Dissertations / Theses on the topic 'Saccharomyces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Saccharomyces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Wirth, Bénédicte. "Dynamique et évolution d'ORFs dupliquées chez les levures hémiascomycètes : Etude de la famille multigénique DUP." Université Louis Pasteur (Strasbourg) (1971-2008), 2006. http://www.theses.fr/2006STR13070.
Full textVázquez, González Jennifer. "Antioxidant effect of melatonin on Saccharomyces and non-Saccharomyces wine yeasts." Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/461155.
Full textLa melatonina (N-acetil-5 metoxytryptamine) que se sintetiza a partir del triptófano, se forma durante la fermentación alcohólica, no obstante su papel en la levadura es desconocido. Este estudio utilizó especies de Saccharomyces y no Saccharomyces para evaluar los posibles efectos antioxidantes de la melatonina. Se evaluó la resistencia al H2O2, la producción de especies reactivas de oxígeno, la peroxidación lipídica, la actividad catalasa y la composición lipídica (ácidos grasos, fosfolípidos y esteroles) tanto en levaduras de Saccharomyces como no-Saccharomyces. Además, en S. cerevisiae se evaluó el contenido de glutatión reducido y oxidado, se cuantificó la melatonina endógena y se realizó un ensayo transcriptómico. Los resultados mostraron que las levaduras que contienen ácidos grasos insaturados como los ácidos linoleico o linolénico son más tolerantes al estrés oxidativo. Por otra parte, la suplementación con melatonina facilitó que las células hicieran frente a posibles estreses futuros. Sin embargo, cuando las células fueron sometidas a estrés oxidativo inducido por H2O2, la melatonina pudo mitigar parcialmente el daño celular reduciendo la producción de ROS, la peroxidación de lípidos y el glutatión oxidado a la vez que aumentaba el glutatión reducido y la viabilidad celular. El analisis de transcriptómica demostró que la melatonina es capaz de modular la respuesta al estrés oxidativo a nivel transcripcional. Los resultados demuestran que la melatonina puede actuar como antioxidante tanto en levaduras Saccharomyces como no-Saccharomyces.
Melatonin (N-acetyl-5 methoxytryptamine) which is synthesized from tryptophan, is formed during alcoholic fermentation, though its role in yeast is unknown. This study employed Saccharomyces and non-Saccharomyces species to evaluate the possible antioxidant effects of melatonin. Resistance to H2O2, reactive oxygen species, lipid peroxidation, catalase activity and lipid composition (fatty acids, phospholipids and sterols) were evaluated in both Saccharomyces and non-Saccharomyces yeasts. Furthermore, cell viability, reduced and oxidized glutathione levels, endogenous melatonin levels as well as transcriptomics study were assessed in S. cerevisiae. Results showed that non-Saccharomyces yeast containing unsaturated fatty acids such as linoleic or linolenic acids are more tolerant to oxidative stress. Melatonin supplementation enables cells to resist better further stresses. However, when cells were subjected to oxidative stress induced by H2O2, melatonin was able to partially mitigate cell damage by decreasing ROS production, lipid peroxidation and oxidized glutathione and increasing reduced glutathione and viability. Transcriptomics assays showed that melatonin is able to modulate the oxidative stress response at transcriptional level. The findings demonstrate that melatonin can act as antioxidant in both Saccharomyces and non-Saccharomyces yeasts.
Serra, Audrey. "Production d'hybrides saccharomyces cerevisiae x saccharomyces uvarum : contraintes physiologiques et procédé." Toulouse, INPT, 2004. http://www.theses.fr/2004INPT006G.
Full textJames, Allan. "A genetic analysis of sulfate transporters in Saccharomyces cerevisiae and Saccharomyces pastorianus." Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/1525.
Full textSchorling, Stefan. "Ceramidsynthese in Saccharomyces cerevisiae." Diss., lmu, 2001. http://nbn-resolving.de/urn:nbn:de:bvb:19-3658.
Full textDeans, Karen. "Ageing of Saccharomyces cerevisiae." Thesis, Heriot-Watt University, 1997. http://hdl.handle.net/10399/663.
Full textMessias, Susana Isabel Serra. "Caraterização dos polissacarídeos da parede celular das leveduras Saccharomyces cerevisiae e Saccharomyces pastorianus." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/17874.
Full textA indústria cervejeira usa diferentes espécies de leveduras Saccharomyces para a produção de cerveja. As leveduras são normalmente reutilizadas em 3-7 ciclos fermentativos e em seguida, são descartadas, sendo designado como levedura excedentária da cerveja (BSY). A BSY é um dos maiores subprodutos resultantes da indústria cervejeira e é fonte de polissacarídeos, nomeadamente glucanas, manoproteínas e quitina, provenientes da parede celular. No presente trabalho foram analisados os polissacarídeos das leveduras S. cerevisiae com 1 e 3 ciclos fermentativos e S. pastorianus com 2 e 6 ciclos fermentativos. Os polissacarídeos da parede celular das leveduras foram extraídos sequencialmente recorrendo à extração com água a 100 ºC e à extração aquosa assistida por micro-ondas (MWE) a 180 ºC. A extração com água quente permitiu extrair os polissacarídeos da superfície da parede celular que, no caso da S. cerevisiae, são constituídos essencialmente por resíduos de glucose em ligação (1→4) e, no caso da S. pastorianus são constituídos por resíduos de manose em ligação terminal, (1→2)-Man e (1→2,6)-Man. Os extratos solúveis da MWE, de S. cerevisiae são ricos em (1→4)-Glc e os da S. pastorianus são ricos em (1→2)-Man e (1→2,6)-Man. O resíduo insolúvel é composto por (1→4) e (1→3) glucanas. Os resíduos de glucose em ligação (1→4) foram sensíveis à hidrólise com α-amilase e com celulase, permitindo inferir a presença de resíduos com configuração anomérica α e β. Por microscopia eletrónica de varrimento verificou-se que a estrutura tridimensional das leveduras se mantém no resíduo após extração aquosa dos polissacarídeos. Uma potencial valorização deste resíduo poderá ser como microcápsula para a incorporação de compostos bioativos na área alimentar ou clínica. A levedura excedentária da cerveja apresenta grande variabilidade dependendo da estirpe/espécie da levedura e ainda do número de ciclos fermentativos a que está sujeita. Os extratos solúveis de MWE de S. cerevisiae são fonte de glucose em ligação (1→3), quando provenientes de um baixo número de reutilizações, e/ou ligação (1→4), se provenientes de um elevado número de reutilizações. As S. pastorianus são fonte de manoproteínas.
Beer industry uses different Saccharomyces yeast species, which are reused during 3-7 fermentative cycles. When discarded, they are named brewer’s spent yeast (BSY). BSY is one of the major by-products resultant of brewery industry and it is a source of glucan, mannoprotein and chitin components of yeast cell wall polysaccharides. In the present work, the cell wall polysaccharides of S. cerevisiae with 1 and 3 fermentative cycles and S. pastorianus with 2 and 6 fermentative cycles were analyzed. Cell wall polysaccharides were sequentially extracted with water at 100 ° C and with microwave assisted water extraction (MWE) at 180 ° C. The hot water extraction allowed to obtain the cell wall surface polysaccharides. Extracted S. cerevisiae polysaccharides were mainly constituted by (1→4) linked glucose and S. pastorianus ones were constituted by terminally-linked mannose, (1→2)-Man and (1→2,6)-Man. S. cerevisiae MWE extracts were enriched in (1→4)-Glc while MWE extracts of S. pastorianus were rich in (1→2)-Man e (1→2,6)-Man. The insoluble residue was composed mainly of (1→ 4) and (1→ 3) glucan. The (1→4) linked glucose was hydrolysed by amylase and cellulase, allowing to infer the presence of α and β anomeric configurations. The residue that remain after the extraction of the polysaccharides was found by scanning electron microscopy, to maintain the three dimensional structure of the yeast. This residue can be valued as a microcapsule for the incorporation of bioactive compounds in food or clinical applications. Depending on the number of yeast reutilizations, MWE extracts of S. cerevisiae are a source of (1→3)-glucans or (1→4)-glucans, while MWE extracts of S. pastorianus are a source of mannoproteins. As BSY showed a high variability depending on the yeasts strain/ species and reutilization, able to be recovered by MWE.
Ericson, Elke. "High-resolution phenomics to decode : yeast stress physiology /." Göteborg : Göteborg University, Dept. of Cell and Molecular Biology, Faculty of Science, 2006. http://www.loc.gov/catdir/toc/fy0707/2006436807.html.
Full textEriksson, Peter. "Identification of the two GPD isogenes of saccharomyces cerevisiae and characterization of their response to hyper-osmotic stress." Göteborg : Chalmers Reproservice, 1996. http://catalog.hathitrust.org/api/volumes/oclc/38202006.html.
Full textSoden, Alison. "The fermentation properties of non-Saccharomyces wine yeasts and their interaction with Saccharomyces cerevisiae /." Title page, contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phs679.pdf.
Full textErrata slip inserted on back end-paper. Thesis (Ph.D.)--University of Adelaide, Dept. of Horticulture, Viticulture and Oenology, 1999. Bibliography: leaves 106-125.
Pratt, Elizabeth Stratton. "Genetic and biochemical studies of Adr6, a component of the SWI/SNF chromatin remodeling complex /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/10288.
Full textKerkmann, Katja. "Die genomweite Expressionsanalyse von Deletionsmutanten der Gene NHP6A/B und CDC73 in der Hefe S.cerevisiae." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=961961651.
Full textHarder, Andreas. "Identifizierung stresssensitiver Proteine für die Medizin und Lebensmitteltechnologie aus dem Proteom von Saccharomyces cerevisiae." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962142816.
Full textBellahn, Inga. "Biochemische Charakterisierung vakuolärer Vesikel aus Saccharomyces cerevisiae." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965643484.
Full textJestel, Anja. "Strukturelle Charakterisierung des Calpastatin und Untersuchung eines ATP-abhängigen Peptidtransports in S. cerevisiae." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=966507193.
Full textJawich, Dalal Strehaiano Pierre Lteif Roger. "Étude de la toxicité de pesticides vis-à-vis de deux genres de levures approche cinétique et moléculaire /." Toulouse : INP Toulouse, 2006. http://ethesis.inp-toulouse.fr/archive/00000329.
Full textSchauen, Matthias. "Mitochondriale Transportproteine in Saccharomyces cerevisiae." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965029379.
Full textSchulze, Ulrik. "Anaerobic physiology of Saccharomyces cerevisiae /." Online version, 1995. http://bibpurl.oclc.org/web/20903.
Full textGreig, Duncan. "Sex, species and Saccharomyces cerevisiae." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301401.
Full textPayne, Thomas. "Protein secretion in Saccharomyces cerevisiae." Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.438772.
Full textAugustová, Kamila. "Taxonomické zařazení kvasinek rodu Saccharomyces." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2011. http://www.nusl.cz/ntk/nusl-216792.
Full textPaulo, Jorge Fernando Ferreira de Sousa. "mRNA mistranslation in Saccharomyces cerevisiae." Master's thesis, Universidade de Aveiro, 2012. http://hdl.handle.net/10773/7775.
Full textThe genetic code is defined as a series of biochemical reactions that establish the cellular rules that translate DNA into protein information. It was established more than 3.5 billion years ago and it is one of the most conserved features of life. Over the years, several alterations to the standard genetic code and codon ambiguities have been discovered in both prokaryotes and eukaryotes, suggesting that the genetic code is flexible. However, the molecular mechanisms of evolution of the standard genetic code and the cellular role(s) of codon ambiguity are not understood. In this thesis we have engineered codon ambiguity in the eukaryotic model Sacharomyces cerevisiae to clarify its cellular consequences. As expected, such ambiguity had a strong negative impact on growth rate, viability and protein aggregation, indicating that it affects fitness negatively. However, it also created important selective advantages in certain environmental conditions, suggesting that it has the capacity to increase adaptation potential under environmental variable conditions. The overall negative impact of genetic code ambiguity on protein aggregation and cell viability, suggest that codon ambiguity may have catastrophic consequences in multicellular organisms. In particular in tissues with low cell turnover rate, namely in the brain. This hypothesis is supported by the recent discovery of a mutation in the mouse alanyl-tRNA synthetase which creates ambiguity at alanine codons and results in rapid loss of Purking neurons, neurodegeneration and premature death. Therefore, genetic code ambiguity can have both, negative or positive outcomes, depending on cell type and environmental conditions.
O código genético pode ser definido como uma série de reacções bioquímicas que estabelecem as regras pelas quais as sequências nucleotídicas do material genético são traduzidas em proteínas. Apresenta um elevado grau de conservação e estima-se que tenha tido a sua origem há mais de 3.5 mil milhões de anos. Ao longo dos últimos anos foram identificadas várias alterações ao código genético em procariotas e eucariotas e foram identificados codões ambíguos, sugerindo que o código genético é flexível. Contudo, os mecanismos de evolução das alterações ao código genético são mal conhecidos e a função da ambiguidade de codões é totalmente desconhecida. Nesta tese criámos codões ambíguos no organismo modelo Saccharomyces cerevisiae e estudámos os fenótipos resultantes de tal ambiguidade. Os resultados mostram que, tal como seria expectável, a ambiguidade do código genético afecta negativamente o crescimento, viabilidade celular e induz a produção de agregados proteicos em S. cerevisiae. Contudo, tal ambiguidade também resultou em variabilidade fenótipica, sendo alguns dos fenótipos vantajosos em determinados condições ambientais. Ou seja, os nossos dados mostram que a ambiguidade do código genético afecta negativamente a capacidade competitiva de S. cerevisiae em meio rico em nutrientes, mas aumenta a sua capacidade adaptativa em condições ambientais variáveis. Os efeitos negativos da ambiguidade do código genético, nomeadamente a agregação de proteínas, sugerem que tal ambiguidade poderá ser catastrófica em organismos multicelulares em que a taxa de renovação celular é baixa. Esta hipótese é suportada pela recente descoberta de uma mutação na alaniltRNA sintetase do ratinho que induz ambiguidade em codões de alanina e resulta numa forte perda de neurónios de Purkinge, neurodegeneração e morte prematura. Ou seja, a ambiguidade do código genético pode ter consequências negativas ou positivas dependendo do tipo de células e das condições ambientais.
Tsai, Isheng Jason. "Population genomics of Saccharomyces yeasts." Thesis, Imperial College London, 2009. http://hdl.handle.net/10044/1/4361.
Full textKim, Jae-hyun. "Chromosome segregation in Saccharomyces cerevisiae /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Full textCaponigro, Giordano Michael. "mRNA decay in Saccharomyces cerevisiae." Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/187472.
Full textDunckley, Travis Lee. "mRNA decapping in Saccharomyces cerevisiae." Diss., The University of Arizona, 2000. http://hdl.handle.net/10150/289165.
Full textAnderlund, Mikael. "Redox balancing in recombinant strains of Saccharomyces cerevisiae." Lund : University of Lund, 1998. http://books.google.com/books?id=uc5qAAAAMAAJ.
Full textGiroux, Mélissa. "Identification des déterminants génétiques impliqués dans la différenciation phénotypique entre Saccharomyces cerevisiae et Saccharomyces paradoxus." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/29628/29628.pdf.
Full textChasseriaud, Laura. "Interactions entre levures Saccharomyces cerevisiae et non-Saccharomyces en vinification. : Incidence de facteurs de l’environnement." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0309/document.
Full textNon-Saccharomyces yeasts, naturally found in grape must, can impact wine quality positively or negatively. In recent years, the use of mixed cultures as starters (association of S. cerevisiae species and other species) such as the couple Saccharomyces cerevisiae/Torulaspora delbrueckii is proposed to winemakers. Interactions between these two species have been studied with two commercial strains, T. delbrueckii Zymaflore Alpha and S. cerevisiae Zymaflore X5 (Laffort). Alcoholic fermentations were carried out in a fermentor with double compartment allowing a physical separation of yeasts and preserving the homogeneity culture medium. The results highlighted that the physical separation impacts the growth of both strains, suggesting interactions of type cell-cell contact between these two strains. If a large majority of winemakers use selected yeasts strains, some of them chose to favor native yeasts, S. cerevisiae species and non- Saccharomyces species. The impact of two environmental factors was investigated on five non-Saccharomyces species (T. delbrueckii, Metschnikowia spp., Candida zemplinina, Hanseniaspora uvarum, Pichia kluyveri) and two strains of S. cerevisiae (one with short fermentation lag phase, one with long fermentation lag phase), in pure and mixed cultures. The inoculation with S. cerevisiae with a long fermentation lag phase in a must saturated with CO2 allowed to stimulate some of non-Saccharomyces which present an interest in winemaking (T. delbrueckii/P. kluyveri) and inhibit the undesirable ones (H. uvarum, C. zemplinina)
Jawich, Dalal. "Etude de la toxicité de pesticides vis-à-vis de deux genres de levures : approche cinétique et moléculaire." Phd thesis, Toulouse, INPT, 2006. http://oatao.univ-toulouse.fr/7481/1/jawich.pdf.
Full textAnsell, Ricky. "Redox and osmoregulation in Saccharomyces cerevisiae the role of the two isogenes encoding NAD-dependent glycerol 3-phosphate dehydrogenase /." Göteborg : [Institute of Cell and Molecular Biology, Dept. of General and Marine Microbiology, Lundberg Laboratory, Göteborg University], 1997. http://catalog.hathitrust.org/api/volumes/oclc/38985539.html.
Full textEberlein, Chris. "The genetic bases of ecological specialization and the effects of hybridization in a complex of incipient yeast species." Doctoral thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/33715.
Full textMillions of different species inhabiting the world have evolved through complex interactions with their environment. Contemporary evolutionary biology is experiencing a revolution in genome sequencing, screening and genetic manipulation technologies. Its aim, however, remains the same as 160 years ago when pioneers like Darwin and Wallace published the first articles about the evolutionary theory: to understand the underlying mechanisms involved in speciation, because such knowledge is key to shed light into species diversification. This can be achieved by studying the genetic mechanisms involved in local adaptation and ecological specialization during early speciation events. The main objective of this work is to investigate the molecular mechanisms underlying adaptation and population differentiation in a young species complex of the budding yeast Saccharomyces paradoxus, naturally found in the North American deciduous forests. Using different approaches, such as population genomics, experimental biology, transcriptomics and high-throughput phenotyping we (1) dissect the genetic bases for ecological specialization and (2) investigate the effect of hybridization in facilitating rapid divergence and speciation. First, we document that the ecological specialization to different temperatures, a phenotype that has been previously shown to play an important role in the divergence of two main S. paradoxus lineages, is partially driven by relaxed selection with trade-offs. Second, with the work on two inter-species hybridization events, we document a back-cross between a hybrid taxa and its parental species, which highlights that hybridization is likely more common in the evolution of species than previously thought. Our work underlines the importance of ecological differentiation through relaxed selection, rather than adaptive divergence from the fixation of beneficial mutations. Additionally, our findings show that hybridization in nature likely plays an important role in creating new diversity through transgressive segregation, and that this can reiterate through crosses that include hybrid species. Studies on young species and hybrid complexes will enable to further understand the genetic bases of population differentiation and the consequences of inter-species hybridization and its recurrence in the origin of species.
Kemp, Hilary A. "A complex of six FAR proteins required for pheromone arrest and mating /." view abstract or download file of text, 2003. http://wwwlib.umi.com/cr/uoregon/fullcit?p3113011.
Full textTypescript. Includes vita and abstract. Includes bibliographical references (leaves 94-104). Also available for download via the World Wide Web; free to University of Oregon users.
Strässle, Christoph A. "Modell zur Spontansynchronisation von Saccharomyces cerevisiae /." [S.l.] : [s.n.], 1988. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=8598.
Full textDeckers, Markus. "Charakterisierung peroxisomaler Proteine aus Saccharomyces cerevisiae." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=985178043.
Full textStüer, Heike. "Wahrnehmung von Biotinmangel durch Saccharomyces cerevisiae." kostenfrei, 2009. http://www.opus-bayern.de/uni-regensburg/volltexte/2009/1353/.
Full textGroßmann, Guido. "Plasma membrane compartmentation in Saccharomyces cerevisiae." kostenfrei, 2008. http://www.opus-bayern.de/uni-regensburg/volltexte/2009/1152/.
Full textLondon, Markus Konrad Justin. "Regulation der Proteasombiogenese in Saccharomyces cerevisiae." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=974673315.
Full textBeck, Karsten. "Das Dhh1 Protein aus Saccharomyces cerevisiae." Diss., lmu, 2002. http://nbn-resolving.de/urn:nbn:de:bvb:19-7362.
Full textWidlund, Per Olov Ingvar. "The Saccharomyces cerevisiae chromosomal passenger, Bir1 /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/9202.
Full textThompson, C. L. "Interaction of pentamidine with Saccharomyces cerevisiae." Thesis, University of Hull, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377415.
Full textReithinger, Johannes. "Membrane Protein Biogenesis in Saccharomyces cerevisiae." Doctoral thesis, Stockholms universitet, Institutionen för biokemi och biofysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-95376.
Full textAt the time of the doctoral defence the following papers were unpublished and had a status as follows: Paper 4: Manuscript; Paper 5: Manuscript
Gray, Allison J. "Saccharomyces boulardii and the small intestine." Thesis, Queen's University Belfast, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282154.
Full textSpalding, A. C. "Host-plasmid interactions in Saccharomyces cerevisiae." Thesis, University of Kent, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383082.
Full textJenkins, F. "Development of thermotolerance in Saccharomyces cerevisiae." Thesis, Bucks New University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234851.
Full textPearce, Amanda K. "Regulation of glycolysis in Saccharomyces cerevisiae." Thesis, University of Aberdeen, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301297.
Full textHatton, Lee S. "Gluconeogenic gene regulation in Saccharomyces cerevisiae." Thesis, University of Aberdeen, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387524.
Full textRowley, Neil K. "Studies on the Saccharomyces cerevisiae genome." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361615.
Full textZealey, Gavin Ross. "Plasmid copy number in Saccharomyces cerevisiae." Thesis, University of Bath, 1985. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333232.
Full textGimeno, Carlos Joaquín. "Characterization of Saccharomyces cerevisiae pseudohyphal development." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/33506.
Full text