Academic literature on the topic 'SARIMA model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'SARIMA model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "SARIMA model"
Woro Tri Handayani, Nandia Rani, Martinus Maslim, and Paulus Mudjihartono. "Forecasting of Catfish Sales by Time Series Using the SARIMA method." Jurnal Buana Informatika 11, no. 2 (October 31, 2020): 83. http://dx.doi.org/10.24002/jbi.v11i2.3535.
Full textPermatasari, Novia. "Penggunaan Indeks Google Trend Dalam Peramalan Jumlah Pengunjung Taman Rekreasi Selecta Tahun 2020." Seminar Nasional Official Statistics 2021, no. 1 (November 1, 2021): 1019–24. http://dx.doi.org/10.34123/semnasoffstat.v2021i1.993.
Full textRochayati, Isti, Utami Dyah Syafitri, I. Made Sumertajaya, and Indonesian Journal of Statistics and Its Applications IJSA. "KAJIAN MODEL PERAMALAN KUNJUNGAN WISATAWAN MANCANEGARA DI BANDARA KUALANAMU MEDAN TANPA DAN DENGAN KOVARIAT." Indonesian Journal of Statistics and Its Applications 3, no. 1 (February 28, 2019): 18–32. http://dx.doi.org/10.29244/ijsa.v3i1.171.
Full textAmelia, Ririn, Elyas Kustiawan, Ineu Sulistiana, and Desy Yuliana Dalimunthe. "FORECASTING RAINFALL IN PANGKALPINANG CITY USING SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE WITH EXOGENOUS (SARIMAX)." BAREKENG: Jurnal Ilmu Matematika dan Terapan 16, no. 1 (March 21, 2022): 137–46. http://dx.doi.org/10.30598/barekengvol16iss1pp137-146.
Full textChutiman, Nipaporn, Pannarat Guayjarernpanishk, Monchaya Chiangpradit, Piyapatr Busababodhin, Saowanee Rattanawan, and Butsakorn Kong-Led. "The Forecasting Model with Climate Variables of the Re-emerging Disease Rate in Elderly Patients." WSEAS TRANSACTIONS ON ENVIRONMENT AND DEVELOPMENT 17 (August 4, 2021): 866–75. http://dx.doi.org/10.37394/232015.2021.17.81.
Full textFaris Nasirudin and Abdullah Ahmad dzikrullah. "Pemodelan Harga Cabai Indonesia dengan Metode Seasonal ARIMAX." Jurnal Statistika dan Aplikasinya 7, no. 1 (June 30, 2023): 105–15. http://dx.doi.org/10.21009/jsa.07110.
Full textWang, H., C. W. Tian, W. M. Wang, and X. M. Luo. "Time-series analysis of tuberculosis from 2005 to 2017 in China." Epidemiology and Infection 146, no. 8 (April 30, 2018): 935–39. http://dx.doi.org/10.1017/s0950268818001115.
Full textKim, Taereem, Ju-Young Shin, Hanbeen Kim, Sunghun Kim, and Jun-Haeng Heo. "The Use of Large-Scale Climate Indices in Monthly Reservoir Inflow Forecasting and Its Application on Time Series and Artificial Intelligence Models." Water 11, no. 2 (February 21, 2019): 374. http://dx.doi.org/10.3390/w11020374.
Full textBleidorn, Michel Trarbach, Wanderson De Paula Pinto, Edilson Sarter Braum, Gemael Barbosa Lima, and Claudinei Antonio Montebeller. "MODELAGEM E PREVISÃO DE VAZÕES MÉDIAS MENSAIS DO RIO JUCU, ES, UTILIZANDO O MODELO SARIMA." IRRIGA 24, no. 2 (June 27, 2019): 320–35. http://dx.doi.org/10.15809/irriga.2019v24n2p320-335.
Full textPRAHLAD SARKAR, PRADIP BASAK, CHINMAYA SUBHRAJYOTI PANDA, DEB SANKAR GUPTA, MRINMOY RAY, and SABYASACHI MITRA. "Prediction of major pest incidence in Jute crop based on weather variables using statistical and machine learning models: A case study from West Bengal." Journal of Agrometeorology 25, no. 2 (May 25, 2023): 305–11. http://dx.doi.org/10.54386/jam.v25i2.1915.
Full textDissertations / Theses on the topic "SARIMA model"
Li, Yangyang M. Eng Massachusetts Institute of Technology. "New product forecasting of appliance and consumables : SARIMA model." Thesis, Massachusetts Institute of Technology, 2018. https://hdl.handle.net/1721.1/132738.
Full textCataloged from the PDF version of thesis.
Includes bibliographical references (pages 43-44).
Drinkworks is a joint venture between Anheuser-Busch InBev and Keurig Green Mountain, with a focus on developing an in-home alcohol system that can prepare different alcoholic beverages. The goal of this project is to forecast the demand for their new product, consisting of appliance and pods, without historical data. For appliance forecast, this paper focuses on an operational level model, SARIMA, which is a time series analysis that considers seasonality and has high accuracy in forecasting. The SARIMA model is implemented with grid search in Python via a demand planning tool, which saves client's time. Weighted consumption rate will be utilized with number of appliance sold to forecast future pods sales. SARIMA model proved to be an effective approach for appliance forecast within client's expectation. A systematic way to forecast pods is also proposed and demonstrated. It is hoped that the results presented here can serve as a basis and help the client with their new product launch.
by Yangyang Li.
M. Eng. in Advanced Manufacturing and Design
M.Eng.inAdvancedManufacturingandDesign Massachusetts Institute of Technology, Department of Mechanical Engineering
Nikolaisen, Sävås Fredrik. "Forecast Comparison of Models Based on SARIMA and the Kalman Filter for Inflation." Thesis, Uppsala universitet, Statistiska institutionen, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-202204.
Full textJantoš, Milan. "Modelovanie a predpovedanie sezónnych časových radov." Master's thesis, Vysoká škola ekonomická v Praze, 2016. http://www.nusl.cz/ntk/nusl-264619.
Full textAIDOO, ERIC. "Forecast Performance Between SARIMA and SETAR Models: An Application to Ghana Inflation Rate." Thesis, Uppsala universitet, Statistiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-154339.
Full textAIDOO, ERIC. "MODELLING AND FORECASTING INFLATION RATES IN GHANA: AN APPLICATION OF SARIMA MODELS." Thesis, Högskolan Dalarna, Statistik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:du-4828.
Full textSILVA, Pollyanna Kelly de Oliveira. "Análise e previsão de curto prazo do vento através de modelagem estatística em áreas de potencial eólico no nordeste do Brasil." Universidade Federal de Campina Grande, 2017. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1414.
Full textMade available in DSpace on 2018-08-13T15:28:50Z (GMT). No. of bitstreams: 1 POLLYANNA KELLY DE OLIVEIRA SILVA - TESE (PPGMet) 2017.pdf: 11004478 bytes, checksum: 0d5e098181f432beffc2fd8155027f1e (MD5) Previous issue date: 2017-08-30
CNPq
O vento como fonte para geração de energia elétrica é analisado neste trabalho através de sua variabilidade e da obtenção de previsões de curto prazo para o ano de 2010, período de atuação de El Niño-Oscilação Sul (ENOS) moderado. Modelos de séries temporais propostos por Box-Jenkins e o indicador de desempenho de predição MMREE são usados para obter as melhores estimativas da velocidade do vento com base nas séries observadas. São utilizados dados anemométricos do Projeto SONDA situado às margens do Rio São Francisco em Petrolina – PE, e de dois parques eólicos localizados no litoral do Estado do Ceará: Quixaba (litoral leste), na cidade de Aracati, e Lagoa Seca (litoral oeste), na cidade de Acaraú. O ciclo diário do vento tem velocidades mais baixas (altas) no período da madrugada-início da manhã (pela manhã e final da noite, com exceção do litoral oeste, cujas máximas ocorrem no final da tarde). Um cisalhamento vertical negativo, no vento local, é observado em períodos distintos do dia nas três áreas de estudo. No Ceará ele ocorre no período da manhã (início da tarde e meio da noite) no litoral leste (oeste) e no Lago de Sobradinho durante a noite até o início da manhã. Foi observado que no litoral leste os ventos são mais fortes, provavelmente devido à curvatura côncava do litoral. As estimativas da velocidade do vento no horizonte de 24 horas pelo modelo SARIMA, com dados horários dos 30 dias anteriores ao dia da previsão para treino (Caso 2), mostraram redução nos erros e melhora significativa na série estimada no período da madrugada-início da manhã; no Lago de Sobradinho essas estimativas são mais precisas, quando comparadas àquelas feitas com base em toda a série de dados (Caso 1). Os resultados indicam que o modelo SARIMA com período de entrada de dados menor pode ser aplicado para a previsão da velocidade do vento em áreas de potencial eólico, dando suporte ao operador da rede elétrica na programação da geração despachável para o dia seguinte.
The wind as a source for power generation is analyzed in this work by means of its variability and short-range wind forecasts for the year of 2010, period of moderate El Niño-Southern Oscillation (ENSO). Time series models proposed by Box-Jenkins and the indicator of forecast accuracy MMREE are used to obtain the best wind speed estimates based on the observed series. Anemometric data of the SONDA Project located on the shore of the São Francisco River in Petrolina-PE, and of two wind power plants located on the coast of the Ceará State, Quixaba (east coast), in the city of Aracati, and Lagoa Seca (west coast), in the city of Acaraú, are used. The daily wind cycle has lower (higher) speeds in late night-early morning (in the morning and end of the night, with exception of the west coast, whose maxima occur in late afternoon). A negative vertical shear in the local wind is observed in distinct periods of the day in the three study areas. In Ceará it occurs in the morning (early afternoon and middle of the night) on the east (west) coast and on Sobradinho Lake at night until early in the morning. It was observed that the winds are stronger on the east coast, probably due to the coast’s concave curvature. The wind speed estimates in a 24-hour horizon by the SARIMA model, with hourly data of the 30 days that precede the forecast day for training (Case 2), showed reduction in the errors and significant improvement in the estimated series in late night-early morning; in Sobradinho Lake these estimates are more accurate, as compared to the estimates based on the entire data series (Case 1). The results indicate that the SARIMA model with horter time series as input may be applied to forecast wind speed in areas of eolic potential, giving support to the system operator in programming the dispatchable distributed generation for the next day.
Han, Jianfeng, and 韩剑峰. "Comparing the performance of SARIMA and dynamic linear model in forecasting monthly cases of mumps in Hong Kong." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/193789.
Full textpublished_or_final_version
Public Health
Master
Master of Public Health
Helman, Karel. "Statistická analýza teplotních a srážkových časových řad v České republice v období 1961 - 2008." Doctoral thesis, Vysoká škola ekonomická v Praze, 2005. http://www.nusl.cz/ntk/nusl-96401.
Full textRobertson, Fredrik, and Max Wallin. "Forecasting monthly air passenger flows from Sweden : Evaluating forecast performance using the Airline model as benchmark." Thesis, Uppsala universitet, Statistiska institutionen, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-242764.
Full textNorambuena, Ortega Ramón Simón Andrés. "Predicción de Corto Plazo de Potencia Generada en un Aerogenerador Usando Modelo Sarima." Tesis, Universidad de Chile, 2011. http://www.repositorio.uchile.cl/handle/2250/104196.
Full textBooks on the topic "SARIMA model"
Daerah, Jawa Tengah (Indonesia) Badan Koordinasi Penanaman Modal. Profil penanaman modal SDA dan sarana prasarana. Semarang: Badan Penanaman Modal, Propinsi Jawa Tengah, 2003.
Find full textAnwar, Yusuf. Pasar modal sebagai sarana pembiayaan dan investasi. Bandung: Alumni, 2005.
Find full textSutedi, Adrian. Pasar modal syariah: Sarana investasi keuangan berdasarkan prinsip syariah. Rawamangun, Jakarta: Sinar Grafika, 2011.
Find full textIndonesia. Bagian Proyek Sistem Indikator Mutu Sekolah Dasar dan Madrasah Ibtidaiyah. Model kebutuhan sarana-prasarana sekolah dasar dan madrasah ibtidaiyah (SD-MI) nasional tahun 1995/1996. [Jakarta]: Departemen Pendidikan dan Kebudayaan, Badan Penelitian dan Pengembangan Pendidikan dan Kebudayaan, Pusat Informatika, 1995.
Find full textAndayani, Tri Rejeki. Strategi pengembangan living values education melalui model pembelajaran nilai toleransi berbasis budaya "tepa sarira" pada anak usia sekolah dasar: Suatu alternatif pendidikan karakter : integrasi nasional dan harmoni sosial = nation integration & social harmony : laporan pelaksanaan hibah kompetitif penelitian strategis nasional. Surakarta]: Universitas Sebelas Maret, 2010.
Find full textIndonesia, BP Mitra Usaha, ed. Panduan pengembangan materi pembelajaran dan standar sarana dan prasarana sekolah menengah kejuruan: Madrasah aliyah, SMA/MA/SMK/MAK : dilengkapi pengembangan program muatan lokal, sistem penilaian KTSP panduan penyelenggaraan pembelajaran pengayaan, sistem penilaian KTSP panduan penyelenggaraan pembelajaran remedial, sistem penilaian KTSP panduan penyelenggaraan pembelajaran tuntas (mastery learning), pengembangan model pembelajaran tatap muka, penugasan restruktur dan tugas mandiri tidak restruktur, panduan pengembangan bahan ajar, panduan pengembangan indikator, panduan umum pengembangan silabus. Jakarta: Mitra Usaha Indonesia, 2008.
Find full textBP, Mitra Usaha Indonesia, ed. Panduan pengembangan materi pembelajaran dan standar sarana dan prasarana sekolah menengah kejuruan: Madrasah aliyah, SMA/MA/SMK/MAK : dilengkapi pengembangan program muatan lokal, sistem penilaian KTSP panduan penyelenggaraan pembelajaran pengayaan, sistem penilaian KTSP panduan penyelenggaraan pembelajaran remedial, sistem penilaian KTSP panduan penyelenggaraan pembelajaran tuntas (mastery learning), pengembangan model pembelajaran tatap muka, penugasan restruktur dan tugas mandiri tidak restruktur, panduan pengembangan bahan ajar, panduan pengembangan indikator, panduan umum pengembangan silabus. Jakarta: Mitra Usaha Indonesia, 2008.
Find full textBP, Mitra Usaha Indonesia, ed. Panduan pengembangan materi pembelajaran dan standar sarana dan prasarana sekolah menengah kejuruan: Madrasah aliyah, SMA/MA/SMK/MAK : dilengkapi pengembangan program muatan lokal, sistem penilaian KTSP panduan penyelenggaraan pembelajaran pengayaan, sistem penilaian KTSP panduan penyelenggaraan pembelajaran remedial, sistem penilaian KTSP panduan penyelenggaraan pembelajaran tuntas (mastery learning), pengembangan model pembelajaran tatap muka, penugasan restruktur dan tugas mandiri tidak restruktur, panduan pengembangan bahan ajar, panduan pengembangan indikator, panduan umum pengembangan silabus. Jakarta: Mitra Usaha Indonesia, 2008.
Find full textKartika, Septi Budi. Modul Praktikum Fisika Dasar. Umsida Press, 2016. http://dx.doi.org/10.21070/2016/978-979-3401-82-9.
Full textStudi eksperimental model pembelajaran berbasis portofolio dalam mata pelajaran PPKN sebagai sarana pendidikan demokrasi: Studi kasus di sekolah model : laporan penelitian. [Bandung]: Fakultas Pendidikan Ilmu Pengetahuan Sosial, Universitas Pendidikan Indonesia, 2001.
Find full textBook chapters on the topic "SARIMA model"
Tahyudin, Imam, Berlilana, and Hidetaka Nambo. "SARIMA Model of Bioelectic Potential Dataset." In Communications in Computer and Information Science, 367–78. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96292-4_29.
Full textNokeri, Tshepo Chris. "Forecasting Using ARIMA, SARIMA, and the Additive Model." In Implementing Machine Learning for Finance, 21–50. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7110-0_2.
Full textSun, Susu, Xinbo Ai, and Yanzhu Hu. "Emergency Response Technology Transaction Forecasting Based on SARIMA Model." In Lecture Notes in Electrical Engineering, 561–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38460-8_62.
Full textBatista da Silveira, Tiago, Felipe Augusto Lara Soares, and Henrique Cota de Freitas. "Fast and Efficient Parallel Execution of SARIMA Prediction Model." In Enterprise Information Systems, 217–41. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75418-1_11.
Full textZhang, Xiao. "Forecast and Analysis of China’s CPI Based on SARIMA Model." In Atlantis Highlights in Intelligent Systems, 1354–61. Dordrecht: Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-030-5_135.
Full textSulistiyono, Heri, Faisal Irshad Khan, Humairo Saidah, Ery Setiawan, I. Wayan Yasa, I. Wayan Suteja, Salehudin, and I. Dewa Gede Jaya Negara. "The Development of the SARIMA Model for Flood Disaster Resilience." In Proceedings of the First Mandalika International Multi-Conference on Science and Engineering 2022, MIMSE 2022 (Civil and Architecture), 211–22. Dordrecht: Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-088-6_21.
Full textKumar, Vipin, Nitin Singh, Deepak Kumar Singh, and S. R. Mohanty. "Short-Term Electricity Price Forecasting Using Hybrid SARIMA and GJR-GARCH Model." In Networking Communication and Data Knowledge Engineering, 299–310. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4585-1_25.
Full textZheng, Chen, Yuzhou Wu, Zhigang Chen, Kun Wang, and Lizhong Zhang. "A Load Forecasting Method of Power Grid Host Based on SARIMA-GRU Model." In Communications in Computer and Information Science, 135–53. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7443-3_9.
Full textDedovic, M. Muftic, Samir Avdaković, Adnan Mujezinović, and N. Dautbasic. "The Hybrid EMD-SARIMA Model for Air Quality Index Prediction, Case of Canton Sarajevo." In Advanced Technologies, Systems, and Applications V, 139–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54765-3_9.
Full textQuan, Pham Dinh, Vu Hoang Anh, Nguyen Quang Dat, and Vijender Kumar Solanki. "Hybrid SARIMA—GRU Model Based on STL for Forecasting Water Level in Red River North Vietnam." In Machine Learning and Mechanics Based Soft Computing Applications, 151–62. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6450-3_16.
Full textConference papers on the topic "SARIMA model"
Ogino, Yuki, Yasuyuki Satoh, and Osamu Sakata. "Forecasting Bowel Sound Occurrence Frequency by SARIMA Model." In 2019 23rd International Computer Science and Engineering Conference (ICSEC). IEEE, 2019. http://dx.doi.org/10.1109/icsec47112.2019.8974803.
Full textHuang, Wuzhe, Fa Si, Feifei Han, Jiahao Liu, Jingshi Zheng, and Yuwen Wei. "Global temperature prediction based on SARIMA+LSTM model." In 2023 3rd International Conference on Applied Mathematics, Modelling and Intelligent Computing (CAMMIC 2023), edited by Xuebin Chen and Hari Mohan Srivastava. SPIE, 2023. http://dx.doi.org/10.1117/12.2686399.
Full textShimizu, Shuto, and Sanggyu Shin. "Applicability of SARIMA Model in Tokyo Population Migration Forecast." In 2021 14th International Conference on Human System Interaction (HSI). IEEE, 2021. http://dx.doi.org/10.1109/hsi52170.2021.9538690.
Full textJi, Xiaomei, Jingchao Sun, and Haihong Ma. "Call Forecasting Based on SARIMA and SVM Hybrid Model." In 2011 International Conference on Internet Technology and Applications (iTAP). IEEE, 2011. http://dx.doi.org/10.1109/itap.2011.6006285.
Full textZhao, Heng, Xumin Zuo, and Peisong Lin. "Sales forecasting for Chemical Products by Using SARIMA Model." In ICBDE'22: The 2022 5th International Conference on Big Data and Education. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3524383.3524396.
Full textBouhaddour, Samya, Chaimae Saadi, Ibrahim Bouabdallaoui, Fatima Guerouate, and Mohammed Sbihi. "Tourism in Singapore, prediction model using SARIMA and PROPHET." In VII INTERNATIONAL CONFERENCE “SAFETY PROBLEMS OF CIVIL ENGINEERING CRITICAL INFRASTRUCTURES” (SPCECI2021). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0131288.
Full textDong, Chunyao, Jing Liu, Yi Lu, and Long Zhang. "Stock Value Prediction Based on Merging SARIMA Model and Monte Carlo Model." In IC4E 2022: 2022 13th International Conference on E-Education, E-Business, E-Management, and E-Learning. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3514262.3514337.
Full textFu, Yuan. "Research on Supply and demand matching model based on SARIMA-BP model." In EBIMCS: 2022 5th International Conference on E-Business, Information Management and Computer Science. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3584748.3584787.
Full textCabrera, Nestor Gonzalez, G. Gutierrez-Alcaraz, and Esteban Gil. "Load forecasting assessment using SARIMA model and fuzzy inductive reasoning." In 2013 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, 2013. http://dx.doi.org/10.1109/ieem.2013.6962474.
Full textWang, Junqi, and Xuecheng Wang. "Analysis and Forecast of Shrimp Price Based on SARIMA Model." In Proceedings of the 4th Management Science Informatization and Economic Innovation Development Conference, MSIEID 2022, December 9-11, 2022, Chongqing, China. EAI, 2023. http://dx.doi.org/10.4108/eai.9-12-2022.2327622.
Full textReports on the topic "SARIMA model"
Sarkissian, Angie. Comparison between the Tap Model and Sara-2d Results. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada329259.
Full textGregory, M. V. Technical bases of the second generation SARIS core model (Task Number: 90-008-0). Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10165492.
Full textAnderson, B. Technical Review Report for the "Justification for Small Gram Quantity Contents" Safety Analysis Report for Packaging Model 9977-96, Addendum 3, S-SARA-G-00006, Revision 4. Office of Scientific and Technical Information (OSTI), March 2010. http://dx.doi.org/10.2172/1124840.
Full textStudsrød, Ingunn, Ragnhild Gjerstad Sørensen, Brita Gjerstad, Patrycja Sosnowska-Buxton, and Kathrine Skoland. “It’s very complex”: Professionals’ work with domestic violence (DV): Report – FGI and interviews 2022. University of Stavanger, November 2022. http://dx.doi.org/10.31265/usps.249.
Full text