Academic literature on the topic 'SARS-Coronavirus'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'SARS-Coronavirus.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "SARS-Coronavirus"

1

Taguchi, Fumihiro. "SARS coronavirus." Uirusu 53, no. 2 (2003): 201–9. http://dx.doi.org/10.2222/jsv.53.201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nitsche, Andreas, Brunhilde Schweiger, Heinz Ellerbrok, Matthias Niedrig, and Georg Pauli. "SARS Coronavirus Detection." Emerging Infectious Diseases 10, no. 7 (July 2004): 1300–1303. http://dx.doi.org/10.3201/eid1007.030678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holmes, Kathryn V. "SARS-Associated Coronavirus." New England Journal of Medicine 348, no. 20 (May 15, 2003): 1948–51. http://dx.doi.org/10.1056/nejmp030078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Qing, Enya, and Tom Gallagher. "SARS Coronavirus Redux." Trends in Immunology 41, no. 4 (April 2020): 271–73. http://dx.doi.org/10.1016/j.it.2020.02.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tong, Tommy. "SARS Coronavirus Anti-Infectives." Recent Patents on Anti-Infective Drug Discovery 1, no. 3 (November 1, 2006): 297–308. http://dx.doi.org/10.2174/157489106778777637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Narayanan, Krishna, Cheng Huang, and Shinji Makino. "SARS coronavirus accessory proteins." Virus Research 133, no. 1 (April 2008): 113–21. http://dx.doi.org/10.1016/j.virusres.2007.10.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Butler, Declan. "SARS veterans tackle coronavirus." Nature 490, no. 7418 (October 2012): 20. http://dx.doi.org/10.1038/490020a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lau, Susanna K. P., Xiao-Yan Che, Patrick C. Y. Woo, Beatrice H. L. Wong, Vincent C. C. Cheng, Gibson K. S. Woo, Ivan F. N. Hung, et al. "SARS Coronavirus Detection Methods." Emerging Infectious Diseases 11, no. 7 (July 2005): 1090–92. http://dx.doi.org/10.3201/eid1107.040883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lau, Susanna K. P., Xiao-Yan Che, Patrick C. Y. Woo, Beatrice H. L. Wong, Vincent C. C. Cheng, Gibson K. S. Woo, Ivan F. N. Hung, et al. "SARS Coronavirus Detection Methods." Emerging Infectious Diseases 11, no. 7 (July 2005): 1108–11. http://dx.doi.org/10.3201/eid1107.041045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Woo, Patrick CY, Susanna KP Lau, Hoi-wah Tsoi, Kwok-hung Chan, Beatrice HL Wong, Xiao-yan Che, Victoria KP Tam, et al. "Relative rates of non-pneumonic SARS coronavirus infection and SARS coronavirus pneumonia." Lancet 363, no. 9412 (March 2004): 841–45. http://dx.doi.org/10.1016/s0140-6736(04)15729-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "SARS-Coronavirus"

1

You, Jae Hwan. "Characterisation of the SARS-coronavirus nucleocapsid protein." Thesis, University of Leeds, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489883.

Full text
Abstract:
Coronaviruses are the causative agents of various mammalian diseases which have crucial economic and health-related problems and are mainly respiratory and gastrointestinal pathogens. They are positive strand RNA viruses which may require nuclear functions for replication. The nucleocapsid (N) protein of s~veral members has previously been shown to localise to the nucleus/nucleolus and the cytoplasm during infection and after transient transfection. The coronavirus N protein is a viral RNA binding protein with several functions during the virus life cycle, especially with regard to RNA replication and transcription and controlling cell signalling pathways. In order to localise to the cytoplasm and nucleus/nucleolus N protein must contain appropriate trafficking motif(s). This thesis focused on characterising the newly emerged severe acute respiratory syndrome coronavirus (SARS-CoV) N protein. The sub-cellular localisation of the SARS-CoV N protein was determined· in virus infected and transfected cells using antibody labelling and C-terminally tagged fluorescent fusion proteins, respectively. Comparison with the avian coronavirus N protein indicated that in contrast to other coronavirus N proteins, SARS-CoV N protein localised mainly in the cytoplasm with low frequency localisation in the nucleolus. Live cell, confocal microscopy and fluorescence loss in photo-bleaching (FLIP) was used to investigate the presence of any potential trafficking signals. Based on amino acid sequence conservation with the other coronavirus N proteins the SARS-CoV N protein was divided into three regions and mutation and bioinformatic analysis was used to potential nuclear import and export motifs. This approach delineated a cryptic nucleolar localisation signal in the central portion of the protein and a novel nuclear export signal in the C-terminal part, which may be the predominant trafficking signal. These motifs may be exposed by differential phosphorylation. The N protein was expressed in vitro and experiments formally demonstrated that it was a phosphoprotein which could bind viral RNA and an RNA binding region spanned the N-terminal and central·part ofthe protein. Together, the data in this study has provided insights into the expression and sub-cellular localisation ofthe SARS Cov N protein.
APA, Harvard, Vancouver, ISO, and other styles
2

Sheahan, Timothy Patrick Baric Ralph S. "SARS coronavirus pathogenesis and therapeutic treatment design." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2008. http://dc.lib.unc.edu/u?/etd,1659.

Full text
Abstract:
Thesis (Ph. D.)--University of North Carolina at Chapel Hill, 2008.
Title from electronic title page (viewed Sep. 16, 2008). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Microbiology and Immunology." Discipline: Microbiology and Immunology; Department/School: Medicine.
APA, Harvard, Vancouver, ISO, and other styles
3

Ivanov, Konstantin. "Charakterisierung der Helikase- und Endonukleaseaktivitäten des Humanen Coronavirus 229E und des SARS-Coronavirus." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=978851749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vabret, Astrid. "Coronavirus humains hors-SARS-CoV : veille virologique et étude épidémiologique moléculaire du coronavirus OC43." Caen, 2006. http://www.theses.fr/2006CAEN2012.

Full text
Abstract:
Cinq coronavirus infectent l’homme : HCoVs 229E, OC43, NL63, HKU1 et SARS-CoV. Parmi eux, trois ont été identifiés récemment : le SARS-CoV en 2003, le HCoV-NL63 en 2004, et le HCoV-HKU1 en 2005. Les coronavirus humains (hors SARS-CoV) sont responsables d’infections respiratoires aiguës; ils possèdent également un tropisme digestif et neurologique. Des méthodes de détection et de caractérisation moléculaires ont été développées pour les HCoVs (hors SARS-CoV). Elles ont permis de mettre en évidence une épidémie d’infections respiratoires à HCoV-OC43, la circulation et la diversité génétique des HCoVs NL63 et HKU1. La diversité génétique des HCoV-OC43 a été particulièrement étudiée. L’analyse moléculaire et phylogénique du gène S1 de 7 HCoV-OC43 a montré une grande diversité génétique inter-souches. Nous avons pu mettre en évidence une distribution en quasi-espèces de HCoV-OC43 dans un contexte d'infection respiratoire aiguë. Il existe une importante hétérogénéité virale au sein d’une même population HCoV-OC43. La mise en évidence de ces quasi-espèces permet une meilleure compréhension de l’évolution des coronavirus et de leur capacité pour franchir les barrières d’espèces, s’adapter à leur nouvel hôte, et établir des infections persistantes
Five human coronaviruses have been identified: HCoVs 229E, OC43, NL63, HKU1 and SARS-CoV. Among them, three have been found very recently: SARS-CoV in 2003, HCoV-NL63 in 2004, and HCoV-HKU1 in 2005. Human coronaviruses (except for SARS-CoV) mainly cause acute respiratory tract illnesses. They are also involved in enteric and neurological diseases. We have developed molecular methods to detect and characterize the HCoVs (except for SARS-CoV). These methods allow us to identify an outbreak of HCoV-OC43 respiratory infections, as well as the circulation and the genetic diversity of HCoVs NL63 and HKU1. The genetic diversity of HCoV-OC43 has been the foc us of more elaborate studies. The molecular and phylogenetic analysis of the S1 gene of seven HCoV-OC43 strains has shown a great inter-strain genetic diversity. We have demonstrated the quasispecies organization of the HCoV-OC43 viral population in a context of acute respiratory infection. The intra-strain genetic heterogeneity is very important. The demonstration of quasispecies distribution of HCoV-OC43 could provide a better understanding of the evolution of coronaviruses, especially their capacity to jump species barriers, to adapt to their new host, and to establish persistent infections
APA, Harvard, Vancouver, ISO, and other styles
5

Teepe, Carola. "Subzelluläre Lokalisation und Interaktionen der Offenen Leserahmen des SARS Coronavirus." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-111848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mccrory, Sarah Ann. "SARS coronavirus : The nucleocapsid protein and the human immune response." Thesis, University of Reading, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Law, Ka-man. "Vaccine development against the severe acute respiratory syndrome-coronavirus (SARS-CoV) using SARS-CoV spike protein." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B36774480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Law, Ka-man, and 羅嘉敏. "Vaccine development against the severe acute respiratory syndrome-coronavirus (SARS-CoV) using SARS-CoV spike protein." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B36774480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chauhan, Vinita Singh. "Molecular characterization of severe acute respiratory syndrome (SARS) coronavirus - nucleocapsid protein." Diss., Manhattan, Kan. : Kansas State University, 2006. http://hdl.handle.net/2097/152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schöpf, Julia. "Identifikation und Charakterisierung zellulärer Zielproteine zur antiviralen Therapie der SARS-Coronavirus Infektion." Diss., Ludwig-Maximilians-Universität München, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-139194.

Full text
Abstract:
The severe acute respiratory syndrome (SARS) was first observed in the Chinese province Guangdong in November 2002. The disease quickly spread around the globe via air travelling and caused a worldwide epidemic. Several research institutions together with the World Health Organisation (WHO) identified the SARS-coronavirus (SARS-CoV) as the causative agent of this disease. During the epidemic, about 8,000 people were infected with a mortality of approximately 10%. Although no new infections have been observed since the summer of 2003, a recurrence of the pathogen cannot be excluded. Up to now, no specific therapy against the virus have been available. Viruses contain a very compact genome, which does not encode all proteins necessary for independant replication. Thus, viruses necessarily depend on host proteins and have to interact directly with them. The analysis of protein-protein interactions between SARS-CoV and human host cells contributes to a better understanding of the viral replication and pathogenicity. Prior to this work, an automated, genome-wide yeast-two-hybrid (Y2H) screen between all 28 proteins of SARS-CoV and the gene products of three human cDNA libraries had been performed, and approximately 460, mostly new protein-protein interactions had been identified. The aim of this work was to confirm newly identified virus-host SARS-CoV protein interactions and to functionally analyse them to identify new targets for antiviral therapy. 89 newly identified protein-protein interactions were examined via a modified LUMIER binding-assay to confirm individual interactions. 37 out of 89 protein interactions were found to be positive, resulting in a confirmation rate of 42%. In subsequent functional analyses of protein-protein interactions between the SARS-CoV non-structural protein 1 (Nsp1) and proteins of the immunophilin family, two different functional consequences were observed. First, it could be shown that SARS-CoV Nsp1 boosts the expression of genes regulated via the calcineurin/NFAT-signalling cascade. The increased expression of NFAT-regulated genes in SARS-CoV infection may cause the cytokine dysregulation described in SARS patients which leads to severe lung tissue destructions and which correlates with high mortality. The considerably less harmful human coronavirus HCoV-NL63 and mouse coronavirus (MHV) did not boost the expression of NFAT-regulated genes. It was thus hypothesized that the therapy of the cytokine dysregulation with the immunosuppressive drug Cyclosporine A (CspA) might improve the course of the disease. In addition, it could be shown for the first time that the replication of the SARS-CoV can be inhibited by the immunosuppressive drug CspA. Subsequent experiments showed a similar inhibition of the viral replication of the less harmful human coronavirus HCoV-NL63 and HCoV-229E mediated by CspA. In cooperation with several groups of the ”SARS-Zoonose- Verbund”, further inhibition experiments were performed with animal coronaviruses like FCoV, IBV Bd and TGEV PUR46, which showed a similar antiviral effect of CspA. The two cellular proteins Cyclophilin A and FK506 binding-protein 1A were shown to be essential for viral replication of HCoV-NL63. The findings of this work may contribute to a better understanding of the interactions between SARS-CoV and infected host cells and their innate immune response. The application of the general coronaviral inhibitor CspA identified in this study and of non-immunosuppressive CspA analogues like DEBIO-025 procures promising options for anti-coronaviral therapy.
Im November 2002 brach das Schwere Akute Atemwegssyndrom (severe acute respiratory syndrom, SARS) zum ersten Mal in der chinesischen Provinz Guangdong aus. Dieser Erreger verursachte aufgrund des internationalen Flugverkehrs erstmals eine weltweite Epidemie. Verschiedene Forschungseinrichtungen konnten in Zusammenarbeit mit der Weltgesundheitsorganisation (WHO) das SARS-assoziierte Coronavirus (SARS-CoV) als Erreger der schweren Krankheit identifizieren. Insgesamt wurden während der Epidemie etwa 8000 Menschen infiziert, von denen ca. 10 % verstarben. Obwohl seit Sommer 2003 keine Neuinfektionen mehr beobachtet wurden, kann ein erneutes Auftreten dieses Pathogens nicht ausgeschlossen werden. Bis heute steht keine spezifische Therapie gegen SARS-CoV zur Verfügung. Viren haben ein sehr kompaktes Genom, in dem nicht alle notwendigen Proteine kodiert sind, die für einen kompletten Infektionszyklus benötigt werden. Aus diesem Grund sind Viren ausnahmslos abhängig von den Protein-Protein-Interaktionen mit einer lebenden Wirtszelle. Die Analyse von Protein-Protein-Interaktionen zwischen dem SARS-CoV und der humanen Wirtszelle trägt zum besseren Verständnis der viralen Replikation und Pathogenität bei. Im Vorfeld dieser Arbeit wurde ein automatisierter, genomweiter Hefe-Zwei-Hybrid (H2H)-Screen zwischen allen 28 Proteinen des SARS-CoV und den Genprodukten von drei humanen cDNA-Banken durchgeführt, wobei ca. 460, zumeist völlig neue, Protein-Protein-Interaktionen zwischen dem SARS-CoV und dem humanen Wirt identifiziert wurden. Ziel dieser Arbeit war es, die neu identifzierten Protein-Protein-Interaktionen zu bestätigen und funktionelle Analysen ausgewählter Interaktionen durchzuführen, um neue Angriffspunkte für die antivirale Therapie zu finden. 89 Protein-Protein-Interaktionen, die im H2H-Screen neu identifiziert werden konnten, wurden mit Hilfe des modifizierten LUMIER Bindungs-Assays zur Bestätigung der einzelnen Interaktionen untersucht. Von diesen 89 getesteten Protein-Protein-Interaktionen waren 37 Tests positiv, wodurch sich eine Bestätigungsrate von 42 % ergab. In anschließenden funktionellen Analysen der Protein-Interaktionen zwischen dem SARS-CoV Nicht-Strukturprotein 1 (Nsp1) und Proteinen der Immunophilinfamilie konnten zwei Funktionen dieser Interaktionen aufgezeigt werden. Zunächst konnte gezeigt werden, dass das SARS-CoV Nsp1 die Expression von Genen, welche über die Calcineurin/NFAT-Signalkaskade reguliert werden, erhöht. Die SARS-spezifische Erhöhung der Expression NFAT-regulierter Gene kann eine Ursache der in SARS-Patienten beschriebenen Zytokindysregulation sein. Diese Zytokindysregulation führt zu schweren Gewebeschädigungen in der Lunge und trägt maßgeblich zum schlechten Ausgang der Krankheit bei. Das weniger pathogene humane Coronavirus HCoV-NL63 und das Maus-Coronavirus MHV zeigten diese Erhöhung der Expression NFAT-regulierter Gene nicht auf. Es wurde deshalb die Hypothese aufgestellt, dass eine Behandlung der Zytokindysregulation mit dem Immunsuppressivum Cyclosporin A positive Auswirkungen auf den Verlauf der Krankheit hat. Zum zweiten konnte erstmals gezeigt werden, dass die Replikation des SARS-CoV durch das Immunsuppressivum Cyclosporin A gehemmt werden kann. Anschließende Inhibitionsversuche der deutlich harmloseren humanen Coronaviren HCoV-NL63 und HCoV-229E zeigten die gleiche Hemmung der viralen Replikation durch Cyclosporin A. In Kooperation mit verschiedenen Arbeitsgruppen des SARS-Zoonose-Verbunds konnten weitere Inhibitionsversuche mit den Tiercoronaviren FCoV, IBV Bd und TGEV PUR46 durchgeführt werden und ebenfalls ein inhibitorisches Potential des Cyclosporin A auf die virale Replikation dieser Tiercoronaviren gezeigt werden. In weiterführenden Untersuchungen zum Wirkmechanismus der CspA- und FK506-vermittelten Inhibition der Replikation des humanen Coronavirus HCoV-NL63 konnten die beiden zellulären Proteine Cyclophilin A und FK506-Bindeprotein1A (FKBP1A) erstmals als essentielle Proteine für die virale Replikation identifiziert werden. Die Erkenntnisse dieser Arbeit können dazu beitragen, die komplexen Interaktionen zwischen dem SARS-CoV, der infizierten Wirtszelle und der Immunabwehr besser zu verstehen. Weiterhin konnte im Rahmen dieser Arbeit ein allgemeiner, coronaviraler Inhibitor in Form von Cyclosporin A identifiziert werden. Nicht-immunsuppressive Cyclosporin A Analoga wie DEBIO 025 sind deshalb mögliche Kandidaten für die Therapie coronaviraler Infektionen.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "SARS-Coronavirus"

1

Lal, Sunil K., ed. Molecular Biology of the SARS-Coronavirus. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03683-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Monaghan, Karen. SARS: Down but still a threat. [Washington, D.C.]: National Intelligence Council, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chuan ran xing fei dian xing fei yan bing yuan xue jian ce yu zhen duan. Beijing: Ke xue chu ban she, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bo ji SARS feng bao: Lai zi Zhongguo Xianggang he Xinjiapo de di yi xian de fen xi. Shanghai: Shanghai ke ji jiao yu chu ban she, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xianggang fei dian xing feng bao. Xianggang: Wen lin she, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Berezina, Natal'ya, Mihail Cherkashin, and Nikita Berezin. Rational use of personal protective equipment in medical organizations in an unfavorable epidemiological situation ... ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1215689.

Full text
Abstract:
The training manual discusses the organization of the use of personal protective equipment in the context of a new coronavirus infection (SARS-CoV-2) pandemic. It is intended for health care organizers, doctors of all specialties, and other medical professionals who provide care to patients with suspected or confirmed coronavirus infection.
APA, Harvard, Vancouver, ISO, and other styles
7

Twenty-first century plague: The story of SARS. Baltimore, Md: John Hopkins University Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fei dian xing fei yan fang zhi zhi nan. Guangzhou Shi: Guangdong jiao yu chu ban she, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Berezina, Natal'ya, Mihail Cherkashin, Vladimir Kuplevackiy, Dar'ya Kuplevackaya, Tat'yana Rakova, Aleksey Nikolaev, Artem Fedorov, and Anna Lavrent'eva. Organization of the work of the outpatient computer tomography center to provide emergency care to patients with suspected new coronavirus infection. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1222384.

Full text
Abstract:
The training manual discusses the organization of the outpatient computed tomography center, created to provide emergency care to patients with suspected new coronavirus infection (SARS-CoV-2). It is intended for health care organizers, radiologists, X-ray technicians, and other medical professionals who provide care to patients with suspected or laboratory-confirmed COVID-19 infection.
APA, Harvard, Vancouver, ISO, and other styles
10

"Fei dian" de dian xing bao gao. [Guangzhou]: Guangdong ren min chu ban she, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "SARS-Coronavirus"

1

Kehm, Roland. "SARS-Coronavirus (SARS-CoV)." In Lexikon der Infektionskrankheiten des Menschen, 737–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-39026-8_985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peiris, J. S. Malik, and Leo L. M. Poon. "Detection of SARS Coronavirus." In Diagnostic Virology Protocols, 369–82. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-817-1_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baric, Ralph S., Timothy Sheahan, Damon Deming, Eric Donaldson, Boyd Yount, Amy C. Sims, Rhonda S. Roberts, Matthew Frieman, and Barry Rockx. "Sars Coronavirus Vaccine Development." In Advances in Experimental Medicine and Biology, 553–60. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-33012-9_101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schomburg, Dietmar, and Ida Schomburg. "SARS coronavirus main proteinase 3.4.22.69." In Class 3.4–6 Hydrolases, Lyases, Isomerases, Ligases, 65–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36260-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zuo, Wei, Xingang Zhao, and Ye-Guang Chen. "SARS Coronavirus and Lung Fibrosis." In Molecular Biology of the SARS-Coronavirus, 247–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03683-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guan, Yi, Hume Field, Gavin JD Smith, and Honglin Chen. "SARS Coronavirus: An Animal Reservoir?" In Severe Acute Respiratory Syndrome, 79–83. Oxford, UK: Blackwell Publishing Ltd, 2008. http://dx.doi.org/10.1002/9780470755952.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schaecher, Scott R., and Andrew Pekosz. "SARS Coronavirus Accessory Gene Expression and Function." In Molecular Biology of the SARS-Coronavirus, 153–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03683-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sheahan, Timothy P., and Ralph S. Baric. "SARS Coronavirus Pathogenesis and Therapeutic Treatment Design." In Molecular Biology of the SARS-Coronavirus, 195–230. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03683-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dinman, Jonathan D. "Programmed –1 Ribosomal Frameshifting in SARS Coronavirus." In Molecular Biology of the SARS-Coronavirus, 63–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03683-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Imbert, Isabelle, Rachel Ulferts, John Ziebuhr, and Bruno Canard. "SARS Coronavirus Replicative Enzymes: Structures and Mechanisms." In Molecular Biology of the SARS-Coronavirus, 99–114. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03683-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "SARS-Coronavirus"

1

"Characteristics of immune responses to three coronavirus infections: SARS, MERS and SARS-CoV-2." In 2020 2nd International Symposium on the Frontiers of Biotechnology and Bioengineering (FBB 2020). Clausius Scientific Press, 2020. http://dx.doi.org/10.23977/fbb2020.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hwa, Kuo-Yuan, Wan Man Lin, Yung-I. Hou, and Trai-Ming Yeh. "Molecular Mimicry between SARS Coronavirus Spike Protein and Human Protein." In 2007 Frontiers in the Convergence of Bioscience and Information Technologies (FBIT '07). IEEE, 2007. http://dx.doi.org/10.1109/fbit.2007.108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Clay, CC, NJ Donart, NG Fomukong, JB Knight, SK Kunder, B. Li, KA Overheim, and KS Harrod. "Persistent Immune Activation and Macrophage Accumulation in SARS-Coronavirus Infection." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a5170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sivov, I. G., and I. S. Firsov. "FLECK QUANTIFICATION OF THE NUMBER OF INFECTIOUS SARS-COV-2 CORONAVIRUS PARTICLES." In Molecular Diagnostics and Biosafety. Federal Budget Institute of Science 'Central Research Institute for Epidemiology', 2020. http://dx.doi.org/10.36233/978-5-9900432-9-9-173.

Full text
Abstract:
The principle of obtaining sensors for detecting infectious particles of RNA viruses in samples was proposed for the diagnosis of infectious particles SARS-CoV-2. Previously, the similar sensor pattern was successfully applied in relation to the hepatitis C virus. It was founded that the ratio of the RNA titer, determined in the RT-PCR reaction in Real Time mode, refers to the number of infectious («shine») centers formed on the cell sensor culture, approximately as 100: 1, in the «coronavirus-positive» sample.
APA, Harvard, Vancouver, ISO, and other styles
5

Waye, M. M. Y., P. T. W. Law, Chi-Hang Wong, T. C. C. Au, C. Chuck, Siu-Kai Kong, P. K. S. Chan, et al. "The 3a Protein of SARS-coronavirus Induces Apoptosis in Vero E6 Cells." In 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2005. http://dx.doi.org/10.1109/iembs.2005.1616242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Smatti, Maria K., Yasser Al-Sarraj, Omar Albagha, and Hadi M. Yassine. "Host Genetic Variants Potentially Associated with SARS-Cov-2: A Multi-Population Analysis." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0298.

Full text
Abstract:
Background: Clinical outcomes of Coronavirus Disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) showed enormous inter-individual and interpopulation differences, possibly due to host genetics differences. Earlier studies identified single nucleotide polymorphisms (SNPs) associated with SARS-CoV-1 in Eastern Asian (EAS) populations. In this report, we aimed at exploring the frequency of a set of genetic polymorphisms that could affect SARS-CoV-2 susceptibility or severity, including those that were previously associated with SARS-CoV-1. Methods: We extracted the list of SNPs that could potentially modulate SARS-CoV-2 from the genome wide association studies (GWAS) on SARS-CoV-1 and other viruses. We also collected the expression data of these SNPs from the expression quantitative trait loci (eQTLs) databases. Sequences from Qatar Genome Programme (QGP, n=6,054) and 1000Genome project were used to calculate and compare allelic frequencies (AF). Results: A total of 74 SNPs, located in 10 genes: ICAM3, IFN-γ, CCL2, CCL5, AHSG, MBL, Furin, TMPRSS2, IL4, and CD209 promoter, were identified. Analysis of Qatari genomes revealed significantly lower AF of risk variants linked to SARS-CoV-1 severity (CCL2, MBL, CCL5, AHSG, and IL4) compared to that of 1000Genome and/or the EAS population (up to 25-fold change). Conversely, SNPs in TMPRSS2, IFN-γ, ICAM3, and Furin were more common among Qataris (average 2-fold change). Inter-population analysis showed that the distribution of risk alleles among Europeans differs substantially from Africans and EASs. Remarkably, Africans seem to carry extremely lower frequencies of SARS-CoV-1 susceptibility alleles, reaching to 32-fold decrease compared to other populations. Conclusion: Multiple genetic variants, which could potentially modulate SARS-CoV-2 infection, are significantly variable between populations, with the lowest frequency observed among Africans. Our results highlight the importance of exploring population genetics to understand and predict COVID-19 outcomes. Indeed, further studies are needed to validate these findings as well as to identify new genetic determinants linked to SARS-CoV-2.
APA, Harvard, Vancouver, ISO, and other styles
7

Ramona, Stoicescu, Stoicescu Razvan-Alexandru, Codrin Gheorghe, and Schroder Verginica. "LABORATORY METHODS AND PREVALENCE OF SARS-COV-2 INFECTIONS IN THE 2ND SEMESTER OF 2021 IN THE EMERGENCY CLINICAL COUNTY HOSPITAL OF CONSTANTA." In GEOLINKS Conference Proceedings. Saima Consult Ltd, 2021. http://dx.doi.org/10.32008/geolinks2021/b1/v3/11.

Full text
Abstract:
"Diagnosing infections with SARS-CoV-2 is still of great interest due to the health and economic impact of COVID pandemic. The 4th wave of the COVID-19 pandemic is expected and is considered to be stronger and faster due to the dominance of Delta variant which is highly contagious [1]. SARS-CoV-2 also known as 2019-nCoV is one of the three coronaviruses (together with SARS-CoV or SARS-CoV1/Severe acute respiratory syndrome coronavirus), MERS-CoV /Middle East Respiratory Syndrome coronavirus) which can cause severe respiratory tract infections in humans [2]. Early diagnosis in COVID 19 infection is the key for preventing infection transmission in collectivity and proper medical care for the ill patients. Gold standard for diagnosing SARS-Co-V-2 infection according to WHO recommendation is using nucleic acid amplification tests (NAAT)/ reverse transcription polymerase chain reaction (RT-PCR). The search is on to develop reliable but less expensive and faster diagnostic tests that detect antigens specific for SARS-CoV-2 infection. Antigen-detection diagnostic tests are designed to directly detect SARSCoV-2 proteins produced by replicating virus in respiratory secretions so-called rapid diagnostic tests, or RDTs. The diagnostic development landscape is dynamic, with nearly a hundred companies developing or manufacturing rapid tests for SARS-CoV-2 antigen detection [3]. In the last 3 months our hospital introduced the antigen test or Rapid diagnostic tests (RDT) which detects the presence of viral proteins (antigens) expressed by the COVID-19 virus in a sample from the respiratory tract of a person. All RDT were confirmed next day with a RT-PCR. The number of positive cases detected during 3 months in our laboratory was 425. There were 326 positive tests in April, 106 positive tests in May and 7 positive tests in June. Compared with the number of positive tests in the 1st semester of 2021, the positive tests have significantly declined."
APA, Harvard, Vancouver, ISO, and other styles
8

Mahmood, Hera Z., Swetha Madhavarapu, and Mohamed Almuqamam. "Varying Illness Severity in Patients with MyD88 Deficiency Infected with Coronavirus SARS-CoV-2." In AAP National Conference & Exhibition Meeting Abstracts. American Academy of Pediatrics, 2021. http://dx.doi.org/10.1542/peds.147.3_meetingabstract.453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Haddadi, S., L. Escudero Méndez, M. Batra, T. Runxia, C. Zhang, C. Emile, C. Sacher, et al. "Role of Immunoglobulin G (IgG) Against N-protein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) in Coronavirus Disease 2019 (COVID19) Clinical Outcomes." In American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a2822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yakimova, A. O., I. V. Chebotareva, D. Yu Kiryushina, I. L. Ershova, L. V. Lyubina, N. M. Lipunov, G. P. Bezyaeva, L. V. Panarina, and V. I. Kiseleva. "VARIABILITY OF SARS-COV2 AS A FACTOR OF CONTROL LOSS OVER THE DISTRIBUTION OF CORONAVIRUS INFECTION." In Molecular Diagnostics and Biosafety. Federal Budget Institute of Science 'Central Research Institute for Epidemiology', 2020. http://dx.doi.org/10.36233/978-5-9900432-9-9-192.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "SARS-Coronavirus"

1

Sola, Isabel. Estrategias para controlar al nuevo coronavirus SARS-Cov-2. Sociedad Española de Bioquímica y Biología Molecular, March 2020. http://dx.doi.org/10.18567/sebbmdiv_actu.2020.03.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography