstable habitats, however, do not have a higher level of recombination than those from stable environments. In addition, most strains show interference whose strength is positively correlated with the level of recombination. The study of the relationship between recombination rate and sequence similarity between homologs at different scales (from local to global) indicates that recombination is controlled by both cis elements and trans factors. Lastly, heterozygosity in hybrids has a negative effect on crossing-over, but homozygotes also have a reduced level of recombination due to inbreeding depression. This work will now be used to study the response of recombination to selection and to detect QTL of crossover number in order to identify genes controlling recombination
Books on the topic "Saccharomyces cerevisiæ – Génétique"
Essai n° 480: Toxicologie génétique: Saccharomyces cerevisiae, essai de mutation génique. OECD, 1986. http://dx.doi.org/10.1787/9789264071414-fr.
Full textEssai n° 481: Toxicologie génétique: Saccharomyces cerevisiad, essai de recombinaison mitotique. OECD, 1986. http://dx.doi.org/10.1787/9789264071438-fr.
Full textAlistair J.P. Brown (Editor) and Mick F. Tuite (Editor), eds. Yeast Gene Analysis, Volume 26 (Methods in Microbiology). Academic Press, 1998.
Alistair J.P. Brown (Editor) and Mick F. Tuite (Editor), eds. Yeast Gene Analysis, Volume 26 (Methods in Microbiology). Academic Press, 1998.
Yeast Functional Genomics And Proteomics Methods And Protocols. Humana Press, 2009.