Academic literature on the topic 'Sandwichelement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sandwichelement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sandwichelement"
Schmied, Jürgen, Daniel C. Ruff, and Thomas Ummenhofer. "Sandwichelemente unter Brandeinwirkung." Stahlbau 84, no. 11 (November 2015): 862–65. http://dx.doi.org/10.1002/stab.201510329.
Full textLange, Jörg, Klaus Berner, and Beate Hörnel-Metzger. "Wandscheibentragfähigkeit von Sandwichelementen." Stahlbau 80, no. 9 (September 2011): 673–77. http://dx.doi.org/10.1002/stab.201101467.
Full textvon der Heyden, Aaron, and Jörg Lange. "Sandwichelemente mit Wellpappe als Kernmaterial." Stahlbau 89, no. 11 (October 23, 2020): 895–903. http://dx.doi.org/10.1002/stab.202000075.
Full textKäpplein, Saskia, Thomas Ummenhofer, and Klaus Berner. "Stabilisierung von Bauteilen durch Sandwichelemente." Stahlbau 81, no. 12 (December 2012): 951–58. http://dx.doi.org/10.1002/stab.201201636.
Full textHarder, Nadine, Yves Klett, Sumee Park, Philip Leistner, and Peter Middendorf. "Bauphysikalische Untersuchung von Sandwichelementen." Bauphysik 41, no. 6 (December 2019): 314–23. http://dx.doi.org/10.1002/bapi.201900025.
Full textKäpplein, Saskia, and Thomas Ummenhofer. "Querkraftbeanspruchte Verbindungen von Sandwichelementen." Stahlbau 80, no. 8 (August 2011): 600–607. http://dx.doi.org/10.1002/stab.201101454.
Full textKlein, Manfred. "Sandwichelemente - Verwendung nach Ablauf der Koexistenzperiode." DIBt Mitteilungen 42, no. 2 (March 24, 2011): 37–40. http://dx.doi.org/10.1002/dibt.201130010.
Full textHeid, Ann‐Christine, Reiner Grebe, Norbert Will, and Josef Hegger. "Großformatige Sandwichelemente mit Deckschichten aus Textilbeton." Beton- und Stahlbetonbau 114, no. 7 (June 11, 2019): 476–84. http://dx.doi.org/10.1002/best.201900021.
Full textKäpplein, Saskia, and Thomas Ummenhofer. "Axial beanspruchte Sandwichelemente in rahmenlosen Konstruktionen." Stahlbau 79, no. 10 (October 4, 2010): 761–70. http://dx.doi.org/10.1002/stab.201001367.
Full textUngermann, Dieter, and Sebastian Lübke. "Innovative einseitige Verankerung von Sandwichelementen." Stahlbau 81, no. 12 (December 2012): 912–15. http://dx.doi.org/10.1002/stab.201201630.
Full textDissertations / Theses on the topic "Sandwichelement"
Englund, Oskar, and Per Olsson. "Klimatpåverkan : Jämförelse mellan sandwichelement i stål och betong." Thesis, Mittuniversitetet, Institutionen för ekoteknik- och hållbart byggande, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42703.
Full textIn the construction of hall buildings, steel or concrete constructions are common. The climate impact that is derived from the respective building system is examined in detail, material versus material or building part against building part. This study provides a result of the climate impact for the building systems as a whole, with buildings that meet the same requirements. This study results in a comparison of the amount of CO2-ekv each building systems contribute per m2. By studying an existing concrete building and dimensioning a steel building according to the same conditions. Dimensioning includes: pillars, support plate, foot plate, wind cross and fire plaster for pillars, the frame is clad with steel elements from Paroc. Based on these quantities, the climate impact is calculated with the help of EPDs, compiled and calculated in Excel. This approach ensures a relevant and fair comparison. Our study shows that a self-supporting concrete element contributes 83.80 kg CO2-ekv/m2 and the steel system contributes 60.59 CO2-ekv/m2. The stages in the life cycle that contribute the greatest difference between the systems are: Product stage (A1-A3) and construction stage (A4-A5).
Betyg 2021-06-04
Samvin, Daniel, and Stefan Markovic. "InsuFlex : Framtagning och analys av högpresterande isoleringskoncept i sandwichelement." Thesis, Högskolan i Halmstad, Sektionen för ekonomi och teknik (SET), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-25546.
Full textThe main objective of this report is development of an insulation-layer of high performance materials for a sandwich structure, which will contribute to an improved U-value and reduced wall thickness. The design is based on an existing sandwich wall, where the authors replaced the original insulation with the developed insulation-layer, to study the walls with equal conditions. The insulating ability is presented through calculations and thermal simulation to analyze the thermal aspects of the stationary conditions and 3D conditions. A complete insulation combination was developed through extensive studies of material’s physical properties, and named “InsuFlex”. The insulation-layer was then applied in a sandwich construction for further analysis and thermal simulations. The new design showed improvements in several areas.
Svensson, Philip, and Sebastian Johansson. "Analys av ett förbindarsystem i glasfiberförstärkt polymer för sandwichelement." Thesis, Linnéuniversitetet, Institutionen för byggteknik (BY), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-105004.
Full textChamoun, Ronney, and Salahadin Husseini. "Köldbryggors inverkan på isoleringsegenskaper för sandwichelement : Anslutning mellan fönster och yttervägg." Thesis, Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-11258.
Full textCurrently, the energy issues brought a lot of interest in the community. Now is the focus more on building energy-efficient houses. A significant factor influencing energy consumption in our buildings is thermal bridges. They occur when a material with poor thermal insulation breaks through a material with better insulation. In practice it is often not possible to avoid thermal bridges completely, but there are many different options to reduce the thermal bridge effect significantly. This is desirable in order to achieve lower energy costs because thermal bridges can lead to a significant increase in the heat losses. The limitation of this degree project is evident from the title Thermal bridges impact on the insulation properties of sandwich panels, the connection between the windows and external walls The primary means used to achieve the results is the HEAT2 PC-program, but literature studies were also used. HEAT2 is a two-dimensional heat flow program that calculates the amount of energy passed through the part of the construction. It is based on the allocation of the construction into a mesh, i.e. a grid. The more the mesh is divided into the more accurate the results, but the calculations are at the same time more time consuming to perform. A separate analysis was done with and without the draining protective plastic in the window's top edge where the material is passing through the thermal insulation at the concrete heel. The plastic has many orders of magnitude higher thermal conductivity than the thermal insulation, but it is only 1 mm thick. The calculation results show that the plastic caused a significant difference.
Alp, Martin, and Muhsin Mohammed Dhiaa. "Livscykelanalys - En jämförelse mellan trähus och betonghus." Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-84437.
Full textWhen a raw material is being extracted to being used as a product and then demolished, environmental impact occurs in many different steps. With a Life-cycle-assessment (LCA), it is possible to calculate a product's environmental impact in all its phases. These are large amounts of greenhouse gases that are released into the environment and have a negative impact on the environment. The purpose of this report is to find out which of a wooden and concrete house is the most climate-smart in terms of emissions from extraction of materials until the house is completed.With the help of companies, we managed to obtain the quantity of the various houses in terms of material consumption for the foundation and walls of the houses. When the quantities have been obtained, the survey can go ahead and for this the tool Byggsektorns Miljöberäkningsverktyg is used where the quantities are calculated for the materials that are in demand.In order to achieve a result, certain parts of the life-cycle-assessment are delimited. Things that will be included in the report are the construction phase, i.e. A1-5 in the tool Byggsektorns Miljöberäkningsverktyg. This includes raw material extraction until the building is completed.The program calculations show that the concrete house accounts for a greater part of the climate impact than the wooden house. Concrete house's total climate impact (GWP), kg CO2 per m2 Atemp, is 48.753kg, while the wooden house's total climate impact is 14.836kg from the raw materials being extracted to the house being finished.The conclusion is that it is more climate smart and that there are more benefits to building a house in wood than building a house in concrete during the construction phase, even though they both have a concrete slab.
Kluge, Patrick. "Mechanische Eigenschaften von Holz-Pappe-Sandwichelementen." Technische Universität Chemnitz, 2018. https://monarch.qucosa.de/id/qucosa%3A21127.
Full textSchneider, Hartwig N., Christian Schätzke, Christiane Feger, Michael Horstmann, and Daniel Pak. "Modulare Bausysteme aus Textilbeton-Sandwichelementen." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1244051494649-79626.
Full textKäpplein, Saskia [Verfasser], and T. [Akademischer Betreuer] Ummenhofer. "Sandwichelemente als tragende und aussteifende Bauteile / Saskia Käpplein ; Betreuer: T. Ummenhofer." Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1116427672/34.
Full textHorstmann, Michael, Josef Hegger, Till Büttner, Silke Tomoscheit, and Ulrich Pachow. "Neue Entwicklungen bei Berechnung und Anwendung von Sandwichfassaden aus Textilbeton." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1244050047149-40277.
Full textWarkotsch, Christoph Alexander [Verfasser]. "Lokale Spannungseffekte in Sandwichelementen mit diskontinuierlicher Kernschicht / Christoph Alexander Warkotsch." Aachen : Shaker, 2013. http://d-nb.info/1049382730/34.
Full textBooks on the topic "Sandwichelement"
Möller, Ralf, Hans Pöter, and Knut Schwarze. Planen und Bauen mit Trapezprofilen und Sandwichelementen. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783433600764.
Full textMoller, Ralf, Hans Poter, and Knut Schwarze. Planen Und Bauen Mit Trapezprofilen Und Sandwichelementen. Ernst,Wilhelm & Sohn,Verlag fur Architektur und Technische Wissenschaften Gmbh.,Germany, 2008.
Find full textMoller, Ralf, Hans Poter, and Knut Schwarze. Planen Und Bauen Mit Trapezprofilen Und Sandwichelementen: Grundlagen, Bauweisen, Bemessung Mit Beispielen. Wiley-VCH Verlag GmbH, 2003.
Find full textBook chapters on the topic "Sandwichelement"
Klein, Bernd. "Sandwichelemente." In Leichtbau-Konstruktion, 186–208. Wiesbaden: Vieweg+Teubner Verlag, 1997. http://dx.doi.org/10.1007/978-3-322-96937-8_17.
Full textÖchsner, Andreas. "Sandwichelemente." In Stoff- und Formleichtbau, 101–39. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-30714-1_5.
Full textKlein, Bernd. "Sandwichelemente." In Leichtbau-Konstruktion, 192–214. Wiesbaden: Vieweg+Teubner Verlag, 2005. http://dx.doi.org/10.1007/978-3-322-94359-0_17.
Full textKlein, Bernd, and Thomas Gänsicke. "Sandwichelemente." In Leichtbau-Konstruktion, 235–59. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-26846-6_17.
Full textKlein, Bernd. "Sandwichelemente." In Leichtbau-Konstruktion, 192–214. Wiesbaden: Springer Fachmedien Wiesbaden, 2013. http://dx.doi.org/10.1007/978-3-658-02272-3_17.
Full textKlein, Bernd. "Sandwichelemente." In Leichtbau-Konstruktion, 192–214. Wiesbaden: Vieweg+Teubner, 2009. http://dx.doi.org/10.1007/978-3-8348-9965-1_17.
Full textKlein, B. "Sandwichelemente." In Leichtbau-Konstruktion, 207–33. Wiesbaden: Vieweg+Teubner Verlag, 1989. http://dx.doi.org/10.1007/978-3-322-88818-1_17.
Full textKlein, Bernd. "Sandwichelemente." In Leichtbau-Konstruktion, 186–208. Wiesbaden: Vieweg+Teubner Verlag, 2001. http://dx.doi.org/10.1007/978-3-322-96964-4_17.
Full textKlein, Bernd. "Sandwichelemente." In Leichtbau-Konstruktion, 192–214. Wiesbaden: Vieweg+Teubner Verlag, 2011. http://dx.doi.org/10.1007/978-3-8348-8321-6_17.
Full textÖchsner, Andreas. "Stoff- und Formleichtbau: Grundlagen von Sandwichelementen." In Leichtbaukonzepte anhand einfacher Strukturelemente, 71–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-58506-1_5.
Full text