Journal articles on the topic 'SARS-Coronavirus, spike, TMPRSS2'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'SARS-Coronavirus, spike, TMPRSS2.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kishimoto, Mai, Kentaro Uemura, Takao Sanaki, Akihiko Sato, William W. Hall, Hiroaki Kariwa, Yasuko Orba, Hirofumi Sawa, and Michihito Sasaki. "TMPRSS11D and TMPRSS13 Activate the SARS-CoV-2 Spike Protein." Viruses 13, no. 3 (February 28, 2021): 384. http://dx.doi.org/10.3390/v13030384.
Full textSarker, Jyotirmoy, Pritha Das, Sabarni Sarker, Apurba Kumar Roy, and A. Z. M. Ruhul Momen. "A Review on Expression, Pathological Roles, and Inhibition of TMPRSS2, the Serine Protease Responsible for SARS-CoV-2 Spike Protein Activation." Scientifica 2021 (July 24, 2021): 1–9. http://dx.doi.org/10.1155/2021/2706789.
Full textMatsuyama, Shutoku, Noriyo Nagata, Kazuya Shirato, Miyuki Kawase, Makoto Takeda, and Fumihiro Taguchi. "Efficient Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein by the Transmembrane Protease TMPRSS2." Journal of Virology 84, no. 24 (October 6, 2010): 12658–64. http://dx.doi.org/10.1128/jvi.01542-10.
Full textRamezanpour, Mahnaz, Harrison Bolt, Karen Hon, George Spyro Bouras, Alkis James Psaltis, Peter-John Wormald, and Sarah Vreugde. "Cytokine-Induced Modulation of SARS-CoV2 Receptor Expression in Primary Human Nasal Epithelial Cells." Pathogens 10, no. 7 (July 5, 2021): 848. http://dx.doi.org/10.3390/pathogens10070848.
Full textSampson, Alexander Thomas, Jonathan Heeney, Diego Cantoni, Matteo Ferrari, Maria Suau Sans, Charlotte George, Cecilia Di Genova, et al. "Coronavirus Pseudotypes for All Circulating Human Coronaviruses for Quantification of Cross-Neutralizing Antibody Responses." Viruses 13, no. 8 (August 10, 2021): 1579. http://dx.doi.org/10.3390/v13081579.
Full textLaporte, Manon, Valerie Raeymaekers, Ria Van Berwaer, Julie Vandeput, Isabel Marchand-Casas, Hendrik-Jan Thibaut, Dominique Van Looveren, et al. "The SARS-CoV-2 and other human coronavirus spike proteins are fine-tuned towards temperature and proteases of the human airways." PLOS Pathogens 17, no. 4 (April 22, 2021): e1009500. http://dx.doi.org/10.1371/journal.ppat.1009500.
Full textAl-Kuraishy, Hayder M., Marwa S. Al-Niemi, Nawar R. Hussain, Ali I. Al-Gareeb, and Claire Lugnier. "The potential role of Bromhexine in the management of COVID-19: Decipher and a real game-changer." CURRENT MEDICAL AND DRUG RESEARCH 5, no. 01 (May 25, 2021): 1–4. http://dx.doi.org/10.53517/cmdr.2581-5008.512021212.
Full textCheng, Fang-Ju, Thanh-Kieu Huynh, Chia-Shin Yang, Dai-Wei Hu, Yi-Cheng Shen, Chih-Yen Tu, Yang-Chang Wu, et al. "Hesperidin Is a Potential Inhibitor against SARS-CoV-2 Infection." Nutrients 13, no. 8 (August 16, 2021): 2800. http://dx.doi.org/10.3390/nu13082800.
Full textOu, Tianling, Huihui Mou, Lizhou Zhang, Amrita Ojha, Hyeryun Choe, and Michael Farzan. "Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2." PLOS Pathogens 17, no. 1 (January 19, 2021): e1009212. http://dx.doi.org/10.1371/journal.ppat.1009212.
Full textPapa, Guido, Donna L. Mallery, Anna Albecka, Lawrence G. Welch, Jérôme Cattin-Ortolá, Jakub Luptak, David Paul, et al. "Furin cleavage of SARS-CoV-2 Spike promotes but is not essential for infection and cell-cell fusion." PLOS Pathogens 17, no. 1 (January 25, 2021): e1009246. http://dx.doi.org/10.1371/journal.ppat.1009246.
Full textRavaioli, Sara, Michela Tebaldi, Eugenio Fonzi, Davide Angeli, Massimiliano Mazza, Fabio Nicolini, Alessandro Lucchesi, et al. "ACE2 and TMPRSS2 Potential Involvement in Genetic Susceptibility to SARS-COV-2 in Cancer Patients." Cell Transplantation 29 (January 1, 2020): 096368972096874. http://dx.doi.org/10.1177/0963689720968749.
Full textDarapaneni, V., and A. Jaldani. "Membrane protein of SARS-CoV-2 plays a pivotal role in the availability of active testosterone through its interaction with AKR1C2 enzyme leading to the upregulation of TMPRSS2 protease expression." Microbiology Independent Research Journal (MIR Journal) 8, no. 1 (March 18, 2021): 38–40. http://dx.doi.org/10.18527/2500-2236-2021-8-1-38-40.
Full textAhmad Mulyadi Lai, Henkie Isahwan, Shih-Jie Chou, Yueh Chien, Ping-Hsing Tsai, Chian-Shiu Chien, Chih-Chien Hsu, Ying-Chun Jheng, et al. "Expression of Endogenous Angiotensin-Converting Enzyme 2 in Human Induced Pluripotent Stem Cell-Derived Retinal Organoids." International Journal of Molecular Sciences 22, no. 3 (January 28, 2021): 1320. http://dx.doi.org/10.3390/ijms22031320.
Full textXu, Chuan, Annie Wang, Ke Geng, William Honnen, Xuening Wang, Natalie Bruiners, Sukhwinder Singh, et al. "Human Immunodeficiency Viruses Pseudotyped with SARS-CoV-2 Spike Proteins Infect a Broad Spectrum of Human Cell Lines through Multiple Entry Mechanisms." Viruses 13, no. 6 (May 21, 2021): 953. http://dx.doi.org/10.3390/v13060953.
Full textChoi, Yoonjung, Bonggun Shin, Keunsoo Kang, Sungsoo Park, and Bo Ram Beck. "Target-Centered Drug Repurposing Predictions of Human Angiotensin-Converting Enzyme 2 (ACE2) and Transmembrane Protease Serine Subtype 2 (TMPRSS2) Interacting Approved Drugs for Coronavirus Disease 2019 (COVID-19) Treatment through a Drug-Target Interaction Deep Learning Model." Viruses 12, no. 11 (November 18, 2020): 1325. http://dx.doi.org/10.3390/v12111325.
Full textLiu, Hanning, Shujie Gai, Xiaoyi Wang, Juntong Zeng, Cheng Sun, Yan Zhao, and Zhe Zheng. "Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart." Cardiovascular Research 116, no. 10 (July 8, 2020): 1733–41. http://dx.doi.org/10.1093/cvr/cvaa191.
Full textSasaki, Michihito, Kentaro Uemura, Akihiko Sato, Shinsuke Toba, Takao Sanaki, Katsumi Maenaka, William W. Hall, Yasuko Orba, and Hirofumi Sawa. "SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells." PLOS Pathogens 17, no. 1 (January 21, 2021): e1009233. http://dx.doi.org/10.1371/journal.ppat.1009233.
Full textGupta, Ishita, Balsam Rizeq, Eyad Elkord, Semir Vranic, and Ala-Eddin Al Moustafa. "SARS-CoV-2 Infection and Lung Cancer: Potential Therapeutic Modalities." Cancers 12, no. 8 (August 5, 2020): 2186. http://dx.doi.org/10.3390/cancers12082186.
Full textAleksova, Aneta, Giulia Gagno, Gianfranco Sinagra, Antonio Paolo Beltrami, Milijana Janjusevic, Giuseppe Ippolito, Alimuddin Zumla, Alessandra Lucia Fluca, and Federico Ferro. "Effects of SARS-CoV-2 on Cardiovascular System: The Dual Role of Angiotensin-Converting Enzyme 2 (ACE2) as the Virus Receptor and Homeostasis Regulator-Review." International Journal of Molecular Sciences 22, no. 9 (April 26, 2021): 4526. http://dx.doi.org/10.3390/ijms22094526.
Full textEzechukwu, Henry C., Cornelius A. Diya, Ifunanya J. Egoh, Mayowa J. Abiodun, John-Ugwuanya A. Grace, God’spower R. Okoh, Kayode T. Adu, and Oyelola A. Adegboye. "Lung microbiota dysbiosis and the implications of SARS-CoV-2 infection in pregnancy." Therapeutic Advances in Infectious Disease 8 (January 2021): 204993612110324. http://dx.doi.org/10.1177/20499361211032453.
Full textHUYNH, Mai T. N., Phuc H. T. NGUYEN, Hieu H. C. PHAN, Nghia T. H. PHAN, Kong H. LE, Nhu T. H. TRUONG, Khanh LE, et al. "A review of COVID-19: Molecular basis, diagnosis, therapeutics and prevention." Science and Technology Development Journal - Natural Sciences 4, no. 3 (July 1, 2020): First. http://dx.doi.org/10.32508/stdjns.v4i3.907.
Full textMeyer, Daniela, Frank Sielaff, Maya Hammami, Eva Böttcher-Friebertshäuser, Wolfgang Garten, and Torsten Steinmetzer. "Identification of the first synthetic inhibitors of the type II transmembrane serine protease TMPRSS2 suitable for inhibition of influenza virus activation." Biochemical Journal 452, no. 2 (May 10, 2013): 331–43. http://dx.doi.org/10.1042/bj20130101.
Full textMcGill, Andrew R., Roukiah Kahlil, Rinku Dutta, Ryan Green, Mark Howell, Subhra Mohapatra, and Shyam S. Mohapatra. "SARS–CoV-2 Immuno-Pathogenesis and Potential for Diverse Vaccines and Therapies: Opportunities and Challenges." Infectious Disease Reports 13, no. 1 (February 4, 2021): 102–25. http://dx.doi.org/10.3390/idr13010013.
Full textYadav, Rohitash, Jitendra Kumar Chaudhary, Neeraj Jain, Pankaj Kumar Chaudhary, Supriya Khanra, Puneet Dhamija, Ambika Sharma, Ashish Kumar, and Shailendra Handu. "Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19." Cells 10, no. 4 (April 6, 2021): 821. http://dx.doi.org/10.3390/cells10040821.
Full textShabani, Fatemeh, Alireza Farasat, Peyman Namdar, and Nematollah Gheibi. "Investigating the Mechanism of Action of SARS-CoV-2 Virus for Drug Designing: A Review." Journal of Qazvin University of Medical Sciences 24, no. 2 (June 30, 2020): 158–77. http://dx.doi.org/10.32598/jqums.24.2.708.3.
Full textChen, Ting-Fu, Yu-Chuan Chang, Yi Hsiao, Ko-Han Lee, Yu-Chun Hsiao, Yu-Hsiang Lin, Yi-Chin Ethan Tu, Hsuan-Cheng Huang, Chien-Yu Chen, and Hsueh-Fen Juan. "DockCoV2: a drug database against SARS-CoV-2." Nucleic Acids Research 49, no. D1 (October 9, 2020): D1152—D1159. http://dx.doi.org/10.1093/nar/gkaa861.
Full textHuang, Szu-Wei, and Sheng-Fan Wang. "SARS-CoV-2 Entry Related Viral and Host Genetic Variations: Implications on COVID-19 Severity, Immune Escape, and Infectivity." International Journal of Molecular Sciences 22, no. 6 (March 17, 2021): 3060. http://dx.doi.org/10.3390/ijms22063060.
Full textDavidson, Anne M., Jan Wysocki, and Daniel Batlle. "Interaction of SARS-CoV-2 and Other Coronavirus With ACE (Angiotensin-Converting Enzyme)-2 as Their Main Receptor." Hypertension 76, no. 5 (November 2020): 1339–49. http://dx.doi.org/10.1161/hypertensionaha.120.15256.
Full textVianello, Annamaria, Serena Del Turco, Serena Babboni, Beatrice Silvestrini, Rosetta Ragusa, Chiara Caselli, Luca Melani, Luca Fanucci, and Giuseppina Basta. "The Fight against COVID-19 on the Multi-Protease Front and Surroundings: Could an Early Therapeutic Approach with Repositioning Drugs Prevent the Disease Severity?" Biomedicines 9, no. 7 (June 23, 2021): 710. http://dx.doi.org/10.3390/biomedicines9070710.
Full textBellamine, Aouatef, Tram N. Q. Pham, Jaspreet Jain, Jacob Wilson, Kazim Sahin, Frederic Dallaire, Nabil G. Seidah, Shane Durkee, Katarina Radošević, and Éric A. Cohen. "L-Carnitine Tartrate Downregulates the ACE2 Receptor and Limits SARS-CoV-2 Infection." Nutrients 13, no. 4 (April 14, 2021): 1297. http://dx.doi.org/10.3390/nu13041297.
Full textChueh, Ti-I., Cai-Mei Zheng, Yi-Chou Hou, and Kuo-Cheng Lu. "Novel Evidence of Acute Kidney Injury in COVID-19." Journal of Clinical Medicine 9, no. 11 (November 3, 2020): 3547. http://dx.doi.org/10.3390/jcm9113547.
Full textChaudhary, Jitendra Kumar, Rohitash Yadav, Pankaj Kumar Chaudhary, Anurag Maurya, Rakesh Roshan, Faizul Azam, Jyoti Mehta, et al. "Host Cell and SARS-CoV-2-Associated Molecular Structures and Factors as Potential Therapeutic Targets." Cells 10, no. 9 (September 15, 2021): 2427. http://dx.doi.org/10.3390/cells10092427.
Full textUpadhyay, Jyoti, Nidhi Tiwari, and Mohd N. Ansari. "Role of inflammatory markers in corona virus disease (COVID-19) patients: A review." Experimental Biology and Medicine 245, no. 15 (July 7, 2020): 1368–75. http://dx.doi.org/10.1177/1535370220939477.
Full textGupta, Ruchir, Jacob Charron, Cynthia L. Stenger, Jared Painter, Hunter Steward, Taylor W. Cook, William Faber, et al. "SARS-CoV-2 (COVID-19) structural and evolutionary dynamicome: Insights into functional evolution and human genomics." Journal of Biological Chemistry 295, no. 33 (June 25, 2020): 11742–53. http://dx.doi.org/10.1074/jbc.ra120.014873.
Full textAlvarado, David, Maria Gomez Castro, Naomi Sonnek, Xueyang Cui, Siyuan Ding, and Matthew Ciorba. "INCREASED CATHEPSIN EXPRESSION CORRELATES WITH SARS-COV-2 INFECTION IN HUMAN IBD ENTEROIDS." Inflammatory Bowel Diseases 27, Supplement_1 (January 1, 2021): S26. http://dx.doi.org/10.1093/ibd/izaa347.058.
Full textJankun, Jerzy. "COVID-19 pandemic; transmembrane protease serine 2 (TMPRSS2) inhibitors as potential drugs." Translation: The University of Toledo Journal of Medical Sciences 7 (April 24, 2020): 1–5. http://dx.doi.org/10.46570/utjms.vol7-2020-361.
Full textAbdel Hameid, Reem, Estelle Cormet-Boyaka, Wolfgang M. Kuebler, Mohammed Uddin, and Bakhrom K. Berdiev. "SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport." American Journal of Physiology-Lung Cellular and Molecular Physiology 320, no. 3 (March 1, 2021): L430—L435. http://dx.doi.org/10.1152/ajplung.00499.2020.
Full textTikhonov, Dmitrii, and Vsevolod Vladimirtsev. "COVID-19. SARS-Cov-2 pandemic, transmission pathways, distribution features, and individual susceptibility." Сибирские исследования (Siberian Research) 4, no. 2 (December 15, 2020): 48–60. http://dx.doi.org/10.33384/26587270.2020.04.02.06e.
Full textRochette, Luc, and Steliana Ghibu. "Mechanics Insights of Alpha-Lipoic Acid against Cardiovascular Diseases during COVID-19 Infection." International Journal of Molecular Sciences 22, no. 15 (July 26, 2021): 7979. http://dx.doi.org/10.3390/ijms22157979.
Full textFisun, A. Ya, D. V. Cherkashin, V. V. Tyrenko, C. V. Zhdanov, and C. V. Kozlov. "Role of renin-angiotensin-aldosterone system in the interaction with coronavirus SARS-CoV-2 and in the development of strategies for prevention and treatment of new coronavirus infection (COVID-19)." "Arterial’naya Gipertenziya" ("Arterial Hypertension") 26, no. 3 (June 25, 2020): 248–62. http://dx.doi.org/10.18705/1607-419x-2020-26-3-248-262.
Full textIwata-Yoshikawa, Naoko, Tadashi Okamura, Yukiko Shimizu, Hideki Hasegawa, Makoto Takeda, and Noriyo Nagata. "TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection." Journal of Virology 93, no. 6 (January 9, 2019). http://dx.doi.org/10.1128/jvi.01815-18.
Full textMauvais-Jarvis, Franck. "Do Anti-androgens Have Potential as Therapeutics for COVID-19?" Endocrinology 162, no. 8 (June 5, 2021). http://dx.doi.org/10.1210/endocr/bqab114.
Full textBrooke, Greg N., and Filippo Prischi. "Structural and functional modelling of SARS-CoV-2 entry in animal models." Scientific Reports 10, no. 1 (September 28, 2020). http://dx.doi.org/10.1038/s41598-020-72528-z.
Full textSchönfelder, Kristina, Katharina Breuckmann, Carina Elsner, Ulf Dittmer, David Fistera, Frank Herbstreit, Joachim Risse, et al. "Transmembrane serine protease 2 Polymorphisms and Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Type 2 Infection: A German Case-Control Study." Frontiers in Genetics 12 (April 21, 2021). http://dx.doi.org/10.3389/fgene.2021.667231.
Full textWettstein, Lukas, Tatjana Weil, Carina Conzelmann, Janis A. Müller, Rüdiger Groß, Maximilian Hirschenberger, Alina Seidel, et al. "Alpha-1 antitrypsin inhibits TMPRSS2 protease activity and SARS-CoV-2 infection." Nature Communications 12, no. 1 (March 19, 2021). http://dx.doi.org/10.1038/s41467-021-21972-0.
Full textChen, Zhaohui, Junyi Hu, Lilong Liu, Rong Chen, Miao Wang, Ming Xiong, Zhen-Qiong Li, et al. "SARS-CoV-2 Causes Acute Kidney Injury by Directly Infecting Renal Tubules." Frontiers in Cell and Developmental Biology 9 (May 31, 2021). http://dx.doi.org/10.3389/fcell.2021.664868.
Full textKreutzberger, Alex J. B., Anwesha Sanyal, Ravi Ojha, Jesse D. Pyle, Olli Vapalahti, Giuseppe Balistreri, and Tom Kirchhausen. "Synergistic block of SARS-CoV-2 infection by combined drug inhibition of the host entry factors PIKfyve kinase and TMPRSS2 protease." Journal of Virology, August 18, 2021. http://dx.doi.org/10.1128/jvi.00975-21.
Full textMotohashi, Noboru, Anuradha Vanam, and Rao Gollapudi. "In Silico Study of Curcumin and Folic Acid as Potent Inhibitors of Human Transmembrane Protease Serine 2 in the Treatment of COVID-19." INNOSC Theranostics and Pharmacological Sciences, October 16, 2020, 3–9. http://dx.doi.org/10.36922/itps.v3i2.935.
Full textTavakoli Far, Fateme, and Ehsan Amiri-Ardekani. "SPIKE PROTEIN AND ITS PROTEASES ROLE IN SARS-COV-2 PATHOGENICITY AND TREATMENT; A REVIEW." Proceedings of the Shevchenko Scientific Society. Medical Sciences 64, no. 1 (June 29, 2021). http://dx.doi.org/10.25040/ntsh2021.01.05.
Full textSacconi, Andrea, Sara Donzelli, Claudio Pulito, Stefano Ferrero, Francesca Spinella, Aldo Morrone, Marta Rigoni, et al. "TMPRSS2, a SARS-CoV-2 internalization protease is downregulated in head and neck cancer patients." Journal of Experimental & Clinical Cancer Research 39, no. 1 (September 23, 2020). http://dx.doi.org/10.1186/s13046-020-01708-6.
Full text