Journal articles on the topic 'Sarcomagenesis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Sarcomagenesis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Cardona, Andrés Felipe, Jairo Zuluaga, Hernán Carranza, Jorge Miguel Otero, and Carlos Vargas. "Sarcomagenesis." Revista Colombiana de Hematología y Oncología 1, no. 4 (2012): 30–38. http://dx.doi.org/10.51643/22562915.321.
Full textMatushansky, Igor, and Robert G. Maki. "Mechanisms of Sarcomagenesis." Hematology/Oncology Clinics of North America 19, no. 3 (2005): 427–49. http://dx.doi.org/10.1016/j.hoc.2005.03.006.
Full textHayashi, Takuma. "Genomic Analysis of Sarcomagenesis." Journal of Gynecology and Obstetrics Bulletin 1, no. 1 (2016): 1–2. http://dx.doi.org/10.24218/jgob.2016.01.
Full textUnderhill, T. Michael. "Abstract IA004: Mesenchymal progenitors and sarcomagenesis." Clinical Cancer Research 28, no. 18_Supplement (2022): IA004. http://dx.doi.org/10.1158/1557-3265.sarcomas22-ia004.
Full textAlba-Castellón, Lorena, Raquel Batlle, Clara Francí, et al. "Snail1 Expression Is Required for Sarcomagenesis." Neoplasia 16, no. 5 (2014): 413–21. http://dx.doi.org/10.1016/j.neo.2014.05.002.
Full textEsperança-Martins, Miguel, Iola F.Duarte, Mara Rodrigues, et al. "On the Relevance of Soft Tissue Sarcomas Metabolic Landscape Mapping." International Journal of Molecular Sciences 23, no. 19 (2022): 11430. http://dx.doi.org/10.3390/ijms231911430.
Full textRodriguez, Rene, Ruth Rubio, and Pablo Menendez. "Modeling sarcomagenesis using multipotent mesenchymal stem cells." Cell Research 22, no. 1 (2011): 62–77. http://dx.doi.org/10.1038/cr.2011.157.
Full textRadons, Jürgen. "Inflammatory stress and sarcomagenesis: a vicious interplay." Cell Stress and Chaperones 19, no. 1 (2013): 1–13. http://dx.doi.org/10.1007/s12192-013-0449-4.
Full textMiller, Henry E., Aparna Gorthi, Nicklas Bassani, Liesl A. Lawrence, Brian S. Iskra, and Alexander J. R. Bishop. "Reconstruction of Ewing Sarcoma Developmental Context from Mass-Scale Transcriptomics Reveals Characteristics of EWSR1-FLI1 Permissibility." Cancers 12, no. 4 (2020): 948. http://dx.doi.org/10.3390/cancers12040948.
Full textKannan, Sarmishta, Ian Lock, Benjamin B. Ozenberger, and Kevin B. Jones. "Genetic drivers and cells of origin in sarcomagenesis." Journal of Pathology 254, no. 4 (2021): 474–93. http://dx.doi.org/10.1002/path.5617.
Full textWatson, Sarah, Collette A. LaVigne, Lin Xu, et al. "VGLL2-NCOA2 leverages developmental programs for pediatric sarcomagenesis." Cell Reports 42, no. 1 (2023): 112013. http://dx.doi.org/10.1016/j.celrep.2023.112013.
Full textJones, Kevin B. "What’s in a Name? Cell Fate Reprogramming in Sarcomagenesis." Cancer Cell 33, no. 1 (2018): 5–7. http://dx.doi.org/10.1016/j.ccell.2017.12.005.
Full textMartin, Daniel, Rebeca Galisteo, Alfredo A. Molinolo, Reinhard Wetzker, Emilio Hirsch та J. Silvio Gutkind. "PI3Kγ Mediates Kaposi's Sarcoma-Associated Herpesvirus vGPCR-Induced Sarcomagenesis". Cancer Cell 19, № 6 (2011): 805–13. http://dx.doi.org/10.1016/j.ccr.2011.05.005.
Full textLi, Luyuan, Josiane E. Eid, Ana C. Paz, and Jonathan C. Trent. "Metabolic Enzymes in Sarcomagenesis: Progress Toward Biology and Therapy." BioDrugs 31, no. 5 (2017): 379–92. http://dx.doi.org/10.1007/s40259-017-0237-2.
Full textWeber, Achim, Annette Strehl, Erik Springer, Torsten Hansen, Arno Schad, and C. James Kirkpatrick. "Biomaterial-induced sarcomagenesis is not associated with microsatellite instability." Virchows Archiv 454, no. 2 (2008): 195–201. http://dx.doi.org/10.1007/s00428-008-0705-7.
Full textTanaka, Miwa, Mizuki Homme, Yukari Yamazaki, et al. "Cooperation between SS18-SSX1 and miR-214 in Synovial Sarcoma Development and Progression." Cancers 12, no. 2 (2020): 324. http://dx.doi.org/10.3390/cancers12020324.
Full textFujino, Takashi, Kimie Nomura, Yuichi Ishikawa, et al. "Function of EWS-POU5F1 in Sarcomagenesis and Tumor Cell Maintenance." American Journal of Pathology 176, no. 4 (2010): 1973–82. http://dx.doi.org/10.2353/ajpath.2010.090486.
Full textSiddiqi, S., M. Terry, and I. Matushansky. "The role of HIWI in stem cell maintenance and sarcomagenesis." Journal of Clinical Oncology 29, no. 15_suppl (2011): e20500-e20500. http://dx.doi.org/10.1200/jco.2011.29.15_suppl.e20500.
Full textLu, C., S. U. Jain, D. Hoelper, et al. "Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape." Science 352, no. 6287 (2016): 844–49. http://dx.doi.org/10.1126/science.aac7272.
Full textGaloian, K., T. Guettouche, B. Issac, L. Navarro, and H. T. Temple. "Lost miRNA surveillance of Notch, IGFR pathway—road to sarcomagenesis." Tumor Biology 35, no. 1 (2013): 483–92. http://dx.doi.org/10.1007/s13277-013-1068-5.
Full textMatushansky, I., N. Socci, E. Hernando, et al. "A putative tumor suppressor role for Wnt-signaling in sarcomagenesis." Journal of Clinical Oncology 24, no. 18_suppl (2006): 9507. http://dx.doi.org/10.1200/jco.2006.24.18_suppl.9507.
Full textBarrott, Jared J., Ju-Fen Zhu, Kyllie Smith-Fry, et al. "The Influential Role of BCL2 Family Members in Synovial Sarcomagenesis." Molecular Cancer Research 15, no. 12 (2017): 1733–40. http://dx.doi.org/10.1158/1541-7786.mcr-17-0315.
Full textWatson, Sarah, Collette A. LaVigne, Lin Xu, et al. "Abstract 3525: VGLL2-NCOA2 leverages developmental programs for pediatric sarcomagenesis." Cancer Research 83, no. 7_Supplement (2023): 3525. http://dx.doi.org/10.1158/1538-7445.am2023-3525.
Full textYe, Shuai, Matthew A. Lawlor, Adrian Rivera-Reyes та ін. "YAP1-Mediated Suppression of USP31 Enhances NFκB Activity to Promote Sarcomagenesis". Cancer Research 78, № 10 (2018): 2705–20. http://dx.doi.org/10.1158/0008-5472.can-17-4052.
Full textYoung, Nathan P., Denise Crowley, and Tyler Jacks. "Uncoupling Cancer Mutations Reveals Critical Timing of p53 Loss in Sarcomagenesis." Cancer Research 71, no. 11 (2011): 4040–47. http://dx.doi.org/10.1158/0008-5472.can-10-4563.
Full textSodhi, Akrit, Silvia Montaner, and J. Silvio Gutkind. "Does dysregulated expression of a deregulated viral GPCR trigger Kaposi's sarcomagenesis?" FASEB Journal 18, no. 3 (2004): 422–27. http://dx.doi.org/10.1096/fj.03-1035hyp.
Full textArconada-Luque, Elena, Jaime Jiménez-Suarez, Raquel Pascual-Serra, et al. "ERK5 Is a Major Determinant of Chemical Sarcomagenesis: Implications in Human Pathology." Cancers 14, no. 14 (2022): 3509. http://dx.doi.org/10.3390/cancers14143509.
Full textMatushansky, Igor, Eva Hernando, Nicholas D. Socci, et al. "A Developmental Model of Sarcomagenesis Defines a Differentiation-Based Classification for Liposarcomas." American Journal of Pathology 172, no. 4 (2008): 1069–80. http://dx.doi.org/10.2353/ajpath.2008.070284.
Full textBarrott, Jared J., Benjamin E. Illum, Huifeng Jin та ін. "Paracrine osteoprotegerin and β-catenin stabilization support synovial sarcomagenesis in periosteal cells". Journal of Clinical Investigation 128, № 1 (2017): 207–18. http://dx.doi.org/10.1172/jci94955.
Full textAbdelMageed, M. A., P. Foltopoulou, and E. A. McNiel. "Feline vaccine-associated sarcomagenesis: Is there an inflammation-independent role for aluminium?" Veterinary and Comparative Oncology 16, no. 1 (2017): E130—E143. http://dx.doi.org/10.1111/vco.12358.
Full textGuarnerio, Jlenia, Luisa Riccardi, Riccardo Taulli, et al. "A Genetic Platform to Model Sarcomagenesis from Primary Adult Mesenchymal Stem Cells." Cancer Discovery 5, no. 4 (2015): 396–409. http://dx.doi.org/10.1158/2159-8290.cd-14-1022.
Full textCharytonowicz, Elizabeth, Igor Matushansky, Mireia Castillo-Martin, Todd Hricik, Carlos Cordon-Cardo, and Mel Ziman. "Alternate PAX3 and PAX7 C-terminal isoforms in myogenic differentiation and sarcomagenesis." Clinical and Translational Oncology 13, no. 3 (2011): 194–203. http://dx.doi.org/10.1007/s12094-011-0640-y.
Full textCavallin, Lucas E., Qi Ma, Julian Naipauer, et al. "KSHV-induced ligand mediated activation of PDGF receptor-alpha drives Kaposi's sarcomagenesis." PLOS Pathogens 14, no. 7 (2018): e1007175. http://dx.doi.org/10.1371/journal.ppat.1007175.
Full textMaxwell, Matthew B., and Diana C. Hargreaves. "Down, but Not Out: A Role for SMARCB1 in Synovial Sarcoma." Cancer Discovery 11, no. 10 (2021): 2375–77. http://dx.doi.org/10.1158/2159-8290.cd-21-0591.
Full textKim, Roger H., Benjamin D. L. Li, and Quyen D. Chu. "The Role of Chemokine Receptor CXCR4 in the Biologic Behavior of Human Soft Tissue Sarcoma." Sarcoma 2011 (2011): 1–4. http://dx.doi.org/10.1155/2011/593708.
Full textZhang, Joyce, Felix Kommoss, Branden Lynch, et al. "Abstract 2611: Cellular origin of DICER1 tumor predisposition syndrome informed by lineage-traceable genetically engineered mouse model." Cancer Research 85, no. 8_Supplement_1 (2025): 2611. https://doi.org/10.1158/1538-7445.am2025-2611.
Full textTeitz, T., T. S. B. Yen, and Y. W. Kan. "Amplification of a SV40 T antigen transgene is associated with sarcomagenesis in mice." Carcinogenesis 15, no. 9 (1994): 2049–51. http://dx.doi.org/10.1093/carcin/15.9.2049.
Full textJain, Neha, Jyoti Roy, Basudeb Das, and Bibekanand Mallick. "miR‐197‐5p inhibits sarcomagenesis and induces cellular senescence via repression of KIAA0101." Molecular Carcinogenesis 58, no. 8 (2019): 1376–88. http://dx.doi.org/10.1002/mc.23021.
Full textIomhair, Maura Mhic, and S. M. Lavelle. "Effect of 3 growth control substances on foreign body sarcomagenesis: IFN, IUdR, MGBG." Irish Journal of Medical Science 168, no. 1 (1999): 42–44. http://dx.doi.org/10.1007/bf02939580.
Full textJones, K. B., J. J. Barrott, M. Xie, et al. "The impact of chromosomal translocation locus and fusion oncogene coding sequence in synovial sarcomagenesis." Oncogene 35, no. 38 (2016): 5021–32. http://dx.doi.org/10.1038/onc.2016.38.
Full textKohrn, Rachael, and Joyce Ohm. "Abstract A029 Investigating the role of environmental toxicant exposures and STAG2 loss in sarcomagenesis." Cancer Research 84, no. 17_Supplement (2024): A029. http://dx.doi.org/10.1158/1538-7445.pediatric24-a029.
Full textShive, Heather R., John S. House, Jordan L. Ferguson, Dereje D. Jima, Aubrie A. Selmek, and Dillon T. Lloyd. "Abstract PR011: Characterization of the precancerous and cancer microenvironment in a zebrafish sarcoma model." Clinical Cancer Research 28, no. 18_Supplement (2022): PR011. http://dx.doi.org/10.1158/1557-3265.sarcomas22-pr011.
Full textHai, Yu, Asuka Kawachi, Xiaodong He, and Akihide Yoshimi. "Pathogenic Roles of RNA-Binding Proteins in Sarcomas." Cancers 14, no. 15 (2022): 3812. http://dx.doi.org/10.3390/cancers14153812.
Full textChen, Mark, Eric S. Xu, Nathan H. Leisenring, et al. "The Fusion Oncogene FUS-CHOP Drives Sarcomagenesis of High-Grade Spindle Cell Sarcomas in Mice." Sarcoma 2019 (July 25, 2019): 1–14. http://dx.doi.org/10.1155/2019/1340261.
Full textStraessler, Krystal M., Kevin B. Jones, Hao Hu, Huifeng Jin, Matt van de Rijn, and Mario R. Capecchi. "Modeling Clear Cell Sarcomagenesis in the Mouse: Cell of Origin Differentiation State Impacts Tumor Characteristics." Cancer Cell 23, no. 2 (2013): 215–27. http://dx.doi.org/10.1016/j.ccr.2012.12.019.
Full textScotlandi, Katia, Claudia Maria Hattinger, Evelin Pellegrini, Marco Gambarotti, and Massimo Serra. "Genomics and Therapeutic Vulnerabilities of Primary Bone Tumors." Cells 9, no. 4 (2020): 968. http://dx.doi.org/10.3390/cells9040968.
Full textKim, Ted, and Nam Q. Bui. "The Next Frontier in Sarcoma: Molecular Pathways and Associated Targeted Therapies." Cancers 15, no. 6 (2023): 1692. http://dx.doi.org/10.3390/cancers15061692.
Full textGoodwin, Matthew L., Huifeng Jin, Krystal Straessler, et al. "Modeling Alveolar Soft Part Sarcomagenesis in the Mouse: A Role for Lactate in the Tumor Microenvironment." Cancer Cell 26, no. 6 (2014): 851–62. http://dx.doi.org/10.1016/j.ccell.2014.10.003.
Full textPrice, J. G., A. J. Wisdom, Y. M. Mowery, H. S. Earp, and D. G. Kirsch. "Deciphering the Role of MerTK in Sarcomagenesis And Response To Radiation Therapy And Immune Checkpoint Blockade." International Journal of Radiation Oncology*Biology*Physics 108, no. 3 (2020): e564. http://dx.doi.org/10.1016/j.ijrobp.2020.07.1743.
Full textBarrott, Jared J., Benjamin E. Illum, Huifeng Jin та ін. "β-catenin stabilization enhances SS18-SSX2-driven synovial sarcomagenesis and blocks the mesenchymal to epithelial transition". Oncotarget 6, № 26 (2015): 22758–66. http://dx.doi.org/10.18632/oncotarget.4283.
Full text