Academic literature on the topic 'Safety of machinery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Safety of machinery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Safety of machinery"
Stammers, C. W. "Safety with Machinery." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 216, no. 11 (November 1, 2002): 1505. http://dx.doi.org/10.1243/095440502320783323.
Full textMUKAIDONO, Masao. "Safety of Machinery." Journal of the Society of Mechanical Engineers 106, no. 1012 (2003): i,186–187. http://dx.doi.org/10.1299/jsmemag.106.1012_i_186.
Full textBecker, Frank. "Residual risk mapping & Japan’s machinery workplace safety." Proceedings of the Industrial, Chemical Machinery & Safety Division Conference 2016.winter (2016): OS—4. http://dx.doi.org/10.1299/jsmeicm.2016.winter.os-4.
Full textOtake, Keiji, and Yuji Yamada. "Various Safety Devices for Machinery Safety Applications." JAPAN TAPPI JOURNAL 68, no. 11 (2014): 1290–99. http://dx.doi.org/10.2524/jtappij.68.1290.
Full textKlee, U., L. Hofmann, and P. Pickel. "Safety aspects for automatic guidance of agricultural machines and low-cost solutions." Research in Agricultural Engineering 49, No. 3 (February 8, 2012): 103–9. http://dx.doi.org/10.17221/4959-rae.
Full textKABE, Takashi. "Consideration on Machinery Safety : The Safety Engineering Laboratory." Journal of the Society of Mechanical Engineers 109, no. 1048 (2006): 142–43. http://dx.doi.org/10.1299/jsmemag.109.1048_142.
Full textFUKUDA, Takabumi. "On Fundamentals of Machinery Safety." Proceedings of Conference of Hokuriku-Shinetsu Branch 2017.54 (2017): O031. http://dx.doi.org/10.1299/jsmehs.2017.54.o031.
Full textRaafat, H. M. N. "Risk assessment and machinery safety." Journal of Occupational Accidents 11, no. 1 (June 1989): 37–50. http://dx.doi.org/10.1016/0376-6349(89)90004-7.
Full textWang, Qing, Chao Chen, and Hai Zhang. "Risk Assessment of Sawing Machine Oriented to Mechanical Safety Design." Advanced Materials Research 765-767 (September 2013): 21–24. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.21.
Full textKielesińska, Agata, and Miroslav Pristavka. "The Machinery Safety Management - Selected Issues." System Safety: Human - Technical Facility - Environment 1, no. 1 (March 1, 2019): 45–52. http://dx.doi.org/10.2478/czoto-2019-0006.
Full textDissertations / Theses on the topic "Safety of machinery"
Kivistö-Rahnasto, Jouni. "Machine safety design : an approach fulfilling European safety requirements /." Espoo [Finland] : Technical Research Centre of Finland, 2000. http://www.vtt.fi/inf/pdf/publications/2000/P411.pdf.
Full textMäättä, Timo. "Virtual environments in machinery safety analysis /." Espoo [Finland] : VTT Technical Research Centre of Finland, 2003. http://www.vtt.fi/inf/pdf/publications/2003/P516.pdf.
Full textIncludes bibliographical references (p. 153-170). Myös verkkojulkaisuna. Also available on the World Wide Web.
Johansson, Alicia. "Maskinsäkerhetsstandarder och lönsamhet : Profitability of standardisation and safety of machinery." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Maskinteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-21392.
Full textUtarbetandet av maskinsäkerhetsstandarder är ett pågående arbete där standarderna är avsedda att fungera som ett verktyg för företag för att kunna kontrollera om de lagstadgade, grundläggande säkerhets- och hälsokraven är uppfyllda. Det är dock frivilligt för företag att begagna sig av standarder som verktyg. Denna rapport är skriven i samarbete med SIS och undersökningen utfördes inom den tekniska kommitteen SIS/TK 282. Rapporten syftar till att undersöka om de företag som väljer att använda sig av maskinsäkerhetsstandarder ser några ekonomiska fördelar med detta arbete, vad i dessa i så fall består samt de bakomliggande orsakerna till att de kan uppkomma. Huvudfrågeställningen för rapporten är att se om lönsamheten påverkas hos företag som anpassat sin tillverkning för att uppnå maskinsäkerhetsstandarderna? Undersökningen genomfördes genom en inledande litteraturstudie med syftet att införskaffa kunskap och orientering inom ämnet samt att undersöka vad tidigare studier inom ämnet resulterat i. Därefter genomfördes en enkätundersökning inom SIS/TK 282 och ur denna grupp valdes en observationsenhet ut för efterföljande intervjuer. Bland de effekter som framkom av intervjuerna kan nämnas att standarder bidrar till en gemensam lagstadga inom Europa och standardiseringsarbetet gynnar därmed den fria marknaden och exportmöjligheterna. Genom ett ökat fokus på internationella standarderna har standardiseringsarbetet övergått till ett globalt nätverk. Företag som engagerar sig i standardiseringsarbete kan vara med och påverka i vilken riktning standarderna utvecklas och genom detta gynna de egna produkterna. Därmed skapas en konkurrensfördel hos de företag som aktivt engagerar sig i standardiseringsarbetet. Ett systematiskt arbete med standarder fungerar även som ett verktyg för att hjälpa företag att nå uppsatta mål för säkerheten och standarder kan generera en minskad sjukfrånvaro och minskade olycksrisker. Personalansvaret ökar och standarderna ger en koppling mellan personal – ledning – lagkrav vilket kan alstra en ökad trivsel på arbetsplatsen. Detta i sin tur kan ge en förbättrad produktkvalitet samt en förbättrad leveranstillförlitlighet. Dessutom kan efterlevnaden av standarder inom verksamheten lyfta fram de underliggande orsakerna till problem inom produktionen och kan därmed leda till mindre produktionsstopp och en ökad tillgänglighet till maskinerna. Det framkom ett antal faktorer i undersökningen som pekar på att det är lönsamt för företag att anamma standarder och aktivt delta i utvecklingen av nya standarder.
Reedman, Adam Victor Creyke. "The design and control of a manipulator for safety-critical deployment applications." Thesis, Loughborough University, 2002. https://dspace.lboro.ac.uk/2134/33736.
Full textLautner, Erik, and Daniel Körner. "An integrated System Development Approach for Mobile Machinery in consistence with Functional Safety Requirements." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-200666.
Full textZhang, Le-Le. "Increasing the road safety of e-bike : design of protective shells based on stability criteria." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/41253/.
Full textJepsen, Shelly Dee. "Assessment of the U.S. Department of Labor's Tractor and Machinery Certification Program." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1149104900.
Full textKuhlhoff, Igor Ribeiro. "Method for application of weibull distribution to the reliability calculation of functional safety for industrial machinery." reponame:Repositório Institucional da UFSC, 2014. https://repositorio.ufsc.br/xmlui/handle/123456789/132745.
Full textMade available in DSpace on 2015-05-12T04:03:06Z (GMT). No. of bitstreams: 1 333353.pdf: 5233518 bytes, checksum: 599b6c026148a94e45d4b00a33f14b78 (MD5) Previous issue date: 2014
O desenvolvimento de sistemas elétricos e eletrônicos permitiu a massificação do uso de dispositivos eletrônicos programáveis para comando e controle de operações de sistemas técnicos. Tais dispositivos possibilitaram o desenvolvimento de sistemas técnicos mais complexos, porém, devido a essa elevada complexidade, observou-se um aumento de acidentes causados por falhas inerentes ao controle de tais sistemas. Para se reduzir esses acidentes, foram criadas normas técnicas para sistemas de controle, cuja aplicação seja relevante a segurança, o que deu origem a segurança funcional. Segurança funcional refere-se à segurança que é mantida atráves do correto funcionamento de um sistema técnico. Diferentes segmentos industriais tem aplicado o conceito de segurança funcional, para criar máquinas e sistemas mais seguros. No setor de construção de máquinas, o uso de funções de segurança reduz o número de acidentes de trabalho, ao evitar que operadores, mantenedores e pessoas ao redor fiquem expostas aos perigos inerente das máquinas. As normas técnicos impõe requisitos quantitativos e qualitativos sobre os sistemas de controle de segurança. A norma técnica internacional IEC 61508 definiu um framework para quantificação de segurança funcional. Para cada setor industrial, normas específicas foram baseadas baseadas na IEC 61508. Esse framework é bem adequado para componentes elétricos e eletrônicos. Porém, na área de maquinário industrial, sistemas de controle são realizados não somente com tais componentes, mas também por componentes mecânicos, pneumáticos e hidráulicos, os quais apresentam um comportamento diferente de falha. Tais componentes são considerados pela norma técnica internacional ISO 13849. No entanto, os métodos de quantificação desta norma contém fortes limitações e não são completamente compreendidos pelos usuários. Este trabalho dedica-se ao estudo da norma técnica internacional de segurança funcional no setor de construção de máquinas industriais, a ISO 13849. O foco do estudo é a quantificação de falhas físicas de componentes. Falhas físicas sao quantificadas através de indicadores probabilísticos, sendo objeto de estudo da engenharia de confiabilidade. No primeiro capítulo, desenvolve-se o conceito de segurança funcional. O conceito é explorado como um todo, como uma ferramenta de redução de riscos, e posteriormente como esse conceito é aplicado no setor de construção de máquinas. O apêndice A complementa o capítulo 1 com a estrutura legal no que diz respeito à segurança de máquinas na Europa, definido pela Diretiva Europeia de Máquinas, da qual a norma técnica ISO 13849 faz parte. Ainda no capítulo 1 são identificadas as principais linhas de pesquisa, e o objetivo do trabalho é enunciado. Este trabalho, feito em parceria com a Bosch Rexroth, tem como objetivo o desenvolvimento de um método que possibilite a quatificação de índices de confiabilidade para segurança funcional utilizando distribuição de Weibull. No segundo capítulo, conceitos básicos para a compreensão do trabalho são apresentados. Os primeiros conceitos relacionam-se com conceitos da engenharia de confiabilidade, com o objetivo de esclarecer conceitos como probabilidade, confiabilidade, probabilidade de falha e construir o conceito do índice utilizado pela ISO 13849, a frequência média de falhas perigosas por hora, PFH. O apêndice B complementa esse capítulo, com uma explicação intuitiva do que é medido através do PFH. Neste capítulo também é apresentada a distribuição de Weibull, bem como métodos de cálculo de PFH. Os parâmetros para cálculo do PFH segundo a ISO 13849 são apresentados e explicados. No terceiro capítulo é apresentado como se é calculado o PFH através de simulação a eventos discretos. Um método para cálculo do PFH considerando distribuição de Weibull, para estruturas simples e estruturas redundantes, correspondendo às categorias B, 1, 3 e 4 da norma técnica ISO 13849. O apêndices C desenvolve a equação para determinaão do número mínimo de simulações para se alcançar o resultado desejado, e o apêndice D desenvolve as equações utilizadas pelo método proposto para estruturas redundantes com falha de componentes seguindo a distribuição de Weibull. Os resultados para os casos de comparação com a ISO 13849 são apresentados no apêndice E. No quarto capítulo é apresentado um exemplo de aplicação do método proposto em uma máquina hidráulica simples do Laboratório de Sistemas Hidráulicos e Pneumáticos (LASHIP), da Universidade Federal de Santa Catarina (UFSC). A determinação do PFH e subsequentemente do PL é realizada através do procedimento dado pela norma e pelo método proposto. Utilizando-se o método proposto, foi possível calcular PFH para intervalos de utilização diferente do considerado pela ISO 13849, bem como reconhecer o efeito do desgaste do componente, caracterizado pela distribuição de Weibull. No quinto capítulo é apresentado uma visão geral de como integrar o cálculo de PFH com distribuição de Weibull com o processo de desenvolvimento de uma máquina, baseado em experiência com a Bosch Rexroth. No capítulo de conclusão é analisado o potencial de se realizar análises mais realistas, e as limitações do método proposto, sendo adequado apenas para máquinas o subsistemas produzidos em série, devido ao requerimento de dados de campo para extrair os parâmetros da distribuição de Weibull para cada componente. Analisa-se também como que a pesquisa desenvolvida se encaixa na linha de pesquisa explicitada no primeiro capítulo, e qual a relevância para o cenário brasileiro. Adicionalmente, sugestões para trabalhos futuros são feitas.
Abstract : The IEC 61508 standard series defined a framework for quantification of functional safety. For each particular industry sector, specific standards are being developed based on it. This framework is well suited for electrical and electronic components. However, in the field of machinery, control systems are realized not only by such components, but also by mechanical, pneumatic and hydraulic components, which exhibit a different failure behavior. Such components are considered by the ISO 13849 standard. However, quantification methods of this standard are still not quite well understood by the users, and have strong limitations. This work presents a study an alternative method of how to calculate the average frequency of dangerous failures (PFH), required by ISO 13849 in order to achieve a Performance Level (PL). This alternative method includes modeling safety functions as Reliability Block Diagram and evaluation of PFH using the software BlockSim, through Discrete Event Simulation. Modeling hypothesis and limitations are discussed. The proposed method enables calculation of the standard s cases, as well as consideration of different failure distributions, of which Weibull distribution is considered. A study case considering Weibull distributed failures is presented. Applicability of the method is also discussed.
Wallace, Darrell Richard. "A comparative analysis of a conventional versus a computer-assisted technique for identification of mechanical power press hazards." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1141670152.
Full textMosberger, Rafael. "Vision-based Human Detection from Mobile Machinery in Industrial Environments." Doctoral thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-48324.
Full textBooks on the topic "Safety of machinery"
Dick, Pearce, and Ridley John R, eds. Safety with machinery. 2nd ed. Amsterdam: Butterworth-Heinemann, 2006.
Find full textKivistö-Rahnasto, Jouni. Machine safety design: An approach fulfilling European safety requirements. Espoo [Finland]: Technical Research Centre of Finland, 2000.
Find full textInstitution, British Standards. Specification for safety of machinery. London: B.S.I., 1993.
Find full textBrian, Lawler, ed. Rural safety: Machinery, stock & general hazards. Chatswood, N.S.W: Inkata Press, 1994.
Find full textMäättä, Timo. Virtual environments in machinery safety analysis. Espoo [Finland]: VTT Technical Research Centre of Finland, 2003.
Find full textBook chapters on the topic "Safety of machinery"
Schaub, Karlheinz G. "Safety of Machinery—Human Physical Performance." In Handbook of Standards and Guidelines in Human Factors and Ergonomics, 299–312. 2nd ed. Second edition. | Boca Raton : CRC Press, 2021. | Series: Human factors and ergonomics: CRC Press, 2021. http://dx.doi.org/10.1201/9780429169243-16-19.
Full textMrugalska, Beata, and Aleksandra Kawecka-Endler. "Machinery Design for Construction Safety in Practice." In Lecture Notes in Computer Science, 388–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21666-4_43.
Full textTiusanen, Risto, Eetu Heikkilä, and Timo Malm. "System Safety Engineering Approach for Autonomous Mobile Machinery." In Lecture Notes in Mechanical Engineering, 239–51. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64228-0_21.
Full textDirr, B. O., D. Hartmann, and B. K. Schmalhorst. "Cracked Cross Section Measurement in Rotating Machinery." In Structural Safety Evaluation Based on System Identification Approaches, 9–28. Wiesbaden: Vieweg+Teubner Verlag, 1988. http://dx.doi.org/10.1007/978-3-663-05657-7_1.
Full textCross, Robert, and Jorge Ballesio. "Evaluation of Classification Rules Related to Machinery for an Oil Tanker." In Probabilistic Safety Assessment and Management, 3473–78. London: Springer London, 2004. http://dx.doi.org/10.1007/978-0-85729-410-4_555.
Full textSmith, Ricky, and R. Keith Mobley. "Safety First, Safety Always." In Industrial Machinery Repair, 50–56. Elsevier, 2003. http://dx.doi.org/10.1016/b978-075067621-2/50004-4.
Full textMcGeorge, H. D. "Safety and safety equipment." In Marine Auxiliary Machinery, 458–79. Elsevier, 1995. http://dx.doi.org/10.1016/b978-0-7506-1843-4.50019-7.
Full textMcGeorge, H. D. "Safety and safety equipment." In Marine Auxiliary Machinery, 458–79. Elsevier, 1999. http://dx.doi.org/10.1016/b978-075064398-6/50016-6.
Full textBooth, R. T. "Machinery hazards." In Safety At Work, 555–76. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-7506-1018-6.50038-4.
Full textSmith, David J., and Kenneth GL Simpson. "Machinery Sector." In Safety Critical Systems Handbook, 141–50. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-08-096781-3.10009-4.
Full textConference papers on the topic "Safety of machinery"
Wollert, Joerg. "Wireless systems for machinery safety." In 2015 16th International Conference on Research and Education in Mechatronics (REM). IEEE, 2015. http://dx.doi.org/10.1109/rem.2015.7380377.
Full textLukac, Ing Martin, and Ing Ondrej Liska. "Optoelectronic safety machinery for production systems." In 2010 IEEE 8th International Symposium on Applied Machine Intelligence and Informatics (SAMI 2010). IEEE, 2010. http://dx.doi.org/10.1109/sami.2010.5423707.
Full textVahed, Amir Taghizadeh, Behzad Ghodrati, Nuray Demirel, and Morteza Hosseini Yazdi. "Predictive Maintenance of Mining Machinery Using Machine Learning Approaches." In Proceedings of the 29th European Safety and Reliability Conference (ESREL). Singapore: Research Publishing Services, 2019. http://dx.doi.org/10.3850/978-981-11-2724-3_0756-cd.
Full textLadd, Michael D. "Machine Safety: Risk Assessment, Risk Reduction." In ASME 2006 Citrus Engineering Conference. American Society of Mechanical Engineers, 2006. http://dx.doi.org/10.1115/cec2006-5204.
Full textHull, W. E., G. D. McConeghey, and G. E. Plessing. "Hydraulics Enhance Control and Safety in Agricultural Material Handling." In 2nd Annual Agricultural Machinery Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1986. http://dx.doi.org/10.4271/861457.
Full textEngstrom, Peter M. "Designing Machinery to Meet Global Safety Requirements." In International Automotive Manufacturing Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/981320.
Full textDela, Sonny D. "Electrical safety in process & packaging machinery." In 2017 IEEE IAS Electrical Safety Workshop (ESW). IEEE, 2017. http://dx.doi.org/10.1109/esw.2017.7914863.
Full textMillar, Richard C. "Turbo-Machinery Monitoring Measures for Propulsion Safety and Affordable Readiness." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45741.
Full textDado, Miroslav, Richard Hnilica, Martin Kotus, and Luboš Kotek. "USE OF VIRTUAL REALITY IN MACHINERY SAFETY EDUCATION." In 10th annual International Conference of Education, Research and Innovation. IATED, 2017. http://dx.doi.org/10.21125/iceri.2017.0780.
Full textDado, Miroslav, Richard Hnilica, and Valéria Messingerová. "APPLYING VIRTUAL REALITY TO FORESTRY MACHINERY SAFETY EDUCATION." In 10th International Conference on Education and New Learning Technologies. IATED, 2018. http://dx.doi.org/10.21125/edulearn.2018.1625.
Full textReports on the topic "Safety of machinery"
Rudner, Tim, and Helen Toner. Key Concepts in AI Safety: Interpretability in Machine Learning. Center for Security and Emerging Technology, March 2021. http://dx.doi.org/10.51593/20190042.
Full textRudner, Tim, and Helen Toner. Key Concepts in AI Safety: Robustness and Adversarial Examples. Center for Security and Emerging Technology, March 2021. http://dx.doi.org/10.51593/20190041.
Full textRudner, Tim, and Helen Toner. Key Concepts in AI Safety: An Overview. Center for Security and Emerging Technology, March 2021. http://dx.doi.org/10.51593/20190040.
Full textFagrey, Samuel. Canister Lift Machine Safety Note. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1476197.
Full textArmstrong, J. J. Joint FAM/Line Management Assessment Report on LLNL Machine Guarding Safety Program. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1297649.
Full textN. YUCCA MOUNTAIN SITE CHARACTERIZATIONS PROJECT TUNNEL BORING MACHINE (TBM) SYSTEM SAFETY ANALYSIS. Office of Scientific and Technical Information (OSTI), February 1997. http://dx.doi.org/10.2172/875351.
Full textLohn, Andrew. Poison in the Well: Securing the Shared Resources of Machine Learning. Center for Security and Emerging Technology, June 2021. http://dx.doi.org/10.51593/2020ca013.
Full textMine roof bolting machine safety: investigations of roof bolter boom swing velocity. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, February 2010. http://dx.doi.org/10.26616/nioshpub2010126.
Full textMining roof bolting machine safety: a study of the drill boom vertical velocity. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, May 2005. http://dx.doi.org/10.26616/nioshpub2005128.
Full text