Academic literature on the topic 'Saddle node bifurcation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Saddle node bifurcation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Saddle node bifurcation"
ROCŞOREANU, CARMEN, NICOLAIE GIURGIŢEANU, and ADELINA GEORGESCU. "CONNECTIONS BETWEEN SADDLES FOR THE FITZHUGH–NAGUMO SYSTEM." International Journal of Bifurcation and Chaos 11, no. 02 (February 2001): 533–40. http://dx.doi.org/10.1142/s0218127401002213.
Full textUeta, Tetsushi, Daisuke Ito, and Kazuyuki Aihara. "Can a Pseudo Periodic Orbit Avoid a Catastrophic Transition?" International Journal of Bifurcation and Chaos 25, no. 13 (December 15, 2015): 1550185. http://dx.doi.org/10.1142/s0218127415501850.
Full textKuznetsov, Yuri. "Saddle-node bifurcation." Scholarpedia 1, no. 10 (2006): 1859. http://dx.doi.org/10.4249/scholarpedia.1859.
Full textFang, Ding, Yongxin Zhang, and Wendi Wang. "Complex Behaviors of Epidemic Model with Nonlinear Rewiring Rate." Complexity 2020 (May 8, 2020): 1–16. http://dx.doi.org/10.1155/2020/7310347.
Full textHIZANIDIS, J., R. AUST, and E. SCHÖLL. "DELAY-INDUCED MULTISTABILITY NEAR A GLOBAL BIFURCATION." International Journal of Bifurcation and Chaos 18, no. 06 (June 2008): 1759–65. http://dx.doi.org/10.1142/s0218127408021348.
Full textShilnikov, Leonid, and Andrey Shilnikov. "Shilnikov saddle-node bifurcation." Scholarpedia 3, no. 4 (2008): 4789. http://dx.doi.org/10.4249/scholarpedia.4789.
Full textGLENDINNING, PAUL, and COLIN SPARROW. "SHILNIKOV’S SADDLE-NODE BIFURCATION." International Journal of Bifurcation and Chaos 06, no. 06 (June 1996): 1153–60. http://dx.doi.org/10.1142/s0218127496000643.
Full textAFRAIMOVICH, V. S., and M. A. SHERESHEVSKY. "THE HAUSDORFF DIMENSION OF ATTRACTORS APPEARING BY SADDLE-NODE BIFURCATIONS." International Journal of Bifurcation and Chaos 01, no. 02 (June 1991): 309–25. http://dx.doi.org/10.1142/s0218127491000233.
Full textYET, NGUYEN TIEN, DOAN THAI SON, TOBIAS JÄGER, and STEFAN SIEGMUND. "NONAUTONOMOUS SADDLE-NODE BIFURCATIONS IN THE QUASIPERIODICALLY FORCED LOGISTIC MAP." International Journal of Bifurcation and Chaos 21, no. 05 (May 2011): 1427–38. http://dx.doi.org/10.1142/s0218127411029124.
Full textKIRK, VIVIEN, and EDGAR KNOBLOCH. "A REMARK ON HETEROCLINIC BIFURCATIONS NEAR STEADY STATE/PITCHFORK BIFURCATIONS." International Journal of Bifurcation and Chaos 14, no. 11 (November 2004): 3855–69. http://dx.doi.org/10.1142/s0218127404011752.
Full textDissertations / Theses on the topic "Saddle node bifurcation"
Young, Todd Ray. "Saddle-node bifurcations with homoclinic orbits." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/29855.
Full textBorquez, Caballero Rodrigo Edgardo. "Calculating the Distance to the Saddle-Node Bifurcation Set." Thesis, KTH, Elektriska energisystem, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-119236.
Full textHesse, Janina. "Implications of neuronal excitability and morphology for spike-based information transmission." Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18583.
Full textSignal processing in nervous systems is shaped by the connectome as well as the cellular properties of nerve cells. In this thesis, two cellular properties are investigated with respect to the functional adaptations they provide: It is shown that neuronal morphology can improve signal transmission under energetic constraints, and that even small changes in biophysical parameters can switch spike generation, and thus information encoding. In the first project of the thesis, mathematical modeling and data are deployed to suggest energy-efficient signaling as a major evolutionary pressure behind morphological adaptations of cell body location: In order to save energy, the electrical signal transmission from dendrite to axon can be enhanced if a relatively small cell body is located between dendrite and axon, while a relatively large cell body should be externalized. In the second project, it is shown that biophysical parameters, such as temperature, membrane leak or capacitance, can transform neuronal excitability (i.e., the spike onset bifurcation) and, with that, spike-based information processing. This thesis identifies the so-called saddle-node-loop bifurcation as the transition with particularly drastic functional implications. Besides altering neuronal filters and stimulus locking, the saddle-node-loop bifurcation leads to an increase in network synchronization, which may potentially be relevant for the initiation of seizures in response to increased temperature, such as during fever cramps.
Bronzi, Marcus Augusto. "Intersecções homoclínicas /." São José do Rio Preto : [s.n.], 2006. http://hdl.handle.net/11449/94242.
Full textBanca: Ali Tahzibi
Banca: Paulo Ricardo Silva
Resumo: Estudamos intersecções homoclínicas de variedades estável e instável de pontos peródicos. Toda intersecção homoclínica produz um comportamento curioso na dinâmiôa. Nosso modelo de tal fenômeno é a famosa ferradura de Smale, a qual é um conjunto hiperbólico para um difeomorfismo. Além disso, estudamos dinâmica não hiperbólica cuja perda de hiperbolicidade é divido à tangências homoclínicas. Elas tem um papel central na teoria de sistemas dinâmicos. O desdobramento de uma tangência homoclínica produz dinâmicas muito interessantes. Neste trabalho estudamos a criação de cascatas de bifurcações de duplicação de período e um esquema de renormalização para uma tangência homoclínica.
Abstract: We study homoclinic intersection of stable and unstable manifolds of periodic points. Every homoclinic intersection produce a intricate behavior of the dynamics. Our model of such phenomena is the so called Smalesþs horseshoe, which is a hyperbolic set for a di eomorphism. We also study non hyperbolic dynamics whose lack of hyperbolicity is due to homoclinic tangencies. They play a central role in the theory of dynamical systems. The unfolding of a homoclinic tangency produce many interesting dynamics. In this work we study creation of cascade of period doubling bifurcations and a renormalization scheme for a homoclinic tangency.
Mestre
Fuhrmann, G., M. Gröger, and T. Jäger. "Non-smooth saddle-node bifurcations II: Dimensions of strange attractors." Cambridge University Press, 2018. https://tud.qucosa.de/id/qucosa%3A70708.
Full textFuhrmann, Gabriel. "Non-smooth saddle-node bifurcations I: existence of an SNA." Cambridge University Press, 2016. https://tud.qucosa.de/id/qucosa%3A70707.
Full textBronzi, Marcus Augusto [UNESP]. "Intersecções homoclínicas." Universidade Estadual Paulista (UNESP), 2006. http://hdl.handle.net/11449/94242.
Full textFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Estudamos intersecções homoclínicas de variedades estável e instável de pontos peródicos. Toda intersecção homoclínica produz um comportamento curioso na dinâmiôa. Nosso modelo de tal fenômeno é a famosa ferradura de Smale, a qual é um conjunto hiperbólico para um difeomorfismo. Além disso, estudamos dinâmica não hiperbólica cuja perda de hiperbolicidade é divido à tangências homoclínicas. Elas tem um papel central na teoria de sistemas dinâmicos. O desdobramento de uma tangência homoclínica produz dinâmicas muito interessantes. Neste trabalho estudamos a criação de cascatas de bifurcações de duplicação de período e um esquema de renormalização para uma tangência homoclínica.
We study homoclinic intersection of stable and unstable manifolds of periodic points. Every homoclinic intersection produce a intricate behavior of the dynamics. Our model of such phenomena is the so called Smalesþs horseshoe, which is a hyperbolic set for a di eomorphism. We also study non hyperbolic dynamics whose lack of hyperbolicity is due to homoclinic tangencies. They play a central role in the theory of dynamical systems. The unfolding of a homoclinic tangency produce many interesting dynamics. In this work we study creation of cascade of period doubling bifurcations and a renormalization scheme for a homoclinic tangency.
Amaral, Fabíolo Moraes. "Caracterização, estimativas e bifurcações da região de estabilidade de sistemas dinâmicos não lineares." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/18/18154/tde-29102010-145102/.
Full textEstimating the stability region of an asymptotically stable equilibrium point is fundamental in applications such as power systems, economy and ecology. The knowledge of the qualitative structure of the stability boundary is essential to estimate with efficiency the stability region. Topological and dynamical characterizations of the stability boundary have been developed over the past decades. These characterizations were developed under assumptions of hyperbolicity of equilibrium points on the stability boundary and transversality. For systems that depend on parameters, the condition of hyperbolicity can be violated at points of bifurcations. We will be primarily interested in estimating the stability region, for systems subjected to parameter variations, when the condition of hyperbolicity of equilibrium points on the stability boundary is violated due to the appearance of a type-zero saddle-node bifurcation on the stability boundary. We will develop in this work, a complete characterization of the stability boundary in the presence of a type-zero saddle-node non-hyperbolic equilibrium point. Also, motivated to providing a conceptual algorithm to obtain estimates of the perturbed stability region via level sets of a given energy function in the neighborhood of a type-zero saddle-node bifurcation parameter, we offer results that explain the behavior of the stability region and its boundary under the influence of parameter variations, including variations of the parameter close to a type-zero saddle-node bifurcation parameter.
Mayol, Serra Catalina. "Dinàmica no lineal de sistemes làsers: potencials de Lyapunov i diagrames de bifurcacions." Doctoral thesis, Universitat de les Illes Balears, 2002. http://hdl.handle.net/10803/9430.
Full text1) Als làsers de classe A, la dinàmica determinista s'ha interpretat com el moviment damunt el potencial de Lyapunov. En la dinàmica estocàstica s'obté un flux sostingut per renou per a la fase del camp elèctric.
2) Per als làsers de classe A amb senyal injectat, s'ha descrit el conjunt de bifurcacions complet i s'ha determinat el conjunt d'amplituds i freqüències en el quals el làser respon
ajustant la seva freqüència a la del camp extern.
3) S'ha obtingut un potencial de Lyapunov pels làsers de classe B, només vàlid en el cas determinista, que inclou els termes de saturació de guany i d'emissió espontània.
4) S'ha realitzat un estudi del conjunt de bifurcacions parcial al voltant del règim tipus II de la singularitat Hopf--sella--node en un làser de classe B amb senyal injectat.
5) S'han identificat les respostes òptimes pels làsers de semiconductor sotmesos a modulació periòdica externa. S'han obtingut les corbes que donen la resposta màxima per cada tipus de resonància en el pla definit per l'amplitud relativa de modulació i la freqüència de modulació.
In this work we have studied the dynamics of both class A and class B lasers in terms of Lyapunov potentials. In the case of an injected signal or when some laser parameters are modulated, and more complex behaviour is expected, the bifurcation set is studied. The main results are the following:
1) For class A lasers, the deterministic dynamics has been interpreted as a movement on the potential landscape. In the stochastic dynamics we have found a noise sustained flow for the phase of the electric field.
2) For class A lasers with an injected signal, we have been able to describe the whole bifurcation set of this system and to determine the set of amplitudes frequencies for which the laser responds adjusting its frequency to that of the external field.
3) In the case of class B lasers, we have obtained a Lyapunov potential only valid in the deterministic case, including spontaneous emission and gain saturation terms. The fixed point corresponding to the laser in the on state has been interpreted as a minimum in this potential. Relaxation to this minimum is reached through damped oscillations.
4) We have performed a study of the partial bifurcation set around the type II regime of the Hopf-saddle-node singularity in a class B laser with injected signal.
5) We have identified the optimal responses of a semiconductor laser subjected to an external periodic modulation. The lines that give a maximum response for each type of resonance are obtained in the plane defined by the relative amplitude modulation and frequency modulation.
Greene, Scott. "Constraint at a saddle node bifurcation." 1993. http://catalog.hathitrust.org/api/volumes/oclc/32710270.html.
Full textTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 56-58).
Books on the topic "Saddle node bifurcation"
Glendinning, Paul. Shilnikov's saddle-node bifurcation. Bristol [England]: Hewlett Packard, 1996.
Find full textJäger, Tobias H. The creation of strange non-chaotic attractors in non-smooth saddle-node bifurcations. Providence, R.I: American Mathematical Society, 2009.
Find full textThe creation of strange non-chaotic attractors in non-smooth saddle-node bifurcations. Providence, R.I: American Mathematical Society, 2009.
Find full textJager, Tobias H. The creation of strange non-chaotic attractors in non-smooth saddle-node bifurcations. Providence, R.I: American Mathematical Society, 2009.
Find full textBook chapters on the topic "Saddle node bifurcation"
Zhou, Tianshou. "Saddle-Node Bifurcation." In Encyclopedia of Systems Biology, 1889. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_501.
Full textZhang, Jia-Zhong, Yan Liu, Pei-Hua Feng, and Jia-Hui Chen. "Formations of Transitional Zones in Shock Wave with Saddle-Node Bifurcations." In Discontinuity and Complexity in Nonlinear Physical Systems, 347–58. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01411-1_19.
Full textYang, Jianke. "Conditions and Stability Analysis for Saddle-Node Bifurcations of Solitary Waves in Generalized Nonlinear Schrödinger Equations." In Progress in Optical Science and Photonics, 639–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/10091_2012_3.
Full text"The Saddle-Node Homoclinic Bifurcation. Dynamics of Slow-Fast Systems in the Plane." In Introduction to Nonlinear Oscillations, 123–36. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527695942.ch10.
Full textChenciner, Alain, and Jacob Palis. "Hamiltonian - Like Phenomena in Saddle - Node Bifurcations of Invariant Curves for Plane Diffeomorphisms." In Singularities & Dynamical Systems, Proceedings of the International Conference on Singularities and Dynamical Systems, 7–14. Elsevier, 1985. http://dx.doi.org/10.1016/s0304-0208(08)72111-x.
Full text"GLOBAL BIFURCATIONS AT THE DISAPPEARANCE OF SADDLE-NODE EQUILIBRIUM STATES AND PERIODIC ORBITS." In World Scientific Series on Nonlinear Science Series A, 637–86. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812798558_0006.
Full textConference papers on the topic "Saddle node bifurcation"
Kim, Jinki, R. L. Harne, and K. W. Wang. "Predicting Non-Stationary and Stochastic Activation of Saddle-Node Bifurcation." In ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9051.
Full textHizanidis, Johanne, Roland Aust, and Eckehard Scho¨ll. "Delay-Induced Multistability in a Generic Model for Excitable Dynamics." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34329.
Full textPak, C. H., and Y. S. Choi. "On the Sensitivity of Non-Generic Bifurcation of Non-Linear Normal Modes." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34217.
Full textLuo, Albert C. J., and Chuan Guo. "Period-3 Motions in a Parametrically Exited Inverted Pendulum." In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22176.
Full textVitolo, R., H. W. Broer, and C. Simó. "The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms." In Proceedings of the International Conference on SPT 2007. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812776174_0050.
Full textGendelman, O. V. "Degenerate Bifurcation Scenarios in the Dynamics of Coupled Oscillators With Symmetric Nonlinearities." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84373.
Full textKang, Wonmo, Bryan Wilcox, Harry Dankowicz, and Phanikrishna Thota. "Bifurcation Analysis of a Microactuator Using a New Toolbox for Continuation of Hybrid System Trajectories." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34441.
Full textYan-Feng Jiang and Hsiao-Dong Chiang. "Saddle-node bifurcation in three-phase unbalanced distribution networks with distributed generators." In 2013 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2013. http://dx.doi.org/10.1109/iscas.2013.6571880.
Full textFang, Yong, and Hong-geng Yang. "Saddle-node Bifurcation of Power Systems Analysis in the Simplest Normal Form." In 2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM). IEEE, 2012. http://dx.doi.org/10.1109/cdciem.2012.151.
Full textYano, Takeru, Shigeo Fujikawa, and Tao Yu. "Reconsideration of Cavitation Inception Theory." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37177.
Full text