Academic literature on the topic 'Sand pile'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sand pile.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sand pile"
Li, Zheming, Malcolm D. Bolton, and Stuart K. Haigh. "Cyclic axial behaviour of piles and pile groups in sand." Canadian Geotechnical Journal 49, no. 9 (2012): 1074–87. http://dx.doi.org/10.1139/t2012-070.
Full textLee, Su-Hyung, and Choong-Ki Chung. "An experimental study of the interaction of vertically loaded pile groups in sand." Canadian Geotechnical Journal 42, no. 5 (2005): 1485–93. http://dx.doi.org/10.1139/t05-068.
Full textBralović, Nemanja, Iva Despotović, and Danijel Kukaras. "Experimental Analysis of the Behaviour of Piled Raft Foundations in Loose Sand." Applied Sciences 13, no. 1 (2022): 546. http://dx.doi.org/10.3390/app13010546.
Full textAlawneh, Ahmed Shlash, Abdallah I. Husein Malkawi, and Husein Al-Deeky. "Tension tests on smooth and rough model piles in dry sand." Canadian Geotechnical Journal 36, no. 4 (1999): 746–53. http://dx.doi.org/10.1139/t98-104.
Full textWan, Zhihui, Heng Liu, Feng Zhou, and Guoliang Dai. "Axial Bearing Mechanism of Post-Grouted Piles in Calcareous Sand." Applied Sciences 12, no. 5 (2022): 2731. http://dx.doi.org/10.3390/app12052731.
Full textElsawwaf, Mostafa, Marwan Shahien, Ahmed Nasr, and Alaaeldin Magdy. "The behavior of piled rafts in soft clay: Numerical investigation." Journal of the Mechanical Behavior of Materials 31, no. 1 (2022): 426–34. http://dx.doi.org/10.1515/jmbm-2022-0050.
Full textSastry, V. V. R. N., and G. G. Meyerhof. "Behaviour of flexible piles in layered sands under eccentric and inclined loads." Canadian Geotechnical Journal 31, no. 4 (1994): 513–20. http://dx.doi.org/10.1139/t94-060.
Full textJoshi, R. C., Gopal Achari, and Shenbaga R. Kaniraj. "Effect of loading history on the compression and uplift capacity of driven model piles in sand." Canadian Geotechnical Journal 29, no. 2 (1992): 334–41. http://dx.doi.org/10.1139/t92-038.
Full textAl-Neami, Mohammed, and Mariam Wasmi. "Influence of cyclic loading on performance of steel piles in sandy soil." MATEC Web of Conferences 162 (2018): 01012. http://dx.doi.org/10.1051/matecconf/201816201012.
Full textB., M. Kalbande, I. Dhatrak A., and W. Thakare S. "Experimental Assessment of Performance of XCC Pile in Sand." International Journal of Engineering and Advanced Technology (IJEAT) 9, no. 3 (2020): 4346–51. https://doi.org/10.35940/ijeat.C6244.029320.
Full textDissertations / Theses on the topic "Sand pile"
Cuthbertson-Black, Robert. "The interaction between a flighted steel pipe pile and frozen sand." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ57528.pdf.
Full textShublaq, E. W. "A study of model pile group-sand interaction." Thesis, University of Leeds, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375520.
Full textBurali, d'Arezzo Francesca. "Installation effects due to pile surging in sand." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709370.
Full textAl-Hadid, Tareq N. M. "Pull-out tests on bent piles in sand." Thesis, University of Sheffield, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358951.
Full textAbdelaziz, Gamal. "An axisymmetrical model for a single vertical pile in sand." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ59226.pdf.
Full textGui, Meen-Wah. "Centrifuge and numerical modelling of pile and penetrometer in sand." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361612.
Full textWilson, Daniel W. "Soil-pile-superstructure interaction in liquefying sand and soft clay /." Davis, Calif. : Center for Geotechnical Modeling, Dept. of Civil and Environmental Engineering, University of California, Davis, 1998. http://cgm.engr.ucdavis.edu/download/html.
Full textAl-Defae, Asad Hafudh Humaish. "Seismic performance of pile-reinforced slopes." Thesis, University of Dundee, 2013. https://discovery.dundee.ac.uk/en/studentTheses/829dd554-a7e9-4c61-9206-01909793666c.
Full textSu, Dong. "Centrifuge investigation on responses of sand deposit and sand-pile system under multi-directional earthquake loading /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202005%20SU.
Full textHan, Jie. "An experimental and analytical study of the behavior of fiber-reinforced polymer piles and pile-sand interactions." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/20296.
Full textBooks on the topic "Sand pile"
Khalloussi, Mohammad Abdul-Karim. The behaviour of single micro pile in sand. University of Birmingham, 1991.
Find full textIskander, Magued. Behavior of Pipe Piles in Sand. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-13108-0.
Full textKhan, Ahmed Mukhtar. Foundation piles in cemented marine sands. University of Birmingham, 1997.
Find full textOutcalt, Kenneth W. An old-growth definition for sand pine forests. U.S. Dept. of Agriculture, Forest Service, Southern Research Station, 1997.
Find full textOutcalt, Kenneth W. An old-growth definition for sand pine forests. U.S. Dept. of Agriculture, Forest Service, Southern Research Station, 1997.
Find full textOutcalt, Kenneth W. An old-growth definition for sand pine forests. U.S. Dept. of Agriculture, Forest Service, Southern Research Station, 1997.
Find full textOutcalt, Kenneth W. An old-growth definition for sand pine forests. U.S. Dept. of Agriculture, Forest Service, Southern Research Station, 1997.
Find full textOutcalt, Kenneth W. An old-growth definition for sand pine forests. U.S. Dept. of Agriculture, Forest Service, Southern Research Station, 1997.
Find full textDurahman, Duduh. Ajalna sang bentang pilem: 12 carita detektif Sunda. Kiblat Buku Utama, 2004.
Find full textBook chapters on the topic "Sand pile"
Li, Guowei, Ruyi Liu, Chao Zhao, Yang Zhou, and Li Xiong. "Compaction Effect Due to Single Pile Driving in PHC Pile Treated Soft Clayey Deposit." In Lecture Notes in Civil Engineering. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2532-2_26.
Full textRead, Jane. "From gutter to sand pile." In The Routledge International Handbook of Froebel and Early Childhood Practice. Routledge, 2018. http://dx.doi.org/10.4324/9781315562421-43.
Full textLiu, Ruey-Tarng. "Frequency Distributions of Sand Pile Models." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02469-6_51.
Full textZang, Wanjun, and Jiang Wen. "Analysis of Slurry Ratio of Rotary Digging Pile in Deep Sand Layer." In Lecture Notes in Civil Engineering. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1748-8_11.
Full textIskander, Magued. "Load Tests Using the Double–Wall Pipe Pile in Sand." In Springer Series in Geomechanics and Geoengineering. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13108-0_9.
Full textYabe, Hiroshi, Hidekatsu Takeuchi, Futoshi Ogata, and Kenji Harada. "Sand Compaction Pile Method Utilizing Recycled Materials." In Lecture Notes in Civil Engineering. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9227-0_25.
Full textBrucy, F., and J. Meunier. "Pile resistances at a dense sand site." In Application of Stress-Wave Theory to Piles. Routledge, 2022. http://dx.doi.org/10.1201/9781315137544-10.
Full textCiantia, Matteo Oryem. "Micromechanics of Pile Cyclic Response in Sand." In Challenges and Innovations in Geomechanics. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64518-2_62.
Full textPerrot, Kévin, and Eric Rémila. "Avalanche Structure in the Kadanoff Sand Pile Model." In Language and Automata Theory and Applications. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21254-3_34.
Full textWhite, D. J., and M. D. Bolton. "Soil deformation around a displacement pile in sand." In Physical Modelling in Geotechnics. Routledge, 2022. http://dx.doi.org/10.1201/9780203743362-118.
Full textConference papers on the topic "Sand pile"
Kessler, Richard J., Rodney G. Powers, and Ivan R. Lasa. "Zinc Mesh Anodes Cast into Concrete Pile Jackets." In CORROSION 1996. NACE International, 1996. https://doi.org/10.5006/c1996-96327.
Full textMillán, Luis, Luis Ángel Vargas, and Mauricio Coto. "Dynamic Load Tests at drilled shafts in sandy soil deposits to bedrock, Central Pacific, Costa Rica: strategic learnings for the construction methods." In IABSE Congress, San José 2024: Beyond Structural Engineering in a Changing World. International Association for Bridge and Structural Engineering (IABSE), 2024. https://doi.org/10.2749/sanjose.2024.1484.
Full textDas, B. "Uplift Capacity of Piles and Pile Groups in Sand." In OCEANS '86. IEEE, 1986. http://dx.doi.org/10.1109/oceans.1986.1160513.
Full textWestgate, Z., A. Rahim, A. Senanayake, et al. "The Piling in Glauconitic Sands (PIGS) JIP: Reducing Geotechnical Uncertainty for U.S. Offshore Wind Development." In Offshore Technology Conference. OTC, 2024. http://dx.doi.org/10.4043/35483-ms.
Full textOzsu, Erdem, An-Ninh Ta, Bruno Stuyts, and Christophe Jaeck. "Optimizing Pile Driving Fatigue for Offshore Foundations in Very Dense Sand: A Case Study." In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-10664.
Full textYenigul, N. B., Y. Yan, L. C. H. Braakenburg, and V. M. Thumann. "Evaluation of Pile Drivability Predictions in Sand." In Innovative Geotechnologies for Energy Transition. Society for Underwater Technology, 2023. http://dx.doi.org/10.3723/gpcs7406.
Full textCho, Y., T. H. Lee, J. B. Park, D. J. Kwag, E. S. Chung, and S. Bang. "Field Tests on Suction Pile Installation in Sand." In ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/omae2002-28179.
Full textUnsever, Y. S., M. Kawamori, T. Matsumoto, and S. Shimono. "Cyclic Horizontal Load Tests Of Single Pile,Pile Group And Piled Raft In Model Dry Sand." In 18th Southeast Asian Geotechnical Conference (18SEAGC) & Inaugural AGSSEA Conference (1AGSSEA). Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-4948-4_044.
Full textIsmael, Nabil F. "Lateral Load Tests on Bored Piles and Pile Groups in Sand." In Seventh International Symposium on Field Measurements in Geomechanics. American Society of Civil Engineers, 2007. http://dx.doi.org/10.1061/40940(307)5.
Full textSpill, Severin, Tulio Quiroz, and Aligi Foglia. "Influence of Different Pile Installation Methods on Dense Sand." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-96109.
Full textReports on the topic "Sand pile"
Wang, Yao, Jeehee Lim, Rodrigo Salgado, Monica Prezzi, and Jeremy Hunter. Pile Stability Analysis in Soft or Loose Soils: Guidance on Foundation Design Assumptions with Respect to Loose or Soft Soil Effects on Pile Lateral Capacity and Stability. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317387.
Full textKhosravifar, Arash. COMBINED EFFECTS OF LATERAL SPREADING AND SUPERSTRUCTURE INERTIA. Deep Foundations Institute, 2023. http://dx.doi.org/10.37308/cpf-2020-drsh-2.
Full textDeaton and Frost. L51571 Pipe-Soil Interaction Tests on Sand and Soft Clay. Pipeline Research Council International, Inc. (PRCI), 1987. http://dx.doi.org/10.55274/r0010291.
Full textOutcalt, Kenneth W. An Old-Growth Definition for Sand Pine Forests. U.S. Department of Agriculture, Forest Service, Southern Research Station, 1997. http://dx.doi.org/10.2737/srs-gtr-012.
Full textOutcalt, Kenneth W. An Old-Growth Definition for Sand Pine Forests. U.S. Department of Agriculture, Forest Service, Southern Research Station, 1997. http://dx.doi.org/10.2737/srs-gtr-12.
Full textRockwood, D. L., B. Yang, and K. W. Outcalt. Stand-yield prediction for managed Ocala sand pine. U.S. Department of Agriculture, Forest Service, Southern Research Station, 1997. http://dx.doi.org/10.2737/srs-rp-003.
Full textRockwood, D. L., B. Yang, and K. W. Outcalt. Stand-yield prediction for managed Ocala sand pine. U.S. Department of Agriculture, Forest Service, Southern Research Station, 1997. http://dx.doi.org/10.2737/srs-rp-3.
Full textMcNab, W. Henry, Kenneth W. Outcalt, and Raymond H. Brendemuehl. Weight and Volume of Plantation-Grown Choctawhatchee Sand Pine. U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, 1985. http://dx.doi.org/10.2737/se-rp-252.
Full textZand, Benjamin. PR-218-104509-R02 Field Validation of Surface Loading Stress Calculations for Buried Pipelines Milestone 2. Pipeline Research Council International, Inc. (PRCI), 2019. http://dx.doi.org/10.55274/r0011477.
Full textLieng, Sotberg, and Brennodden. L51570 Energy Based Pipe-Soil Interaction Models. Pipeline Research Council International, Inc. (PRCI), 1988. http://dx.doi.org/10.55274/r0010091.
Full text