To see the other types of publications on this topic, follow the link: SARS-Coronavirus.

Journal articles on the topic 'SARS-Coronavirus'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'SARS-Coronavirus.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Taguchi, Fumihiro. "SARS coronavirus." Uirusu 53, no. 2 (2003): 201–9. http://dx.doi.org/10.2222/jsv.53.201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nitsche, Andreas, Brunhilde Schweiger, Heinz Ellerbrok, Matthias Niedrig, and Georg Pauli. "SARS Coronavirus Detection." Emerging Infectious Diseases 10, no. 7 (July 2004): 1300–1303. http://dx.doi.org/10.3201/eid1007.030678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holmes, Kathryn V. "SARS-Associated Coronavirus." New England Journal of Medicine 348, no. 20 (May 15, 2003): 1948–51. http://dx.doi.org/10.1056/nejmp030078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Qing, Enya, and Tom Gallagher. "SARS Coronavirus Redux." Trends in Immunology 41, no. 4 (April 2020): 271–73. http://dx.doi.org/10.1016/j.it.2020.02.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tong, Tommy. "SARS Coronavirus Anti-Infectives." Recent Patents on Anti-Infective Drug Discovery 1, no. 3 (November 1, 2006): 297–308. http://dx.doi.org/10.2174/157489106778777637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Narayanan, Krishna, Cheng Huang, and Shinji Makino. "SARS coronavirus accessory proteins." Virus Research 133, no. 1 (April 2008): 113–21. http://dx.doi.org/10.1016/j.virusres.2007.10.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Butler, Declan. "SARS veterans tackle coronavirus." Nature 490, no. 7418 (October 2012): 20. http://dx.doi.org/10.1038/490020a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lau, Susanna K. P., Xiao-Yan Che, Patrick C. Y. Woo, Beatrice H. L. Wong, Vincent C. C. Cheng, Gibson K. S. Woo, Ivan F. N. Hung, et al. "SARS Coronavirus Detection Methods." Emerging Infectious Diseases 11, no. 7 (July 2005): 1090–92. http://dx.doi.org/10.3201/eid1107.040883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lau, Susanna K. P., Xiao-Yan Che, Patrick C. Y. Woo, Beatrice H. L. Wong, Vincent C. C. Cheng, Gibson K. S. Woo, Ivan F. N. Hung, et al. "SARS Coronavirus Detection Methods." Emerging Infectious Diseases 11, no. 7 (July 2005): 1108–11. http://dx.doi.org/10.3201/eid1107.041045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Woo, Patrick CY, Susanna KP Lau, Hoi-wah Tsoi, Kwok-hung Chan, Beatrice HL Wong, Xiao-yan Che, Victoria KP Tam, et al. "Relative rates of non-pneumonic SARS coronavirus infection and SARS coronavirus pneumonia." Lancet 363, no. 9412 (March 2004): 841–45. http://dx.doi.org/10.1016/s0140-6736(04)15729-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

McFee, R. B. "Severe Acute Respiratory Syndrome Coronavirus (SARS, SARS CoV)." Disease-a-Month 66, no. 9 (September 2020): 101062. http://dx.doi.org/10.1016/j.disamonth.2020.101062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

McFee, R. B. "SARS 2 human coronavirus (COVID -19, SARS CoV2)." Disease-a-Month 66, no. 9 (September 2020): 101063. http://dx.doi.org/10.1016/j.disamonth.2020.101063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Eickmann, M. "Phylogeny of the SARS Coronavirus." Science 302, no. 5650 (November 28, 2003): 1504b—1505. http://dx.doi.org/10.1126/science.302.5650.1504b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Polz-Dacewicz, Małgorzata. "Novel coronavirus – SARS CoV-2." Polish Journal of Public Health 129, no. 4 (December 1, 2019): 113–17. http://dx.doi.org/10.2478/pjph-2019-0026.

Full text
Abstract:
AbstractCoronaviruses cause a variety of diseases in mammals and birds. In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). This virus appears to be a new human pathogen. In this article the biology of virus has been described, replication cycle and epidemiology of COVID 19. The next part discusses current methods of laboratory diagnostics. The coronavirus disease 2019 (COVID-19) pandemic has focused attention on the need to develop effective therapies against the causative agent, SARS-CoV-2. Researchers are therefore focusing on steps in the CoV replication cycle that may be target to inhibition by broad-spectrum or specific antiviral agents. Many laboratories focus on vaccine development. SARS-CoV-2 vaccines will be essential to reduce morbidity and mortality if the virus establishes itself in the human population.
APA, Harvard, Vancouver, ISO, and other styles
15

Mizutani, Tetsuya. "Current topics of SARS coronavirus." Uirusu 54, no. 1 (2004): 97–105. http://dx.doi.org/10.2222/jsv.54.97.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

&NA;. "Coronavirus vaccine protects against SARS." Inpharma Weekly &NA;, no. 1434 (April 2004): 9. http://dx.doi.org/10.2165/00128413-200414340-00026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Frieman, Matthew, Mark Heise, and Ralph Baric. "SARS coronavirus and innate immunity." Virus Research 133, no. 1 (April 2008): 101–12. http://dx.doi.org/10.1016/j.virusres.2007.03.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

J.-M.M. "SARS: un Coronavirus formellement impliqué." Revue Française des Laboratoires 2003, no. 352 (April 2003): 13. http://dx.doi.org/10.1016/s0338-9898(03)80487-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Walgate, Robert. "WHO says coronavirus causes SARS." Genome Biology 4 (2003): spotlight—20030417–01. http://dx.doi.org/10.1186/gb-spotlight-20030417-01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hemila, H. "Vitamin C and SARS coronavirus." Journal of Antimicrobial Chemotherapy 52, no. 6 (November 12, 2003): 1049–50. http://dx.doi.org/10.1093/jac/dkh002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Goldsmith, Cynthia S., Kathleen M. Tatti, Thomas G. Ksiazek, Pierre E. Rollin, James A. Comer, William W. Lee, Paul A. Rota, Bettina Bankamp, William J. Bellini, and Sherif R. Zaki. "Ultrastructural Characterization of SARS Coronavirus." Emerging Infectious Diseases 10, no. 2 (February 2004): 320–26. http://dx.doi.org/10.3201/eid1002.030913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wentworth, David E., Laura Gillim-Ross, Noel Espina, and Kristen A. Bernard. "Mice Susceptible to SARS Coronavirus." Emerging Infectious Diseases 10, no. 7 (July 2004): 1293–96. http://dx.doi.org/10.3201/eid1007.031119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Leng, Qibin, and Zvi Bentwich. "A Novel Coronavirus and SARS." New England Journal of Medicine 349, no. 7 (August 14, 2003): 709. http://dx.doi.org/10.1056/nejmc031427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Gibbs, A. J., M. J. Gibbs, and J. S. Armstrong. "The phylogeny of SARS coronavirus." Archives of Virology 149, no. 3 (January 5, 2004): 621–24. http://dx.doi.org/10.1007/s00705-003-0244-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Chan, Kwok H., Leo L. L. M. Poon, V. C. C. Cheng, Yi Guan, I. F. N. Hung, James Kong, Loretta Y. C. Yam, Wing H. Seto, Kwok Y. Yuen, and Joseph S. Malik Peiris. "Detection of SARS Coronavirus in Patients with Suspected SARS." Emerging Infectious Diseases 10, no. 2 (February 2004): 294–99. http://dx.doi.org/10.3201/eid1002.030610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zhou, Peng, Zhenggang Han, Lin-Fa Wang, and Zhengli Shi. "Immunogenicity difference between the SARS coronavirus and the bat SARS-like coronavirus spike (S) proteins." Biochemical and Biophysical Research Communications 387, no. 2 (September 2009): 326–29. http://dx.doi.org/10.1016/j.bbrc.2009.07.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Alfiya Qamar. "Coronavirus - Past and Present." International Journal of Research in Pharmaceutical Sciences 11, SPL1 (December 29, 2020): 1574–79. http://dx.doi.org/10.26452/ijrps.v11ispl1.3722.

Full text
Abstract:
Coronavirus infectious disease 2019 (COVID-19) caused by a new mutant strain of coronavirus (SARS-CoV-2) which is an ongoing global health pandemic. However, you'll have first become conversant in the term coronavirus during the severe acute respiratory syndrome (SARS) outbreak in 2002. Here we summarize important distinguishing characteristics concerning both SARS-CoV and SARS-CoV2. SARS-Cov2, which is caused by the new novel coronavirus, has been highlighting the news lately. The virus that causes SARS is entitled as SARS-CoV, while the virus that causes COVID-19 is entitled as SARS-CoV-2. SARS was declared a global pandemic in late 2002 in China, when a healthcare practitioner got infected with a virus and unknowingly travelled to Hong Kong, with rapid spread to other nearby countries by international travelling of people. But due to many other factors, SARS was restrained in around 30 countries with an estimated mortality rate of 10% by the end of the pandemic in mid-2003. The focal point of this current novel coronavirus outbreak is within Wuhan city of China. Animal host act as a reservoir for novel coronavirus and it can infect human by crossing this barrier. Hence, a seafood wholesale market in the city was thought to be one among the places from where the transmission of COVID-19 initiated. As we go further in this article, we will come across the differences in genomic structure, pathogenicity, clinical features and lab investigations among SARS-CoV2 and SARS-CoV.
APA, Harvard, Vancouver, ISO, and other styles
28

Laçinel Gürlevik, Sibel. "Koronavirüsler ve Yeni Koronavirüs SARS-CoV-2." Journal of Pediatric Infection 14, no. 1 (March 16, 2020): 46–48. http://dx.doi.org/10.5578/ced.202017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

&NA;. "Glycyrrhizin: antiviral activity against SARS coronavirus." Inpharma Weekly &NA;, no. 1392 (June 2003): 7. http://dx.doi.org/10.2165/00128413-200313920-00015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Hofmann, Heike, and Stefan Pöhlmann. "Cellular entry of the SARS coronavirus." Trends in Microbiology 12, no. 10 (October 2004): 466–72. http://dx.doi.org/10.1016/j.tim.2004.08.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bradbury, Jane. "Molecular evolution of SARS coronavirus tracked." Lancet Infectious Diseases 4, no. 3 (March 2004): 131. http://dx.doi.org/10.1016/s1473-3099(04)00958-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Graham, Rachel L., Jennifer S. Sparks, Lance D. Eckerle, Amy C. Sims, and Mark R. Denison. "SARS coronavirus replicase proteins in pathogenesis." Virus Research 133, no. 1 (April 2008): 88–100. http://dx.doi.org/10.1016/j.virusres.2007.02.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bartlam, Mark, Haitao Yang, and Zihe Rao. "Structural insights into SARS coronavirus proteins." Current Opinion in Structural Biology 15, no. 6 (December 2005): 664–72. http://dx.doi.org/10.1016/j.sbi.2005.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

SPLETE, HEIDI. "Shades of SARS? New Coronavirus Identified." Internal Medicine News 45, no. 19 (November 2012): 19. http://dx.doi.org/10.1016/s1097-8690(12)70817-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Beniac, D., SL deVarennes, A. Andonov, and TF Booth. "Electron Microscopy of the SARS Coronavirus." Microscopy and Microanalysis 14, S2 (August 2008): 1530–31. http://dx.doi.org/10.1017/s143192760808728x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lawrence, David. "Coronavirus confirmed as cause of SARS." Lancet 361, no. 9370 (May 2003): 1712. http://dx.doi.org/10.1016/s0140-6736(03)13389-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yang, Gee-Gwo, Shinn-Zont Lin, Kuang-Wen Liao, Jen-Jyh Lee, and Lih-Shinn Wang. "SARS-associated Coronavirus Infection in Teenagers." Emerging Infectious Diseases 10, no. 2 (February 2004): 382–83. http://dx.doi.org/10.3201/eid1002.030485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Isakbaeva, Elmira T., Nino Khetsuriani, R. Suzanne Beard, Angela Peck, Dean Erdman, Stephan S. Monroe, Suxiang Tong, et al. "SARS-associated Coronavirus Transmission, United States." Emerging Infectious Diseases 10, no. 2 (February 2004): 225–31. http://dx.doi.org/10.3201/eid1002.030734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Vicenzi, Elisa, Filippo Canducci, Debora Pinna, Nicasio Mancini, Silvia Carletti, Adriano Lazzarin, Claudio Bordignon, Guido Poli, and Massimo Clementi. "Coronaviridaeand SARS-associated Coronavirus Strain HSR1." Emerging Infectious Diseases 10, no. 3 (March 2004): 413–18. http://dx.doi.org/10.3201/eid1003.030683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Tu, Changchun, Gary Crameri, Xiangang Kong, Jinding Chen, Yanwei Sun, Meng Yu, Hua Xiang, et al. "Antibodies to SARS Coronavirus in Civets." Emerging Infectious Diseases 10, no. 12 (December 2004): 2244–48. http://dx.doi.org/10.3201/eid1012.040520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Yang, Nan, Julian A Tanner, Bo-Jian Zheng, Rory M Watt, Ming-Liang He, Lin-Yu Lu, Jie-Qing Jiang, et al. "Bismuth Complexes Inhibit the SARS Coronavirus." Angewandte Chemie 119, no. 34 (August 27, 2007): 6584–88. http://dx.doi.org/10.1002/ange.200701021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Yang, Nan, Julian A Tanner, Bo-Jian Zheng, Rory M Watt, Ming-Liang He, Lin-Yu Lu, Jie-Qing Jiang, et al. "Bismuth Complexes Inhibit the SARS Coronavirus." Angewandte Chemie International Edition 46, no. 34 (August 27, 2007): 6464–68. http://dx.doi.org/10.1002/anie.200701021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

SATIJA, NAMITA, and SUNIL K. LAL. "The Molecular Biology of SARS Coronavirus." Annals of the New York Academy of Sciences 1102, no. 1 (April 2007): 26–38. http://dx.doi.org/10.1196/annals.1408.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Pagat, Anne-Marie, Raphaelle Seux-Goepfert, Charles Lutsch, Valérie Lecouturier, Jean-François Saluzzo, and Inca C. Kusters. "Evaluation of SARS-Coronavirus Decontamination Procedures." Applied Biosafety 12, no. 2 (June 2007): 100–108. http://dx.doi.org/10.1177/153567600701200206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Muller, Matthew, and Allison McGeer. "Severe Acute Respiratory Syndrome (SARS) Coronavirus." Seminars in Respiratory and Critical Care Medicine 28, no. 2 (April 2007): 201–12. http://dx.doi.org/10.1055/s-2007-976492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Falkenhain‐López, Daniel, Alba Sánchez‐Velázquez, Alba López‐Valle, and Francisco J. Ortiz‐Frutos. "SARS‐Coronavirus‐2 and acute urticaria." International Journal of Dermatology 59, no. 7 (May 22, 2020): 867–68. http://dx.doi.org/10.1111/ijd.14950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Rao, Z. "Crystal structures of SARS coronavirus proteins." Acta Crystallographica Section A Foundations of Crystallography 61, a1 (August 23, 2005): c50. http://dx.doi.org/10.1107/s0108767305097904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Rabenau, H. F., J. Cinatl, B. Morgenstern, G. Bauer, W. Preiser, and H. W. Doerr. "Stability and inactivation of SARS coronavirus." Medical Microbiology and Immunology 194, no. 1-2 (April 29, 2004): 1–6. http://dx.doi.org/10.1007/s00430-004-0219-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Graham, Rachel L., and Ralph S. Baric. "SARS-CoV-2: Combating Coronavirus Emergence." Immunity 52, no. 5 (May 2020): 734–36. http://dx.doi.org/10.1016/j.immuni.2020.04.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Кофман, В. Я. "Coronavirus SARS-CoV-2 in wastewater." Vodosnabzhenie i sanitarnaia tehnika, no. 3 (March 15, 2021): 45–55. http://dx.doi.org/10.35776/vst.2021.03.08.

Full text
Abstract:
Пандемия СOVID-19, объявленная ВОЗ чрезвычайной ситуацией в области здравоохранения, вызвана новым коронавирусом SARS-CoV-2. По сообщениям из Евросоюза, США и Австралии, потенциальная выживаемость коронавируса SARS-CoV-2 в фекалиях и сточных водах в течение достаточно длительного времени создает реальную возможность его поступления с канализационными стоками на очистные сооружения или непосредственно в поверхностные воды при сбросе неочищенных стоков. Это свидетельствует о существовании потенциальной возможности передачи SARS-CoV-2 через воду. В этой связи особую актуальность приобретает разработка эффективных способов удаления и инактивации вирусов на очистных сооружениях. Наличие коронавирусной инфекции в сточных водах может представлять серьезную опасность для здоровья контактирующих с ними людей. К ним относится персонал очистных сооружений, а также население в целом, которое может подвергаться непосредственному воздействию необработанных или недостаточно обработанных сточных вод через неисправные водопроводные или канализационные коммуникации. Во многих странах для получения своевременной достоверной информации о распространении коронавирусной инфекции используют методы эпидемиологии сточных вод. Возможность выявления РНК вируса в сточных водах даже при низкой распространенности СOVID-19 и корреляция между концентрацией РНК SARS-CoV-2 в сточных водах и официальной информацией указывают на то, что наблюдение за сточными водами может стать чувствительным инструментом мониторинга циркуляции вируса в популяции. The COVID-19 pandemic, declared by WHO as a health emergency, is caused by a novel SARS-CoV-2 coronavirus. According to reports from the European Union, the United States and Australia, the potential survival of the SARS-CoV-2 coronavirus in feces and wastewater for a sufficiently long time creates a real threat of its entry with wastewater into treatment facilities or directly into surface water while raw wastewater is discharged. This indicates the potential for the transfer of SARS-CoV-2 by water. In this regard, the development of effective methods for the removal and inactivation of viruses at the treatment facilities is of special actuality. The presence of coronavirus infection in wastewater can pose a serious health hazard to people in contact with it. These include the personnel at the wastewater treatment facilities, as well as the general population, who may be directly exposed to raw or inadequately treated wastewater through defective water or sewer systems. In many countries wastewater epidemiology methods are used to obtain timely reliable information on the spread of coronavirus infection. Possible detection of RNA virus in wastewater even with a low prevalence rate of COVID-19 and the correlation between the concentration of SARS-CoV-2 RNA in wastewater and official information indicate that monitoring wastewater can become a sensitive tool for monitoring the circulation of the virus in the population.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography