To see the other types of publications on this topic, follow the link: SARIMA.

Journal articles on the topic 'SARIMA'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'SARIMA.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Permata, Regita Putri, and Ananda Taqhsya Dwiyana. "Comparison of NAIVE, SARIMA, and SARIMAX Models in Short-Term and Long-Term Forecasting of Google Search Trends." International Journal of Scientific Research in Computer Science and Engineering 13, no. 2 (2025): 21–29. https://doi.org/10.26438/ijsrcse.v13i2.665.

Full text
Abstract:
This study examines forecasting methods—Naïve, SARIMA, and SARIMAX—to enhance the accuracy of Google search trend predictions in the fitness industry, specifically for the keyword "Gym." The Naïve method serves as a baseline comparison, SARIMA incorporates seasonal, autoregressive, and moving average components for improved trend detection, while SARIMAX extends SARIMA by integrating exogenous variables. Historical Google search data from 2005 to 2015 is used for model evaluation, with performance assessed using MAE, RMSE, and MAPE metrics. The findings indicate that SARIMAX, which accounts fo
APA, Harvard, Vancouver, ISO, and other styles
2

Ibrahim, A., and A. O. Musa. "ON THE PERFORMANCE OF SARIMA AND SARIMAX MODEL IN FORECASTING MONTHLY AVERAGE RAINFALL IN KOGI STATE, NIGERIA." FUDMA JOURNAL OF SCIENCES 7, no. 6 (2023): 24–31. http://dx.doi.org/10.33003/fjs-2023-0706-2095.

Full text
Abstract:
Forecasting monthly rainfall is very important in Kogi state for better approach to flood management and also plays a pivotal role in agriculture which remains a significant factor in Nigeria’s economy. Advanced time series univariate models such as Seasonal Autoregressive Integrated Moving Average (SARIMA) models are usually employed in modelling and forecasting rainfall in Nigeria due to their non-linear pattern and spatiotemporal variation. Few studies have attempted to investigate the influence of other climatic factors in modelling and prediction of rainfall pattern. This study examines t
APA, Harvard, Vancouver, ISO, and other styles
3

Permatasari, Novia. "Penggunaan Indeks Google Trend Dalam Peramalan Jumlah Pengunjung Taman Rekreasi Selecta Tahun 2020." Seminar Nasional Official Statistics 2021, no. 1 (2021): 1019–24. http://dx.doi.org/10.34123/semnasoffstat.v2021i1.993.

Full text
Abstract:
Kota Batu merupakan salah satu daerah potensi pariwisata di Indonesia, dengan salah satu tujuan pariwisata andalan adalah Taman Rekreasi Selecta. Sejak tahun 2016 hingga 2019, Taman Rekreasi Selecta secara konsisten menjadi tempat wisata dengan jumlah pengunjung terbanyak di Kota Batu. Publikasi data kunjungan wisatawan yang hanya dilakukan sekali dalam satu tahun menunjukkan adanya selang waktu antara pengumpulan dan publikasi data, sehingga pemanfaatan data kunjungan wisatawan tersebut kurang maksimal. Permasalahan tersebut dapat diatasi dengan memanfaatkan real-tima data, yaitu big data. Pa
APA, Harvard, Vancouver, ISO, and other styles
4

Costa, Gabriela Emiliana de Melo e., Frederico Carlos M. de Menezes Filho, Fausto A. Canales, Maria Clara Fava, Abderraman R. Amorim Brandão, and Rafael Pedrollo de Paes. "Assessment of Time Series Models for Mean Discharge Modeling and Forecasting in a Sub-Basin of the Paranaíba River, Brazil." Hydrology 10, no. 11 (2023): 208. http://dx.doi.org/10.3390/hydrology10110208.

Full text
Abstract:
Stochastic modeling to forecast hydrological variables under changing climatic conditions is essential for water resource management and adaptation planning. This study explores the applicability of stochastic models, specifically SARIMA and SARIMAX, to forecast monthly average river discharge in a sub-basin of the Paranaíba River near Patos de Minas, MG, Brazil. The Paranaíba River is a vital water source for the Alto Paranaíba region, serving industrial supply, drinking water effluent dilution for urban communities, agriculture, fishing, and tourism. The study evaluates the performance of SA
APA, Harvard, Vancouver, ISO, and other styles
5

Faris Nasirudin and Abdullah Ahmad dzikrullah. "Pemodelan Harga Cabai Indonesia dengan Metode Seasonal ARIMAX." Jurnal Statistika dan Aplikasinya 7, no. 1 (2023): 105–15. http://dx.doi.org/10.21009/jsa.07110.

Full text
Abstract:
Chili is one of the plants favored by the people of Indonesia because Indonesian cuisine is famous for its spicy taste and spices in every food dish. The rise and fall of chili prices in the market are caused by chili farmers whose production decision-making processes are allegedly not handled and supported by a good production and price forecast. Therefore, analysis is needed to see the forecasting of chili prices in Indonesia in the future. The method that researchers use in forecasting in this study is the SARIMA and SARIMAX methods using the variables of rainfall, inflation, and google tre
APA, Harvard, Vancouver, ISO, and other styles
6

Kim, Taereem, Ju-Young Shin, Hanbeen Kim, Sunghun Kim, and Jun-Haeng Heo. "The Use of Large-Scale Climate Indices in Monthly Reservoir Inflow Forecasting and Its Application on Time Series and Artificial Intelligence Models." Water 11, no. 2 (2019): 374. http://dx.doi.org/10.3390/w11020374.

Full text
Abstract:
Climate variability is strongly influencing hydrological processes under complex weather conditions, and it should be considered to forecast reservoir inflow for efficient dam operation strategies. Large-scale climate indices can provide potential information about climate variability, as they usually have a direct or indirect correlation with hydrologic variables. This study aims to use large-scale climate indices in monthly reservoir inflow forecasting for considering climate variability. For this purpose, time series and artificial intelligence models, such as Seasonal AutoRegressive Integr
APA, Harvard, Vancouver, ISO, and other styles
7

Woro Tri Handayani, Nandia Rani, Martinus Maslim, and Paulus Mudjihartono. "Forecasting of Catfish Sales by Time Series Using the SARIMA method." Jurnal Buana Informatika 11, no. 2 (2020): 83. http://dx.doi.org/10.24002/jbi.v11i2.3535.

Full text
Abstract:
Abstrak. Sistem informasi yang mengotomatiskan proses bisnis, terutama dengan persyaratan khusus masih relevan saat ini. Clarias Makmur, sebuah usaha mikro di Indonesia yang membiakkan dan menjual ikan lele menggunakan sistem informasi ini untuk menjalankan penjualan, pengeluaran, modal, dan pelaporan mereka. Penjualan ikan lele sebagai makhluk hidup memiliki ciri khas tersendiri yang menunjukkan pola musiman yang unik. Sebuah model bernama SARIMA (Seasonal Autoregressive Integrated Moving Average) kemudian diusulkan untuk memprediksi penjualan. Lebih lanjut, sistem yang disebut SITRAN dibuat
APA, Harvard, Vancouver, ISO, and other styles
8

Chutiman, Nipaporn, Pannarat Guayjarernpanishk, Monchaya Chiangpradit, Piyapatr Busababodhin, Saowanee Rattanawan, and Butsakorn Kong-Led. "The Forecasting Model with Climate Variables of the Re-emerging Disease Rate in Elderly Patients." WSEAS TRANSACTIONS ON ENVIRONMENT AND DEVELOPMENT 17 (August 4, 2021): 866–75. http://dx.doi.org/10.37394/232015.2021.17.81.

Full text
Abstract:
This research forecasted the incidence rate per 100,000 elderly population with food poisoning, pneumonia, and fever of unknown origin in Khon Kaen Province and Roi Et Province in the northeastern part of Thailand. In the study, the time series forecasting with Box-Jenkins Method (SARIMA model) and Box-Jenkins Method with climate variables, i.e total monthly rainfall, maximum average monthly temperature, average relative humidity, minimum average monthly temperature and average temperature (SARIMAX model) was performed. The study results revealed that the forecasting accuracy was closely simil
APA, Harvard, Vancouver, ISO, and other styles
9

Rochayati, Isti, Utami Dyah Syafitri, I. Made Sumertajaya, and Indonesian Journal of Statistics and Its Applications IJSA. "KAJIAN MODEL PERAMALAN KUNJUNGAN WISATAWAN MANCANEGARA DI BANDARA KUALANAMU MEDAN TANPA DAN DENGAN KOVARIAT." Indonesian Journal of Statistics and Its Applications 3, no. 1 (2019): 18–32. http://dx.doi.org/10.29244/ijsa.v3i1.171.

Full text
Abstract:
Foreign tourist arrivals could be considered as time series data. Modelling these data could make use of internal and external factors. The techniques employed here to model these time series data are SARIMA, SARIMAX, VARIMA, and VARIMAX. SARIMA is a model for seasonal data and VARIMA is a model for multivariate time series data. If some explanatory variables are incorporated and have significant influence on the response, the former two models become SARIMAX and VARIMAX respectively. Three stages of creating the model are model identification, parameter estimation, and model diagnostics. The
APA, Harvard, Vancouver, ISO, and other styles
10

Amelia, Ririn, Elyas Kustiawan, Ineu Sulistiana, and Desy Yuliana Dalimunthe. "FORECASTING RAINFALL IN PANGKALPINANG CITY USING SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE WITH EXOGENOUS (SARIMAX)." BAREKENG: Jurnal Ilmu Matematika dan Terapan 16, no. 1 (2022): 137–46. http://dx.doi.org/10.30598/barekengvol16iss1pp137-146.

Full text
Abstract:
Changes in extreme rainfall can cause disasters or losses for the wider community, so information about future rainfall is also needed. Rainfall is included in the category of time series data. One of the time series methods that can be used is Autoregressive Integrated Moving Average (ARIMA) or Seasonal ARIMA (SARIMA). However, this model only involves one variable without involving its dependence on other variables. One of the factors that can affect rainfall is wind speed which can affect the formation of convective clouds. In this study, the ARIMA model was expanded by adding eXogen variab
APA, Harvard, Vancouver, ISO, and other styles
11

Morais, Petrúcio Luiz Lins de, Priscila Mayrelle Silva Castanha, Gabriela Isabel Limoeiro Alves Nascimento, and Ulisses Ramos Montarroyos. "Análise temporal da dengue associada a fatores climáticos em Garanhuns, Pernambuco, Brasil, de 2010 a 2019." Research, Society and Development 9, no. 12 (2020): e22891211138. http://dx.doi.org/10.33448/rsd-v9i12.11138.

Full text
Abstract:
Nos últimos cinco anos, o número de casos de Dengue vem crescendo acentuadamente na cidade de Garanhuns (Pernambuco). O objetivo deste estudo foi determinar uma análise de séries temporais de casos de Dengue no município de médio porte, associadas a fatores climáticos que contribuem para a ocorrência dessa doença com previsões, facilitando assim um melhor controle e prevenção de contaminações. Metodologia: Foi aplicado o modelo autorregressivo de médias móveis sazonais com variáveis exógenas (SARIMAX) - modelo de regressão linear que envolve um processo do modelo SARIMA. Além da análise gráfic
APA, Harvard, Vancouver, ISO, and other styles
12

Costa Lucas, Edimilson, Adilson Carlos Yoshikuni, Carlos Alberto Di Agustini, and Vinícius Augusto Brunassi Silva. "Ainda Estou Aqui Para Prever: uma comparação entre SARIMA e SARIMAX para vendas sazonais de aves no Brasil." Revista Gestão & Tecnologia 25, no. 3 (2025): 98–118. https://doi.org/10.20397/2177-6652/2025.v25i3.3199.

Full text
Abstract:
Objetivo: Essa pesquisa tem por objetivo comparar a aplicação dos modelos econométricos SARIMA e SARIMAX na previsão de demanda de produtos sazonais, utilizando como base real de dados as vendas mensais de aves congeladas de duas marcas concorrentes no Brasil. Metodologia: A metodologia empregada baseia-se na modelagem de séries temporais com os modelos SARIMA e SARIMAX. A abordagem adotou o procedimento de separação dos dados em conjuntos de treinamento e teste, técnica amplamente aplicada em estudos empíricos com foco em previsão fora da amostra, para uma averiguação da robustez dos modelos,
APA, Harvard, Vancouver, ISO, and other styles
13

Yadav, Baikunth Kumar, Sunil Kumar Srivastava, Ponnusamy Thillai Arasu, and Pranveer Singh. "Time Series Modeling of Tuberculosis Cases in India from 2017 to 2022 Based on the SARIMA-NNAR Hybrid Model." Canadian Journal of Infectious Diseases and Medical Microbiology 2023 (December 16, 2023): 1–9. http://dx.doi.org/10.1155/2023/5934552.

Full text
Abstract:
Tuberculosis (TB) is still one of the severe progressive threats in developing countries. There are some limitations to social and economic development among developing nations. The present study forecasts the notified prevalence of TB based on seasonality and trend by applying the SARIMA-NNAR hybrid model. The NIKSHAY database repository provides monthly informed TB cases (2017 to 2022) in India. A time series model was constructed based on the seasonal autoregressive integrated moving averages (SARIMA), neural network autoregressive (NNAR), and, SARIM-NNAR hybrid models. These models were es
APA, Harvard, Vancouver, ISO, and other styles
14

Adineh, Amir Hossein, Zahra Narimani, and Suresh Chandra Satapathy. "Importance of data preprocessing in time series prediction using SARIMA: A case study." International Journal of Knowledge-based and Intelligent Engineering Systems 24, no. 4 (2021): 331–42. http://dx.doi.org/10.3233/kes-200065.

Full text
Abstract:
Over last decades, time series data analysis has been in practice of specific importance. Different domains such as financial data analysis, analyzing biological data and speech recognition inherently deal with time dependent signals. Monitoring the past behavior of signals is a key for precise predicting the behavior of a system in near future. In scenarios such as financial data prediction, the predominant signal has a periodic behavior (starting from beginning of the month, week, etc.) and a general trend and seasonal behavior can also be assumed. Autoregressive Integrated Moving Average (A
APA, Harvard, Vancouver, ISO, and other styles
15

Ali, Nasir, Muhammad Ali, and Hassan Hashim. "PREDICTIVE MODEL TO MINIMIZE THE EFFECT OF EXTREME TEMPERATURE IN SKARDU AND ASTORE, GILGIT BALTISTAN." Journal of Mountain Area Research 9 (June 29, 2024): 138. http://dx.doi.org/10.53874/jmar.v9i0.192.

Full text
Abstract:
Climate is a fundamental factor of the natural environment that has a role in both natural and human existence. Temperature is an important climatic element that influences snow melting, evaporation, and frost directly. Current study has used Mean Monthly Minimum Temperature (MMMT) of Skardu from 1972 to 2021 and of Astore from 1993 to 2021 based on the availability of data. In this work; we have used SARIMA (Seasonal Auto Regressive Integrated Moving Average Model) to forecast mean monthly minimum temperature. Skardu data is stationary at level form, which suggests SARMA model for Skardu stat
APA, Harvard, Vancouver, ISO, and other styles
16

Serrano, André Luiz Marques, Gabriel Arquelau Pimenta Rodrigues, Patricia Helena dos Santos Martins, et al. "Statistical Comparison of Time Series Models for Forecasting Brazilian Monthly Energy Demand Using Economic, Industrial, and Climatic Exogenous Variables." Applied Sciences 14, no. 13 (2024): 5846. http://dx.doi.org/10.3390/app14135846.

Full text
Abstract:
Energy demand forecasting is crucial for effective resource management within the energy sector and is aligned with the objectives of Sustainable Development Goal 7 (SDG7). This study undertakes a comparative analysis of different forecasting models to predict future energy demand trends in Brazil, improve forecasting methodologies, and achieve sustainable development goals. The evaluation encompasses the following models: Seasonal Autoregressive Integrated Moving Average (SARIMA), Exogenous SARIMA (SARIMAX), Facebook Prophet (FB Prophet), Holt–Winters, Trigonometric Seasonality Box–Cox transf
APA, Harvard, Vancouver, ISO, and other styles
17

PRAHLAD SARKAR, PRADIP BASAK, CHINMAYA SUBHRAJYOTI PANDA, DEB SANKAR GUPTA, MRINMOY RAY, and SABYASACHI MITRA. "Prediction of major pest incidence in Jute crop based on weather variables using statistical and machine learning models: A case study from West Bengal." Journal of Agrometeorology 25, no. 2 (2023): 305–11. http://dx.doi.org/10.54386/jam.v25i2.1915.

Full text
Abstract:
Jute crop cultivated in Cooch Behar suffers a substantial amount of physical and economical loss every year due to several major insect pest infestation such as Yellow Mite (Polyphagotarsonemus latus Banks) and Jute Semilooper (Anomis sabulifera Guen). Constructed seasonal plots reveal that for Yellow Mite pest incidence is maximum at 55 DAS, while for Jute Semi Looper it is at 45 DAS. Correlation analysis indicate that the weather parameters such as minimum temperature at current week, maximum RH at one week lag, minimum temperature, minimum and maximum RH at two week lag are significantly co
APA, Harvard, Vancouver, ISO, and other styles
18

Yulianti, Riska, Nabila Tri Amanda, Khairil Anwar Notodiputro, Yenni Angraini, and Laily Nissa Atul Mualifah. "COMPARISON OF SARIMA AND SARIMAX METHODS FOR FORECASTING HARVESTED DRY GRAIN PRICES IN INDONESIA." BAREKENG: Jurnal Ilmu Matematika dan Terapan 19, no. 1 (2025): 319–30. https://doi.org/10.30598/barekengvol19iss1pp319-330.

Full text
Abstract:
Harvested dry grain (HDG) is a vital commodity for rice availability and plays a strategic role in Indonesia’s agricultural economy. Farmers typically sell HDG to rice millers post-harvest, yet disparities between farm-level selling prices and consumer-level purchase prices. This price gap can lead to financial losses for farmers, highlighting the need for accurate forecasting can lead to potential losses for farmers. SARIMA models are effective in capturing seasonality and trends but often fail to incorporate external factors influencing the dependent variable, resulting in less accurate fore
APA, Harvard, Vancouver, ISO, and other styles
19

Wang, H., C. W. Tian, W. M. Wang, and X. M. Luo. "Time-series analysis of tuberculosis from 2005 to 2017 in China." Epidemiology and Infection 146, no. 8 (2018): 935–39. http://dx.doi.org/10.1017/s0950268818001115.

Full text
Abstract:
AbstractSeasonal autoregressive integrated moving average (SARIMA) has been used to model nationwide tuberculosis (TB) incidence in other countries. This study aimed to characterise monthly TB notification rate in China. Monthly TB notification rate from 2005 to 2017 was used. Time-series analysis was based on a SARIMA model and a hybrid model of SARIMA-generalised regression neural network (GRNN) model. A decreasing trend (3.17% per years, P < 0.01) and seasonal variation of TB notification rate were found from 2005 to 2016 in China, with a predominant peak in spring. A SARIMA model of ARI
APA, Harvard, Vancouver, ISO, and other styles
20

Hidayatullah, M. Pio, Ferra Yanuar, and Dodi Devianto. "PEMODELAN JUMLAH PENUMPANG PESAWAT DI BANDARA SOEKARNO-HATTA MENGGUNAKAN MODEL HYBRiD SARIMA-FTSMC." Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika 4, no. 3 (2023): 1744–55. http://dx.doi.org/10.46306/lb.v4i3.513.

Full text
Abstract:
The aim of this research is to model the number of airplane passengers at Soelkarno-Hatta airport using a model hybrid SARIMA-FTSMC. The data used in this research is secondary data in the form of data on the number of airplane passengers at Soekarno-Hatta airport from January 2010 to May 2023 which was obtained via the websitebps.go.id. After analyzing the data, the best model was obtained in the SARIMA model, namely SARIMA(1,1,1)(0,1,1)12. Then based on the residual value from the processed data SARIMA will be modeled using the FTSMC model. Next, the residual value of SARIMA(1,1,1)(0,1,1)12
APA, Harvard, Vancouver, ISO, and other styles
21

Zhao, Daren, and Ruihua Zhang. "A new hybrid model SARIMA-ETS-SVR for seasonal influenza incidence prediction in mainland China." Journal of Infection in Developing Countries 17, no. 11 (2023): 1581–90. http://dx.doi.org/10.3855/jidc.18037.

Full text
Abstract:
Introduction: Seasonal influenza is a serious public health issue in China. This study aimed to develop a new hybrid model for seasonal influenza incidence prediction and provide reference information for early warning management before outbreaks. Methodology: Data on the monthly incidence of seasonal influenza between 2004 and 2018 were obtained from the China Public Health Science Data Center website. A single seasonal autoregressive integrated moving average (SARIMA) model and a single error trend and seasonality (ETS) model were built. On this basis, we constructed SARIMA, ETS, and support
APA, Harvard, Vancouver, ISO, and other styles
22

Kadek, Jemmy Waciko, and B. Ismail. "SARIMA-ELM Hybrid Model for Forecasting Tourist in Nepal." RESEARCH REVIEW International Journal of Multidisciplinary 03, no. 07 (2018): 343–49. https://doi.org/10.5281/zenodo.1318551.

Full text
Abstract:
In this study a novel hybrid model has been developed to forecasting tourist arrivals. The main concept is to combine two different forecasting techniques such as SARIMA and Extreme Learning Machine models to produce a new SARIMA-ELM hybrid Model, so as to achieve accuracy in forecasting. Forecasting accuracy for SARIMA, Triple Exponential Smoothing (The Holt-Winter’s), Multi Layer Perceptron-Neural Networks (MLP-NN), Extreme Learning Machine (ELM) and SARIMA-ELM hybrid models are computed and compared using criteria like RMSE, MAE, and MAPE. Empirical analysis found that SARIMA-ELM hybr
APA, Harvard, Vancouver, ISO, and other styles
23

Bunnag, Tanattrin. "Forecasting PM10 Caused by Bangkok’s Leading Greenhouse Gas Emission Using the SARIMA and SARIMA-GARCH Model." International Journal of Energy Economics and Policy 14, no. 1 (2024): 418–26. http://dx.doi.org/10.32479/ijeep.15275.

Full text
Abstract:
This paper analyzes the relationship between air pollutants and the amount of PM10 measured in Bangkok. It forecasts the amount of PM10 in Bangkok by using the SARIMA and SARIMA-GARCH models to formulate policies to reduce the occurrence of PM10 and guidelines for further prevention. PM's data is from January 2008 to July 2023. First, the process is to build the SARIMA Model and SARIMA-GARCH Model Estimation. We perform model comparisons that SARIMA (3,1,3)(1,1,2)12 and SARIMA(3,1,3)(1,1,2)12-GARCH(1,1), which model gives lower MAE and RMSE values, which indicates good prediction accuracy than
APA, Harvard, Vancouver, ISO, and other styles
24

Febrian, M. Yandre, and Arie Wahyu Wijayanto. "Prediksi Jumlah Wisatawan Mancanegara Yang Masuk Melalui Bandara Kualanamu Menggunakan Big Data Google Trends." Seminar Nasional Official Statistics 2024, no. 1 (2024): 851–62. http://dx.doi.org/10.34123/semnasoffstat.v2024i1.2273.

Full text
Abstract:
Jumlah wisatawan mancanegara yang terus meningkat di Sumatera Utara membuat pemerintah harus mempersiapkan strategi yang tepat untuk kebijakan yang diambil. Perilisan data yang dilakukan Badan Pusat Statistik (BPS) selaku lembaga yang bertanggung jawab masih memiliki kekurangan yaitu adanya gap waktu antara pengumpulan dan publikasi data. Penggunaan Google Trends sebagai data pendukung pengisi gap waktu tersebut dapat dilakukan karena data Google Trends yang dapat diakses secara real time. Penelitian ini bertujuan untuk melihat hubungan antara data Google Trends dengan data official statistics
APA, Harvard, Vancouver, ISO, and other styles
25

Bleidorn, Michel Trarbach, Wanderson De Paula Pinto, Edilson Sarter Braum, Gemael Barbosa Lima, and Claudinei Antonio Montebeller. "MODELAGEM E PREVISÃO DE VAZÕES MÉDIAS MENSAIS DO RIO JUCU, ES, UTILIZANDO O MODELO SARIMA." IRRIGA 24, no. 2 (2019): 320–35. http://dx.doi.org/10.15809/irriga.2019v24n2p320-335.

Full text
Abstract:
MODELAGEM E PREVISÃO DE VAZÕES MÉDIAS MENSAIS DO RIO JUCU, ES, UTILIZANDO O MODELO SARIMA
 
 
 MICHEL TRARBACH BLEIDORN1; WANDERSON DE PAULA PINTO2; EDILSON SARTER BRAUN3; GEMAEL BARBOSA LIMA4 E CLAUDINEI ANTONIO MONTEBELLER5
 
 1Pós-graduando em Certificação Ambiental e Consultoria pela Faculdade de Venda Nova do Imigrante (FAVENI), Av. Ângelo Altoé – nº 888 – Santa Cruz, Venda Nova do Imigrante/ES/Brasil, CEP: 29375-000, michelbleidorn@gmail.com;
 2Departamento de Ciências Ambientais, Faculdade da Região Serrana (FARESE), Rua Jequitibá – nº 121- Centro, Santa Ma
APA, Harvard, Vancouver, ISO, and other styles
26

Joseph, Agnes B., and Godfrey Edward Mpogolo. "Application of SARIMA Model on Forecasting Wholesale Prices of Food Commodities in Tanzania: A Case of Maize, Rice and Beans." African Journal of Accounting and Social Science Studies 4, no. 1 (2022): 206–19. http://dx.doi.org/10.4314/ajasss.v4i1.11.

Full text
Abstract:
This research used a time series model called the Seasonal Autoregressive Integrated Moving Average (SARIMA) technique to model and forecast wholesale prices of Tanzania`s key food crops, notably maize, rice, and beans. The SARIMA model was selected due to its ability of fitting data with seasonality. Monthly wholesale prices data of the three crops between February 2004 to October 2021 in Tanzania were retrieved from the website of the Bank of Tanzania (BoT), resulting in 213 observations on each crop. The data from February 2004 to October, 2020 were used to fit a SARIMA model and data of No
APA, Harvard, Vancouver, ISO, and other styles
27

Meng, Rui, and Yinglun Wang. "Descriptions of new species of the genera Sarima Melichar and Sarimodes Matsumura from southern China (Hemiptera, Fulgoromorpha, Issidae)." ZooKeys 557 (January 28, 2016): 93–109. https://doi.org/10.3897/zookeys.557.6166.

Full text
Abstract:
Two Issini genera, Sarima Melichar, 1903 and Sarimodes Matsumura, 1916, are examined. One new Sarima species: S. bifurcus sp. n. and two new Sarimodes species S. clavatus sp. n. and S. parallelus sp. n. are added from South China. A checklist of species in the genus Sarima with data on distribution is provided. The distribution and morphological peculiarities of the genera Sarima and Sarimodes are briefly discussed.
APA, Harvard, Vancouver, ISO, and other styles
28

Bilek, Günal. "Modeling Tourism Demand in Turkey (2008–2024): Time-Series Approaches for Sustainable Growth." Sustainability 17, no. 4 (2025): 1396. https://doi.org/10.3390/su17041396.

Full text
Abstract:
Tourism is a critical sector for economic growth and cultural exchange, particularly for destinations like Turkey, which consistently attracts millions of visitors annually. This study investigates the dynamics of tourism demand in Turkey between 2008 and 2024, with a focus on seasonality, long-term trends, and predictive modeling accuracy. Time-series data were analyzed, and the impacts of economic indicators and digital search trends were evaluated using SARIMA and SARIMAX models. The results demonstrate that the SARIMA models outperformed the SARIMAX models, highlighting the dominance of in
APA, Harvard, Vancouver, ISO, and other styles
29

Araújo, Eduardo Gomes de, Silvio Fernando Alvez Xavier Júnior, Nyedja Fialho Morais Barbosa, and Tiago Almeida de Oliveira. "Modeling and forecasting of time series models of electricity consumption in the Northeast Region of Brazil." Sigmae 12, no. 1 (2022): 10–28. https://doi.org/10.29327/2520355.12.1-1.

Full text
Abstract:
A energia elétrica é uma das formas de energia mais utilizadas, sendo de grande importância para o crescimento econômico mundial. Neste contexto, analisou-se a série temporal do consumo de energia elétrica no Nordeste brasileiro, no período de janeiro de 1997 a maio de 2021 e estimou-se a previsão para todo o ano de 2021, baseando-se em metodologias utilizadas na análise de séries temporais. Os métodos aplicados para estas previsões foram os algoritmos de Holt-Winters, nas formas aditiva e multiplicativa, e também o método de modelagem de Box-Jenkins, nas formas SARIMA e SARIMAX. Para o caso d
APA, Harvard, Vancouver, ISO, and other styles
30

FM, Mohammed Farooq Abdulla, Tamilselvan V, Harshini V S, and Deepthikka R S. "Purchase and Analytics for Grace Marketing." International Journal of Engineering Research in Computer Science and Engineering 9, no. 5 (2022): 21–24. http://dx.doi.org/10.36647/ijercse/09.05.art003.

Full text
Abstract:
In recent years development of computer systems were able to learn and adapt without following explicit instructions, by using algorithms and statistical models to analyze and draw inferences from patterns in data is known as machine learning.In this phase sales of different lubricants were predicted using a multivariate time series forecasting algorithm.Previously it showed that the model was accurate in predicting the engine oil sales for a particular time.Using Regressions the accuracy of sales prediction was less (74%) and the models like SVM and Random forest were showing signs of over fi
APA, Harvard, Vancouver, ISO, and other styles
31

FM, Mohammed Farooq Abdulla, Tamilselvan V, Harshini V S, and Deepthikka R S. "Purchase and Analytics for Grace Marketing." International Journal of Science, Engineering and Management 9, no. 4 (2022): 1–4. http://dx.doi.org/10.36647/ijsem/09.04.a001.

Full text
Abstract:
In recent years development of computer systems were able to learn and adapt without following explicit instructions, by using algorithms and statistical models to analyze and draw inferences from patterns in data is known as machine learning.In this phase sales of different lubricants were predicted using a multivariate time series forecasting algorithm.Previously it showed that the model was accurate in predicting the engine oil sales for a particular time.Using Regressions the accuracy of sales prediction was less (74%) and the models like SVM and Random forest were showing signs of over fi
APA, Harvard, Vancouver, ISO, and other styles
32

Chikobvu, Delson, and Caston Sigauke. "Regression-SARIMA modelling of daily peak electricity demand in South Africa." Journal of Energy in Southern Africa 23, no. 3 (2012): 23–30. http://dx.doi.org/10.17159/2413-3051/2012/v23i3a3169.

Full text
Abstract:
In this paper, seasonal autoregressive integrated moving average (SARIMA) and regression with SARIMA errors (regression-SARIMA) models are developed to predict daily peak electricity demand in South Africa using data for the period 1996 to 2009. The performance of the developed models is evaluated by comparing them with Winter’s triple exponential smoothing model. Empirical results from the study show that the SARIMA model produces more accurate short-term forecasts. The regression-SARIMA modelling framework captures important drivers of electricity demand. These results are important to decis
APA, Harvard, Vancouver, ISO, and other styles
33

Akermi, Seif Eddine, Mohamed L’Hadj, and Schehrazad Selmane. "Epidemiology and Time Series Analysis of Human Brucellosis in Tebessa Province, Algeria, from 2000 to 2020." Journal of Research in Health Sciences 22, no. 1 (2021): e00544-e00544. http://dx.doi.org/10.34172/jrhs.2022.79.

Full text
Abstract:
Background: Brucellosis runs rampant endemically with sporadic outbreaks in Algeria. The present study aimed to provide insights into the epidemiology of brucellosis and compare the performance of some prediction models using surveillance data from Tebessa province, Algeria. Study Design: A retrospective study. Methods: Seasonal autoregressive integrated moving average (SARIMA), neural network autoregressive (NNAR), and hybrid SARIMA-NNAR models were developed to predict monthly brucellosis notifications. The prediction performance of these models was compared using root mean square error (RMS
APA, Harvard, Vancouver, ISO, and other styles
34

Shrikant, G. V. Srinivasa Reddy, M. K. Manjunath, Rahul Patil, and Prasad S. Kulkarni. "Predicting Potential Evapotranspiration for Kalaburagi District using a Seasonal Arima Model." International Journal of Environment and Climate Change 13, no. 11 (2023): 2073–82. http://dx.doi.org/10.9734/ijecc/2023/v13i113367.

Full text
Abstract:
Forecasting potential evapotranspiration (PET) is of great importance in effectively managing irrigation systems. This article centers around models designed to simulate future PET levels for the Kalaburagi district. The study calculates potential evapotranspiration using temperature data in degrees Celsius, employing the Thornthwaite method, and prediction is performed using the Seasonal Autoregressive Moving Average (SARIMA) method. These models are developed based on autocorrelation function (ACF) and partial autocorrelation function (PACF) analysis. Model selection is based on minimizing A
APA, Harvard, Vancouver, ISO, and other styles
35

Tahyudin, Imam, Rizki Wahyudi, and Hidetaka Nambo. "SARIMA-LSTM Combination For COVID-19 Case Modeling." IIUM Engineering Journal 23, no. 2 (2022): 171–82. http://dx.doi.org/10.31436/iiumej.v23i2.2134.

Full text
Abstract:
The study of SARIMA method in combination with LSTM is interesting to do. This combination method can be convincing and significant because the data collected is numerical and saved based on time. In addition, the proposed method can anticipate datasets, either linear or non-linear. Based on several previous studies, the SARIMA method has the advantage of completing linear datasets while the LSTM method excels in achieving non-linear datasets. Also, both methods have been shown to have an accuracy value compared to some other methods. This study tried to combine the two through several stages
APA, Harvard, Vancouver, ISO, and other styles
36

Wan Amir, Wan Anis Farhah, and Md Yushalify Misro. "Improving Covid-19 Forecasts in Malaysia: A Hybrid SARIMAX-SARIMA Model with Application to State Elections and Cultural Festivals." Malaysian Journal of Fundamental and Applied Sciences 20, no. 6 (2024): 1478–92. https://doi.org/10.11113/mjfas.v20n6.3606.

Full text
Abstract:
Since the onset of the Covid-19 pandemic, numerous challenges have emerged, including ensuring an adequate supply of personal protective equipment, evaluating the sufficiency of the healthcare workforce, and determining safety measures to sustain businesses and the economy. Consequently, there is a critical need for a computationally competent and realistic model to monitor current caseloads and forecast future cases, thereby enhancing public health awareness, preparation, and response. However, many forecast models currently in use have wide prediction intervals, diminishing their effectivene
APA, Harvard, Vancouver, ISO, and other styles
37

Tahyudin, Imam, Rizki Wahyudi, Wiga Maulana, and Hidetaka Nambo. "The mortality modeling of covid-19 patients using a combined time series model and evolutionary algorithm." International Journal of Advances in Intelligent Informatics 8, no. 1 (2022): 69. http://dx.doi.org/10.26555/ijain.v8i1.669.

Full text
Abstract:
COVID-19 pandemics for as long as two years ago since 2019 gives many insights into various aspects, including scientific development. One of them is the fundamental research of computer science. This research aimed to construct the best model of COVID-19 patients’ mortality and obtain less prediction errors. We performed the combination methods of time series, SARIMA, and Evolutionary algorithm, PARCD, to predict male patients who died because of COVID-19 in the USA, containing 1.008 data. So, this research proposed that SARIMA-PARCD has a powerful combination for addressing the complex probl
APA, Harvard, Vancouver, ISO, and other styles
38

Eryürük, Şule. "Bir Tarım Makineleri Üreticisi için SARIMA Modeli ile Tahminleme." Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, no. 3 (2025): 1146–68. https://doi.org/10.47495/okufbed.1549538.

Full text
Abstract:
Tarım makineleri üretiminde karşılaşılan en önemli riskler günümüzde iklim değişikliğinden kaynaklı talep zamanlarında ve miktarlarında kayma ve rekabet unsurları olarak değerlendirilebilir. Bu nedenle tarım makineleri üretiminde istatistiksel talep tahmini yapmak elzem bir konu olmuştur. Bu çalışmanın amacı, tarım makineleri sektöründe bir imalatçıdan elde edilen 2011-2021 yılları arasındaki aylık üretim verilerinden yararlanarak gelecek 12 aylık dönemde üreticinin ürettiği en önemli iki ürününe ait üretim miktarlarını tahmin etmek ve gelecek üretim adetlerine dair öneriler geliştirmektir. Ta
APA, Harvard, Vancouver, ISO, and other styles
39

Setyaningrum, Oktavia Aryani, Etik Zukhronah, and Sri Sulistijowati Handajani. "PERAMALAN NILAI TUKAR PETANI (NTP) DI INDONESIA MENGGUNAKAN METODE HIBRIDA SINGULAR SPECTRUM ANALYSIS (SSA)-SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (SARIMA)." PROSIDING SEMINAR NASIONAL PENDIDIKAN MATEMATIKA (SENPIKA) 1 (December 20, 2023): 254–66. http://dx.doi.org/10.20527/m7sfd480.

Full text
Abstract:
Kemajuan sektor pertanian suatu negara dapat dilihat dari kesejahteraan petaninya. Nilai Tukar Petani (NTP) dapat dijadikan indikator dari kesejahteraan petani. NTP merupakan rasio antara indeks harga yang diterima petani (Id) dan indeks harga yang dibayarkan petani (Ib) sehingga diharapkan dari waktu ke waktu nilainya terus mengalami kenaikan. NTP dapat digunakan sebagai bahan pertimbangan dalam penentuan kebijakan untuk mengembangkan sektor pertanian di Indonesia. Oleh karena itu, diperlukan peramalan NTP. Penelitian ini bertujuan untuk meramalkan NTP di Indonesia menggunakan metode hibrida
APA, Harvard, Vancouver, ISO, and other styles
40

Khoiriyah, Nurhastivania Sohifatul, Mega Silfiani, Resti Novelinda, and Surya Muhammad Rezki. "Peramalan Jumlah Penumpang Kapal di Pelabuhan Balikpapan dengan SARIMA." Jurnal Statistika dan Komputasi 2, no. 2 (2023): 76–82. http://dx.doi.org/10.32665/statkom.v2i2.2303.

Full text
Abstract:
Latar Belakang: Peramalan jumlah kedatangan penumpang kapal dalam negeri di pelabuhan dalam negeri sangat penting untuk antisipasi lonjakan penumpang. Tujuan: Tujuan dari penelitian ini adalah mendapatkan model terbaik untuk peramalan jumlah kedatangan penumpang kapal. Metode: Penelitian ini menggunakan metode Seasonal Autoregressive Integrated Moving Average (SARIMA). Data jumlah kedatangan penumpang kapal dalam negeri di Pelabuhan Balikpapan dari Januari 2017 sampai dengan Desember 2021. Root mean absolute error (RMSE) digunakan untuk membandingkan akurasi peramalan. Hasil: Model SARIMA yang
APA, Harvard, Vancouver, ISO, and other styles
41

Wang, Yongbin, Chunjie Xu, Shengkui Zhang, et al. "Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model." BMJ Open 9, no. 7 (2019): e024409. http://dx.doi.org/10.1136/bmjopen-2018-024409.

Full text
Abstract:
ObjectiveTuberculosis (TB) remains a major deadly threat in mainland China. Early warning and advanced response systems play a central role in addressing such a wide-ranging threat. The purpose of this study is to establish a new hybrid model combining a seasonal autoregressive integrated moving average (SARIMA) model and a non-linear autoregressive neural network with exogenous input (NARNNX) model to understand the future epidemiological patterns of TB morbidity.MethodsWe develop a SARIMA-NARNNX hybrid model for forecasting future levels of TB incidence based on data containing 255 observati
APA, Harvard, Vancouver, ISO, and other styles
42

Aravazhi, Agaraoli. "Hybrid Machine Learning Models for Forecasting Surgical Case Volumes at a Hospital." AI 2, no. 4 (2021): 512–26. http://dx.doi.org/10.3390/ai2040032.

Full text
Abstract:
Recent developments in machine learning and deep learning have led to the use of multiple algorithms to make better predictions. Surgical units in hospitals allocate their resources for day surgeries based on the number of elective patients, which is mostly disrupted by emergency surgeries. Sixteen different models were constructed for this comparative study, including four simple and twelve hybrid models for predicting the demand for endocrinology, gastroenterology, vascular, urology, and pediatric surgical units. The four simple models used were seasonal autoregressive integrated moving aver
APA, Harvard, Vancouver, ISO, and other styles
43

Liu, Dongyao. "The prediction and analysis of global climate change based on SARIMA." Applied and Computational Engineering 40, no. 1 (2024): 268–73. http://dx.doi.org/10.54254/2755-2721/40/20230665.

Full text
Abstract:
Global climate change is a significant challenge that the world is currently facing. Accurate prediction of global climate change is essential for environmental protection, agricultural production, and social development. This study explores the utilization of the Seasonal Autoregressive Integrated Moving Average (SARIMA) model for forecasting global climate change. The SARIMA model is a machine learning algorithm that can effectively capture seasonal patterns and non-linear characteristics of climate data. The study initiates by performing data preprocessing tasks, which encompass data cleani
APA, Harvard, Vancouver, ISO, and other styles
44

Ningsih, Prawati, Maiyastri Maiyastri, and Yudiantri Asdi. "PERAMALAN JUMLAH KEDATANGAN WISATAWAN MANCANEGARA KE SUMATERA BARAT MELALUI BANDARA INTERNASIONAL MINANGKABAU DENGAN MODEL SARIMA." Jurnal Matematika UNAND 8, no. 2 (2019): 128. http://dx.doi.org/10.25077/jmu.8.2.128-134.2019.

Full text
Abstract:
Jumlah kedatangan wisatawan mancanegara ke Sumatera Barat melalui Bandara Internasional Minangkabau cenderung mengalami perubahan di setiap tahunnya. Untuk mengetahui jumlah kedatangan wisatawan mancanegara di masa yang akan datang, dapat dilakukan dengan menggunakan model SARIMA. Model SARIMA merupakan model ARIMA yang mengandung unsur musiman. Model ini diaplikasikan untuk meramalkan jumlah kedatangan wisatawan mancanegara pada periode Januari 2019 hingga Desember 2019. Hasil analisis data menunjukkan bahwa model SARIMA(1, 0, 1)(2, 1, 0)12 yang terbaik, dimana hasil pendugaan yang diperoleh
APA, Harvard, Vancouver, ISO, and other styles
45

Fortuna, Hilda Najwa Dewi, and Affiati Oktaviarina. "Metode SARIMA ARCH PERAMALAN JUMLAH PRODUKSI PADI KABUPATEN NGAWI MENGGUNAKAN METODE SARIMA ARCH." MATHunesa: Jurnal Ilmiah Matematika 12, no. 2 (2024): 418–27. https://doi.org/10.26740/mathunesa.v12n2.p418-427.

Full text
Abstract:
Seasonal Autoregressive Integrated Moving Average (SARIMA) adalah metode peramalan time series untuk model data fluktuatif dengan pola data musiman. Model Autoregressive Conditional Heteroskedastisitas (ARCH) adalah model yang berfungsi untuk mengatasi masalah heteroskedastisitas atau varians redisual dalam data time series. Salah satu implementasi dari model SARIMA ARCH yaitu untuk meramalkan jumlah produksi padi Kabupaten Ngawi. Data yang digunakan dalam penelitian ini adalah data bulanan pada bulan Januari 2019 sampai dengan Maret 2023. Hasil dari penelitian ini diperoleh model SARIMA (1,1,
APA, Harvard, Vancouver, ISO, and other styles
46

Wu, Don Chi Wai, Lei Ji, Kaijian He, and Kwok Fai Geoffrey Tso. "Forecasting Tourist Daily Arrivals With A Hybrid Sarima–Lstm Approach." Journal of Hospitality & Tourism Research 45, no. 1 (2020): 52–67. http://dx.doi.org/10.1177/1096348020934046.

Full text
Abstract:
Timely predicting tourist demand is extremely important for the tourism industry. However, due to limited availability of data, most of the relevant research studies have focused on data on a quarterly or monthly basis. In this article, we propose a novel hybrid approach, SARIMA + LSTM, that is, seasonal autoregressive integrated moving average (SARIMA) combined with long short-term memory (LSTM) to forecast daily tourist arrivals to Macau SAR, China. The LSTM model is a novel artificial intelligence nonlinear method which has been shown to have the capacity to learn the long-term dependencies
APA, Harvard, Vancouver, ISO, and other styles
47

Wibisono, Dwi Anugrah, Dian Anggraeni, and Alfian Futuhul Hadi. "PERBAIKAN MODEL SEASONAL ARIMA DENGAN METODE ENSEMBLE KALMAN FILTER PADA HASIL PREDIKSI CURAH HUJAN." Majalah Ilmiah Matematika dan Statistika 19, no. 1 (2019): 9. http://dx.doi.org/10.19184/mims.v19i1.17262.

Full text
Abstract:
Forecasting is a time series analytic that used to find out upcoming improvement in the next event using past events as a reference. One of the forecasting models that can be used to predict a time series is Kalman Filter method. The modification of the estimation method of Kalman Filter is Ensemble Kalman Filter (EnKF). This research aims to find the result of EnKF algorithm implementation on SARIMA model. To start with, preticipation forecast data is changed in the form of SARIMA model to obtain some SARIMA model candidates. Next, this best model of SARIMA applied to Kalman Filter models. Af
APA, Harvard, Vancouver, ISO, and other styles
48

Agyare, Sampson, Benjamin Odoi, and Eric Neebo Wiah. "Predicting Petrol and Diesel Prices in Ghana, A Comparison of ARIMA and SARIMA Models." Asian Journal of Economics, Business and Accounting 24, no. 5 (2024): 594–608. http://dx.doi.org/10.9734/ajeba/2024/v24i51333.

Full text
Abstract:
Predicting prices is of great concern and important in the world of economics and finance. In this paper, a comparative analysis of gasoline and diesel in Ghana were analysed using Autoregressive Integrated Moving Average (ARIMA) and Seasonal Autoregressive Integrated Moving Average (SARIMA). Based on their forecasting accuracy, the best model was used for predicting future prices of gasoline and diesel from January 2024 to December 2024. A monthly data for the prices of gasoline and diesel spanning from January 2016 to December 2023 taken from the Bank of Ghana (BoG) and the National Petroleu
APA, Harvard, Vancouver, ISO, and other styles
49

Simanjuntak, Humasak Tommy Argo, Amelia Lumbanraja, Gabriel Samosir, and Regita. "Prediksi Single-Step dan Multi-Step Data Cuaca Menggunakan Model Long Short-Term Memory dan Sarima." Jurnal Teknologi Informasi dan Ilmu Komputer 12, no. 2 (2025): 399–410. https://doi.org/10.25126/jtiik.1229444.

Full text
Abstract:
Prediksi deret waktu pada parameter data cuaca adalah proses memprediksi nilai masa depan berdasarkan pola data historis cuaca. Penelitian ini mengatasi kelemahan penelitian sebelumnya seperti data yang terbatas, jangka waktu prediksi, keterbatasan parameter yang digunakan dalam penelitian serta tidak menggunakan parameter eksternal yang tentunya dapat membantu proses prediksi model menjadi lebih akurat. Penelitian ini menggunakan metode Long Short-Term Memory (LSTM) dan Seasonal AutoRegressive Integrated Moving Average (SARIMA) untuk memprediksi parameter cuaca, seperti tekanan udara, suhu, d
APA, Harvard, Vancouver, ISO, and other styles
50

Simanjuntak, Humasak Tommy Argo, Amelia Lumbanraja, Gabriel Samosir, and Regita. "Prediksi Single-Step dan Multi-Step Data Cuaca Menggunakan Model Long Short-Term Memory dan Sarima." Jurnal Teknologi Informasi dan Ilmu Komputer 12, no. 2 (2025): 399–410. https://doi.org/10.25126/jtiik.2025129444.

Full text
Abstract:
Prediksi deret waktu pada parameter data cuaca adalah proses memprediksi nilai masa depan berdasarkan pola data historis cuaca. Penelitian ini mengatasi kelemahan penelitian sebelumnya seperti data yang terbatas, jangka waktu prediksi, keterbatasan parameter yang digunakan dalam penelitian serta tidak menggunakan parameter eksternal yang tentunya dapat membantu proses prediksi model menjadi lebih akurat. Penelitian ini menggunakan metode Long Short-Term Memory (LSTM) dan Seasonal AutoRegressive Integrated Moving Average (SARIMA) untuk memprediksi parameter cuaca, seperti tekanan udara, suhu, d
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!