Academic literature on the topic 'Sandstone Geology, Stratigraphic Sedimentation and deposition'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sandstone Geology, Stratigraphic Sedimentation and deposition.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sandstone Geology, Stratigraphic Sedimentation and deposition"

1

Gannaway Dalton, C. Evelyn, Katherine A. Giles, Mark G. Rowan, Richard P. Langford, Thomas E. Hearon, and J. Carl Fiduk. "Sedimentologic, stratigraphic, and structural evolution of minibasins and a megaflap formed during passive salt diapirism: The Neoproterozoic Witchelina diapir, Willouran Ranges, South Australia." Journal of Sedimentary Research 90, no. 2 (February 20, 2020): 165–99. http://dx.doi.org/10.2110/jsr.2020.9.

Full text
Abstract:
ABSTRACT This study documents the growth of a megaflap along the flank of a passive salt diapir as a result of the long-lived interaction between sedimentation and halokinetic deformation. Megaflaps are nearly vertical to overturned, deep minibasin stratal panels that extend multiple kilometers up steep flanks of salt diapirs or equivalent welds. Recent interest has been sparked by well penetrations of unidentified megaflaps that typically result in economic failure, but their formation is also fundamental to understanding the early history of salt basins. This study represents one of the first systematic characterizations of an exposed megaflap with regards to sub-seismic sedimentologic, stratigraphic, and structural details. The Witchelina diapir is an exposed Neoproterozoic primary passive salt diapir in the eastern Willouran Ranges of South Australia. Flanking minibasin strata of the Top Mount Sandstone, Willawalpa Formation, and Witchelina Quartzite, exposed as an oblique cross section, record the early history of passive diapirism in the Willouran Trough, including a halokinetically drape-folded megaflap. Witchelina diapir offers a unique opportunity to investigate sedimentologic responses to the initiation and evolution of passive salt movement. Using field mapping, stratigraphic sections, petrographic analyses, correlation diagrams, and a quantitative restoration, we document depositional facies, thickness trends, and stratal geometries to interpret depositional environments, sequence stratigraphy, and halokinetic evolution of the Witchelina diapir and flanking minibasins. Top Mount, Willawalpa, and Witchelina strata were deposited in barrier-bar-complex to tidal-flat environments, but temporal and spatial variations in sedimentation and stratigraphic patterns were strongly influenced from the earliest stages by the passively rising Witchelina diapir on both regional (basinwide) and local minibasin scales. The salt-margin geometry was depositionally modified by an early erosional sequence boundary that exposed the Witchelina diapir and formed a salt shoulder, above which strata that eventually became the megaflap were subsequently deposited. This shift in the diapir margin and progressive migration of the depocenter began halokinetic rotation of flanking minibasin strata into a megaflap geometry, documenting a new concept in the understanding of deposition and deformation during passive diapirism in salt basins.
APA, Harvard, Vancouver, ISO, and other styles
2

Walley, C. D. "Depositional history of southern Tunisia and northwestern Libya in Mid and Late Jurassic time." Geological Magazine 122, no. 3 (May 1985): 233–47. http://dx.doi.org/10.1017/s0016756800031447.

Full text
Abstract:
AbstractThe good exposures of virtually undeformed Callovian and Oxfordian strata along the Djeffara escarpment of southern Tunisia and northwestern Libya have allowed analysis of regional depositional history during this time.A number of lithostratigraphic problems are considered. In Tunisia, the Foum Tatahouine Formation is subdivided into members and in Libya some of the stratigraphic issues are clarified. A correlation between the two sequences is proposed. The widely claimed aeolian origin for the Libyan Chameau Mort Sandstone is rejected.The depositional patterns of the Callovian and Oxfordian strata are described in the context of Mid and Late Jurassic sedimentation in the eastern Ghadames basin of the African craton. After a regressive Bathonian sequence, transgressive conditions commenced in Early Callovian time. In a series of continental–marine cycles, this transgressive sequence culminated in widespread shallow, restricted-marine micritic deposition. A regression in Late Callovian time resulted in emergence marked by a thin but widespread calcrete horizon. In Mid? Oxfordian time a renewed transgression brought in open marine, high-energy, shallow-water carbonates. Later, regressive conditions returned, leading to increasing restriction, and latest Jurassic time saw the first signs of the fluvio-deltaic deposition that was to dominate the region in Early Cretaceous time.
APA, Harvard, Vancouver, ISO, and other styles
3

Fambrini, Gelson Luís, Diego da Cunha Silvestre, José Acioli Bezerra de Menezes-Filho, Ian Cavalcanti da Costa, and Virgínio Henrique de Miranda Lopes Neumann. "Architectural and facies characterization of the Aptian fluvial Barbalha Formation, Araripe Basin, NE Brazil." Geological Society, London, Special Publications 488, no. 1 (2019): 119–50. http://dx.doi.org/10.1144/sp488-2017-275.

Full text
Abstract:
AbstractThe Aptian Barbalha Formation records the beginning of the post-rift stage of the Araripe Basin. It consists predominantly of sandstones and mudstones interbedded with thin layers of bituminous black shales and conglomerates. The depositional and architectural features of the alluvial succession of the Barbalha Formation were characterized by detailed study and descriptions of the selected outcrops and analysis of well core data. In this study, two main depositional sequences were identified. The lower depositional sequence is more than 100 m thick and comprises a vertical facies succession composed of amalgamated, multistorey, braided fluvial channel sandstone bodies overlain by a widespread lacustrine black shale up to 10 m thick. The lacustrine black shales–carbonate mixed interval is known as the Batateira Beds and constitutes a regionally important stratigraphic correlation marker in the basin. This interval records the establishment of a large lake that experienced severe water-level fluctuations and anoxic events. The upper depositional sequence is 60–95 m thick, and mainly consists of thin, yellowish, medium- to fine-grained sandstones and variegated shales. The upper sequence rests unconformably on the lacustrine black shales of the Batateira Beds. Thin and discontinuous conglomerate beds at the base of the upper sequence laterally grade into coarse-grained sandstones. These coarse-grained sandstones are overlain by interbedded sandstones and mudstones organized in fluvial cycles. The upper and lower sequences of the Barbalha Formation are separated by an erosive unconformity, traceable throughout the study area, formed during a period of stratigraphic base-level lowering. This surface marks a change in the lower sequence from a dominantly fluvial depositional style, with amalgamated multistorey braided fluvial channel sand bodies, to a lacustrine system in the top to an eminently fluvial sedimentation, which in the basal section comprises amalgamated, multistorey, braided fluvial channel sand bodies, and in the superior section the amalgamated fluvial channels are overlain by floodplain and overbank sandstone bodies with fixed fluvial channel deposits, interpreted as a suspended-load-dominated fluvial system in the upper sequence. This change in the depositional style is accompanied by a reduction in grain size and a change in the fluvial regime, suggesting that the drainage system was restructured due to tectonic movements in the basin and climatic variations. In addition to the restructuring of the drainage basin, the characteristics of the discharge of the river system have changed, probably because of the more humid climatic conditions that dominated during the deposition of the upper sequence. The fluvial deposition in the lower sequence is associated with more ephemeral river systems, while the facies architecture of the upper sequence is associated with perennial systems and is suggestive of a suspended-load-dominated fluvial system. This fluvial system is capped by lacustrine deposits of the Crato Formation. The upper sequence grades upwards into the Crato Formation. The boundary between these two units is delineated by the presence of greenish calciferous shales that are covered by lacustrine laminated limestones and shales of Neoaptian age. Palaeocurrent readings from the fluvial deposits of both sequences display a consistent palaeoflow to the SE. Sedimentological and palaeontological evidence indicates a tectonic control on sedimentation and humid to subhumid climate conditions.
APA, Harvard, Vancouver, ISO, and other styles
4

Dechesne, Marieke, Ellen D. Currano, Regan E. Dunn, Pennilyn Higgins, Joseph H. Hartman, Kevin R. Chamberlain, and Christopher S. Holm-Denoma. "A new stratigraphic framework and constraints for the position of the Paleocene–Eocene boundary in the rapidly subsiding Hanna Basin, Wyoming." Geosphere 16, no. 2 (January 16, 2020): 594–618. http://dx.doi.org/10.1130/ges02118.1.

Full text
Abstract:
Abstract The Paleocene–Eocene strata of the rapidly subsiding Hanna Basin give insights in sedimentation patterns and regional paleogeography during the Laramide orogeny and across the climatic event at the Paleocene–Eocene Thermal Maximum (PETM). Abundant coalbeds and carbonaceous shales of the fluvial, paludal, and lacustrine strata of the Hanna Formation offer a different depositional setting than PETM sections described in the nearby Piceance and Bighorn Basins, and the uniquely high sediment accumulation rates give an expanded and near-complete record across this interval. Stratigraphic sections were measured for an ∼1250 m interval spanning the Paleocene–Eocene boundary across the northeastern syncline of the basin, documenting depositional changes between axial fluvial sandstones, basin margin, paludal, floodplain, and lacustrine deposits. Leaf macrofossils, palynology, mollusks, δ13C isotopes of bulk organic matter, and zircon sample locations were integrated within the stratigraphic framework and refined the position of the PETM. As observed in other basins of the same age, an interval of coarse, amalgamated sandstones occurs as a response to the PETM. Although this pulse of relatively coarser sediment appears related to climate change at the PETM, it must be noted that several very similar sandstone bodies occur with the Hanna Formation. These sandstones occur in regular intervals and have an apparent cyclic pattern; however, age control is not sufficient yet to address the origin of the cyclicity. Signs of increased ponding and lake expansion upward in the section appear to be a response to basin isolation by emerging Laramide uplifts.
APA, Harvard, Vancouver, ISO, and other styles
5

Branagan, David. "The Desert Sandstone of Australia A Late Nineteenth-Century Enigma of Deposition, Fossils, and Weathering." Earth Sciences History 23, no. 2 (January 1, 2004): 208–56. http://dx.doi.org/10.17704/eshi.23.2.gj680520775h7m27.

Full text
Abstract:
The term "Desert Sandstone" was featured on geological maps and in the literature of Australian geology for more than eighty years from 1872. The name was suggested by Richard Daintree (1832-1878) (1868) for what were later described as "a promiscuous lot of sediments that form a dissected tableland in some of the drier portions of the continent" (Howchin, 1918). The name became current, particularly in Queensland, but there were many problems in mapping the unit, which was at first thought to be of Tertiary age, but then became largely accepted as Late Cretaceous.While some geologists thought the unit was of marine origin, others believed it was aeolian, even partly made of volcanic dust, but most geologists thought it was largely lacustrine. In many areas the rock appeared to be highly silicified, and opinions differed as to the source of silicification—a former covering of basalt, or siliceous hot waters from below?Complications arose when Glossopteris, regarded as a Late Palaeozoic fossil, was found in the "Desert Sandstone," and arguments arose about the possibility of this plant having persisted in Australia until the late Mesozoic.The stratigraphic/palaeontological problems were eventually sorted out by detailed mapping, which showed that there were in fact a number of sandstones of similar appearance but quite different ages. It took longer to realise that the apparent uniformity of sedimentary rocks of different ages was largely the result of weathering, which produced the silicified "duricrust" in many parts of inland Australia.The "Desert Sandstone" played an important part in the unravelling of three important lines of earth history in Australia (and there were even repercussions abroad). These were: (a) sedimentation during the Mesozoic and Cainozoic; (b) the clarification of the temporal range (and lateral extent) of the Glossopteris flora; and (c) the weathering processes that produced some of the characteristic scenery of inland Australia.
APA, Harvard, Vancouver, ISO, and other styles
6

Pratt, Brian R., and Juan J. Ponce. "Sedimentation, earthquakes, and tsunamis in a shallow, muddy epeiric sea: Grinnell Formation (Belt Supergroup, ca. 1.45 Ga), western North America." GSA Bulletin 131, no. 9-10 (February 15, 2019): 1411–39. http://dx.doi.org/10.1130/b35012.1.

Full text
Abstract:
AbstractInterpreting the deposits of ancient epeiric seas presents unique challenges because of the lack of direct modern analogs. Whereas many such seas were tectonically relatively quiescent, and successions are comparatively thin and punctuated by numerous sedimentary breaks, the Mesoproterozoic Belt Basin of western North America was structurally active and experienced dramatic and continuous subsidence and sediment accumulation. The Grinnell Formation (ca. 1.45 Ga) in the lower part of the Belt Supergroup affords an opportunity to explore the interplay between sedimentation and syndepositional tectonics in a low-energy, lake-like setting. The formation is a thick, vivid, red- to maroon-colored mudstone-dominated unit that crops out in northwestern Montana and adjacent southwestern Alberta, Canada. The mudstone, or argillite, consists of laminated siltstone and claystone, with normal grading, local low-amplitude, short-wavelength symmetrical ripples, and intercalations of thin tabular intraclasts. These intraclasts suggest that the muds acquired a degree of stiffness on the seafloor. Halite crystal molds and casts are present sporadically on bedding surfaces. Beds are pervasively cut by mudcracks exhibiting a wide variety of patterns in plan view, ranging from polygonal to linear to spindle-shaped. These vertical to subvertical cracks are filled with upward-injected mud and small claystone intraclasts. Variably interbedded are individual, bundled, or amalgamated, thin to medium beds of white, cross-laminated, medium- to coarse-grained sandstone, or quartzite. These are composed of rounded quartz grains, typically with subangular to rounded mudstone intraclasts. Either or both the bottoms and tops of sandstone beds commonly show sandstone dikes indicative of downward and upward injection. Both the mudcracks and the sandstone dikes are seismites, the result of mud shrinkage and sediment injection during earthquakes. An origin via passive desiccation or syneresis is not supported, and there is no evidence that the sediments were deposited on alluvial plains, tidal flats, or playas, as has been universally assumed. Rather, deposition occurred in relatively low-energy conditions at the limit of ambient storm wave base. The halite is not from in situ evaporation but precipitated from hypersaline brines that were concentrated in nearshore areas and flowed into the basin causing temporary density stratification. Sandstone beds are not fluvial. Instead, they consist of allochthonous sediment and record a combination of unidirectional and oscillatory currents. The rounded nature of the sand and irregular stratigraphic distribution of the sandstone intervals are explained not by deltaic influx or as tempestites but as coastal sands delivered from the eastern side of the basin by off-surge from episodic tsunamis generated by normal faulting mainly in the basin center. The sands were commonly reworked by subsequent tsunami onrush, off-surge, seiching, and weak storm-induced wave action. Although the Grinnell Formation might appear superficially to have the typical hallmarks of a subaerial mudflat deposit, its attributes in detail reveal that sedimentation and deformation took place in an entirely submerged setting. This is relevant for the deposits of other ancient epeiric seas as well as continental shelves, and it should invite reconsideration of comparable successions.
APA, Harvard, Vancouver, ISO, and other styles
7

John-Joe, Traynor. "Arenig sedimentation and basin tectonics in the Harlech Dome area (Dolgellau Basin), North Wales." Geological Magazine 127, no. 1 (January 1990): 13–30. http://dx.doi.org/10.1017/s0016756800014138.

Full text
Abstract:
AbstractArenig (Ordovician) clastic sediments crop out in the Harlech Dome region (North Wales), and are placed in a single stratigraphic unit: the Allt Lwyd Formation. This unit records a marine transgression onto an erosion surface produced during late Tremadoc arc volcanicity. Four discrete petrofacies are denned, and reflect differing proportions of detritus derived from Tremadoc-type basic-intermediate igneous rocks, and the local sedimentary basement. Initial shallow marine siliciclastic sandstones and conglomerates are overlain by extensive deep water mud-rich units. These generally shallow up into a complex arc-apron deposit, with sediments derived from the eroding Tremadoc arc, as well as from similar, synchronous volcanics. Predominantly epiclastic sandstones and conglomerates were deposited in deltaic and tidal environments in an arc-apron complex, and capped by condensed mudstones and an ironstone, deposited as sea level rose across these systems. Sediments were ponded in north–south orientated troughs and derived from uplifted blocks. Facies and petrofacies distribution were controlled by syn-sedimentary north-south and northeast–southwest faults. The Allt Lwyd Formation was ponded in a fault-controlled basin (the Dolgellau Basin), one of a series of interconnected sub-basins flooded by the Arenig transgression. The sediments preserved reflect deposition during the transgression of a volcanic arc, prior to the extrusion of marginal basin-type volcanics.
APA, Harvard, Vancouver, ISO, and other styles
8

Mertzanides, Y., E. Kargiotis, and A. Mitropoulos. "GEOLOGICAL AND GEOPHYSICAL DATA OF “EPSILON” FIELD IN PRINOS OIL BASIN." Bulletin of the Geological Society of Greece 43, no. 5 (July 31, 2017): 2257. http://dx.doi.org/10.12681/bgsg.11425.

Full text
Abstract:
The Epsilon field, is located at the centre of Prinos oil basin (N. Aegean, Greece), 11 km NW of the island of Thassos and 4 km NW of the Prinos field, the first productive oil field in the Aegean Sea. The taphrogenetic basin of Prinos has been widely studied, due to its hydrocarbon reservoirs. Extensive geophysical survey, started at early 1970 ‘s, led to a number of drilling jobs, which confirmed the existence of hydrocarbons in the area. The combined geological information, derived from the analysis of lithological, stratigraphic and geochemical data of the basin, suggested a structural and depositional model, strongly related to the Miocene tectonics and sedimentation. The new geophysical and drilling data from Epsilon oil field, are correlated to that already known, completing the model of the basin. Pay zone is found to be below an evaporitic sequence, consisting predominantly of salt, with anhydrite, clay and sandstone intercalations. These upper Miocene aged evaporites extend, varying in thickness, throughout Prinos basin. Reservoir consists mainly of sandstone with intercalations of claystone and trace of siltstone. The geology of the structure and the initial productivity, were positive for further drilling operations in Epsilon field.
APA, Harvard, Vancouver, ISO, and other styles
9

Salles, Lise, Mary Ford, Philippe Joseph, Christian Le Carlier De Veslud, and Antoine Le Solleuz. "Migration of a synclinal depocentre from turbidite growth strata: the Annot syncline, SE France." Bulletin de la Société Géologique de France 182, no. 3 (May 1, 2011): 199–220. http://dx.doi.org/10.2113/gssgfbull.182.3.199.

Full text
Abstract:
AbstractThe Annot Sandstone turbidites of the Alpine foreland basin in SE France (Eocene-Oligocene: 40-32 Ma), provide an excellent case-study of tectono-sedimentary relations in a deepwater compressional system. The Annot outlier is a synclinal remnant previously interpreted as a static depocentre. A multi-disciplinary approach including geometrical and kinematic analyses and modelling demonstrates instead that this was a tectonically active turbidite depocentre where gentle thrust related folding controlled turbidite architecture.Stratigraphic and new structural field data are integrated with previous sedimentological studies to build a 3D geometric model of the Annot depocentre. Derived thickness maps associated with paleocurrent measurements clearly illustrate three main phases in the evolution of depocentre topography. (1) Early turbidite flows were mainly trapped by oblique intrabasinal inherited structures. (2) Once these structures were buried, the NNW-SSE active syncline constituted the main topographic control. (3) Decreasing activity of this syncline is recorded by filling and flow bypass. The progressive stages of the accepted depositional model (flow ponding, flow stripping and flow bypass), for the Annot depocentre, may therefore have a tectonic origin.The kinematic evolution of the synclinal depocentre was defined at different scales. Stratigraphic architecture records a decrease in bedding dips up through the turbidite succession on the western synclinal limb. Comparison with idealized case studies of the interaction of sedimentation with an active syncline indicates that this geometrical pattern corresponds to progressive westward migration of the synclinal hinge and depocentre. This tends to promote lateral rather than vertical stacking of sand bodies during turbidite sedimentation. Trishear kinematic modelling was used to simulate (in 2D) the rolling synclinal hinge. Stratigraphic surface geometries and turbidite depocentre migration define thrust and fold geometries at depth. The synclinal depocentre developed between two alternating or coeval fault propagation anticlines that exploited two detachment levels (Triassic evaporites and Cenomanian marls) in the underlying succession.
APA, Harvard, Vancouver, ISO, and other styles
10

Buatois, Luis A., and Francisco J. Medina. "Stratigraphy and depositional setting of the Lagrelius Point Formation from the Lower Cretaceous of James Ross Island, Antarctica." Antarctic Science 5, no. 4 (December 1993): 379–88. http://dx.doi.org/10.1017/s0954102093000513.

Full text
Abstract:
The Lagrelius Point Formation (?Barremian–Aptian) is the basal unit of the Gustav Group and crops out on the north-west coast of James Ross Island. It consists of about 250 m of coarse-grained siliciclastic rocks. The type section of the Lagrelius Point Formation is defined here from just south of Lagrelius Point. The measured section comprises the uppermost 80 m of the unit and mainly consists of clast-supported, boulder, cobble to pebble conglomerates; very coarse to medium-grained sandstones occur rarely. Four sedimentary facies are recognized. A disorganized conglomerate facies (1) is interpreted as having been deposited from non-cohesive debris flows and high density gravelly turbidity currents. Inversely graded conglomerate facies (2) and normally graded to graded stratified conglomerate and pebbly sandstone facies (3) reflect sedimentation from high density gravelly turbidity currents. Massive and parallel stratified sandstone facies (4) is thought to record deposition from high density sandy turbidity currents. Two types of facies assemblages have been recognized. A major channel assemblage, represented by the lower part of the measured section and the minor channel assemblage forming the upper part of the section. The total succession is thought to represent the aggradation of a major submarine braided channel followed by the establishment and subsequent infill of a series of minor channels in a marginal terrace.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Sandstone Geology, Stratigraphic Sedimentation and deposition"

1

Painter, Clayton S. "The Shannon Sandstone new observations and constraints applied to depositional models /." Laramie, Wyo. : University of Wyoming, 2009. http://proquest.umi.com/pqdweb?did=1799711431&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hamlin, Herbert Scott. "Syn-orogenic slope and basin depositional systems, Ozona sandstone, Val Verde Basin, southwest Texas /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mason, Elizabeth Lane. "Internal facies architecture of a sand-rich, deep-sea depositional system: the rocks sandstone, Reliz Canyon formation, Northern Santa Lucia Range, Monterey County, California /." May be available electronically:, 1998. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Qunling. "Post mid-Cretaceous sequence stratigraphy and depositional history of northeastern Gulf of Mexico /." Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, Jason J. "A reinterpretation of the sedimentology and stratigraphy of the upper Silurian-lower Devonian Manlius Formation in upstate New York." Diss., Online access via UMI:, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alexander, Alan John. "Palynological, stratigraphic and chemical analyses of sediments in the Lothians with particular reference to the Lateglacial." Thesis, University of Edinburgh, 1985. http://hdl.handle.net/1842/10626.

Full text
Abstract:
Palynological and stratigraphic investigations have been conducted on sediment cores for three sites in Lothian Region, Scotland: Balgone House, Broxmouth and Corstorphine. All phases of the Lateglacial period, as far as they are manifested in the Lothians at the sites studied, have been investigated with particular reference to the Younger Dryas, the main Interstadial, or Allerod, and also the evidence for the colder conditions that preceded it which are presumed to represent Older Dryas-type vegetation. Further light has been cast on the development of the Postglacial broad - leaved forests. The Cambridge computer program POLLDATA MKV was used to perform the necessary calculations and controlled a graph plotter to generate pollen diagrams. A series of subroutines is described that translated the calls to the Cambridge graphics subroutine library. This may serve as a model for other installations. Objective numerical zonation methods are applied to the pollen data. These methods are used not only to zone the pollen series but also to aid in the generation of hypotheses regarding vegetation changes. Chemical analyses of the sediments from Balgone House were undertaken. The results obtained are at variance with those from published work and it is proposed that the reason is that the chemical pre-treatment of samples employed locally may be less efficient in leaching the cations from the mineral fraction.
APA, Harvard, Vancouver, ISO, and other styles
7

Stukins, Stephen. "Spatial and temporal palynological trends in marginal marine depositional system : Lajas Formation, Neuquén Basin, Argentina." Thesis, University of Aberdeen, 2011. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=167073.

Full text
Abstract:
In order to better understand the relationship of tidally dominated depositional environments and their palynological assemblages, the Middle Jurassic sediments of the Lajas Formation, Neuquén Basin were examined. The ambition was to present models and trends which can be used for studies of other such deposits. In order to integrate the palynoassemblages with the environment of deposition, additional granulometric data and nutrient data from XRF analysis were used in combination with the palynology. A new method using correspondence analysis was used for understanding the palaeoecology and floral dynamics. An updated, dynamic model for the Middle Jurassic floral palaeoecology of the Neuquén Basin has been presented and the drivers of floral succession are interpreted as disturbance tolerance and substrate water content. Taphonomic expressions of seral groupings show that later seral stage community palynomorphs are preferentially deposited within or close to distributary systems, whereas earlier seral stage palynomorphs are preferentially deposited in environments of greater accommodation space, such as bayfills. Taphonomic signatures, using palaeoecological groupings provide trends in low (4th/5th) order cycles and lateral variations relating to tidal channels and surrounding bayfill mudstones. A model for 4th/5th order boundaries is also presented using new interpretations of the distribution of pinaceous pollen and microforaminiferal test linings. Using Canonical Correspondence Ananlysis (CCA), a model is presented of depositional environments incorporating palynological data and granulometric proxies for grain size and grain sorting. The relationship between sediment processes in a tidal flat dominated palaeoenvironment and the hydrodynamic properties of some palynomorphs is investigated and presented. The weathering and nutrient status of the substrates throughout the Lajas Formation is presented using XRF proxy data. The proxies are also used with CCA to create nutrient related floral groupings. When plotted stratigraphically, these show cycles of eutrophication and subsequent weathering of the substrates.
APA, Harvard, Vancouver, ISO, and other styles
8

Kerns, Jessica L. "Contrasting depositional environments of North American black shales illuminated through geochemical techniques and modern analogs /." free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p1421149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hill, Robert E. (Robert Einar). "Stratigraphy and sedimentology of the Middle Proterozoic Waterton and Altyn Formations, Belt-Purcell Supergroup, southwest Alberta." Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hines, Frederick Michael. "The sedimentation, tectonics and stratigraphy of the cretaceous/tertiary sequence of northwest Santander, northern Spain." Thesis, University of Oxford, 1986. http://ora.ox.ac.uk/objects/uuid:1d1f8c32-9fd3-44a5-ba6a-d963fa9868c0.

Full text
Abstract:
The facies evolution of the Cretaceous/Tertiary sequence of NW Santander is considered in relation to the Cretaceous rifting and drifting, and Tertiary partial closure of the Bay of Biscay. Overlying the Palaeozoic basement are the fluvial Lower Triassic Buntersandstone and Upper Triassic Keuper evaporitic mudstone, deposited in a failed rift, extensional basin. Overlying Lower Jurassic carbonates are the syn-rift, continental elastics of the Vealden deposited in halfgrabens cut by transfer faults. The Vealden consists of two formations:- the lower, arenaceous-rich Barcena Mayor Fm. (braided stream environment) and the upper, argillaceous-rich Vega de Pas Fm. (meandering river). Overlying it is the Aptian Umbrera Fm. (calcarenite sheet), the Patrocinio Fm. (shoaling-up ward sandstone/marl alternation), the San Esteban Fm. (requienid/foraminiferal biomicrite of the internal platform) and the marls of the Rodezas Fm. The Upper Aptian Reocin Fm. is a requienid/foraminiferal biomicrite with thinned calcarenites deposited over active, diapiric palaeohighs. After initial marine and then equant calcite (meteoric phreatic) cementation, invasion of meteoric-derived groundwater over palaeohighs generated lenses of sucrosic dolomite in the Reocin Fm. Local mixing of further groundwater and Keuper-derived, sulphate-rich waters in karstic caverns precipitated sparry, baroque dolomite and Pb/Zn sulphides (by bacterial sulphate reduction). The clastic Lower Albian is a transgressive fluvial/estuarine/inner shelf sequence with tidal estuarine channels and sandwaves. The Middle/Upper Albian (syn-drift) has basal calcarenitic tidal sandwaves and is followed by storm/wave-reworked carbonates deposited on a homoclinal ramp. The clastic Lower Cenomanian is an estuarine/inner shelf deposit with tidal sandwaves and sandbars. The Middle/Upper Cenomanian is a storm/tide-dominated calcarenite. Outer shelf marls occur in the Turonian to Middle Campanian and the Upper Campanian to Middle Eocene is a sandy, foraminiferal inner shelf limestone. The Upper Eocene/Oligocene (syn-compression) is a carbonate slope-apron-reefal flysch deposit. It includes hemipelagic marl, neritic-derived calcarenitic turbidites and rudaceous mass flow deposits with highly polymict conglomerates. These were deposited coevally with Keuper piercement and thrust reactivation and date the Pyrenean compressional deformation here.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Sandstone Geology, Stratigraphic Sedimentation and deposition"

1

Johnson, Samuel Y. Sedimentology of the conglomeratic lower member of the Lospe Formation (Lower Miocene), Santa Maria Basin, California. Washington: U.S. G.P.O., 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Moussavi-Harami, Reza. Stratigraphy, petrography, and depositional environment of sandstones in the Rock Lake Shale Member of the Stanton Limestone (Missourian Stage, Upper Pennsylvanian) in southeastern Kansas. Lawrence, Kan. (1930 Constant Ave., University of Kansas, Lawrence 66047): Kansas Geological Survey, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fine, Stanley. The diagenesis of the Lower Triassic Bunter Sandstone formation, onshore Denmark. København: I kommission hos C.A. Reitzels forlag, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Landing, Ed. Early and early middle Ordovician continental slope deposition: Shale cycles and sandstones in the New York promontory and Quebec reentrant reentrant region. Albany, NY: University of the State of New York, New York State Museum/Geological Survey, the State Education Department, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hemish, LeRoy A. Stratigraphy and depositional environments of the sandstones of the Springer Formation and the Primrose Member of the Golf Course Formation in the Ardmore Basin, Oklahoma. Norman: The University of Oklahoma, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stanesco, John D. Eolian and noneolian facies of the lower Permian Cedar Mesa Sandstone Member of the Cutler Formation, southeastern Utah. [Washington]: U.S. G.P.O., 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Johnson, Samuel Y. The Fryingpan Member of the Maroon Formation: A lower Permian(?) basin-margin dune field in northwestern Colorado. [Washington]: U.S. G.P.O., 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

McCartan, Lucy. Petrology and sedimentology of the Horlick Formation (Lower Devonian), Ohio Range, Transantarctic Mountains. [Washington, D.C.]: U.S. G.P.O., 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

McCartan, Lucy. Petrology and sedimentology of the Horlick Formation (Lower Devonian), Ohio Range, Transantarctic Mountains. Washington, DC: U.S. Geological Survey, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sando, William Jasper. HUM lithosome: An example of regional stratigraphic synthesis in the Mississippian of the western interior of the United States. [Washington]: U.S. G.P.O., 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Sandstone Geology, Stratigraphic Sedimentation and deposition"

1

Collins, D. R., and J. H. Doveton. "Automated Correlation Based On Markov Analysis Of Vertical Successions And Walther's Law." In Computers in Geology - 25 Years of Progress. Oxford University Press, 1994. http://dx.doi.org/10.1093/oso/9780195085938.003.0015.

Full text
Abstract:
Walther's Law of Facies (1894) states that facies overlying one another comformably were formed in geographically contiguous environments. This vertical-lateral linkage is the basis for our automated method of stratigraphic correlation. The probabilities of vertical adjacency of different lithologies are estimated by embedded Markov chain analysis of sequences to be correlated. These probabilities are transformed to dissimilarities and used as elements within a dynamic programming sequence comparison. Trajectory tracking of cumulative thicknesses between the two sequences provides an auxiliary criterion to incorporate factors of sedimentation rate and compaction. Stratigraphic correlation is simultaneously simple and complex. The operation is fundamentally one of pattern recognition, whose principles can be grasped easily by any geology student. One source of complexity is caused by the fact that most successions are composed of a relatively small number of distinctive rock types. Within each succession, they are ordered as a linear chain in which loosely repetitive sequences are often perceived as "cycles" or "rhythms." As a result, the correlation between two adjacent successions may be ambiguous, so that several competing alternatives may be equally valid candidates for the "true" correlation. The situation is made still more disma! by the knowledge that erosional events may have removed entire stratigraphic segments and that periods of non-deposition may have caused gaps. In the opinion of Ager (1973), the gap is more important than the record. Even if a "complete" lithology record were available, it is unlikely that the successions in two separate locations would be identical. Lateral facies changes result in differences of lithology within correlative intervals. Equivalence or "similarity" of rock type is not the only criterion used in correlation. Thicknesses are a secondary source of information for correlation decisions. Similarity in thickness of equivalent lithologies between successions often implies a greater likelihood of their correlation. However, exceptions to this rule commonly are observed in the lateral thinnings and thickenings caused by both lateral facies changes and differential compaction. The simpler aspects of correlation suggest that practical automated correlation procedures are both feasible and desirable. Even if programmed decisions cannot be characterized absolutely as "objective," they can at least be made consistent.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography